Beautiful paths to probe physics beyond the standard model of particles

Future Flavours: Prospects for Beauty, Charm and Tau Physics , April 2022

Recent rare B decays results

Belle(II), LHCb side by side

Belle (II)

 $e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else \Rightarrow clean events

(flavour tagging, B tagging, missing energy)

$$\begin{split} \sigma_{b\overline{b}} &\sim 1\,nb \Rightarrow 1\,\,fb^{-1}\,\,produces\,\,10^6\,B\,\overline{B}\\ \sigma_{b\overline{b}}/\sigma_{total} &\sim 1/4 \end{split}$$

LHCb

 $p p \rightarrow b \overline{b} X$ production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{b \, \overline{b}}$ much higher than at the $Y(4 \, S)$

	√s [GeV]	σ _{ьნ} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$
HERA pA	42 GeV	~30	~10 ⁻⁶
Tevatron	2 TeV	5000	~10 ⁻³
	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10 ⁻²

b $\overline{\mathbf{b}}$ production cross-section at LHCb ~ 500,000 × BaBar/Belle !! $\sigma_{b\overline{b}}/\sigma_{total}$ much lower than at the Y(4S)

 \Rightarrow lower trigger efficiencies

B mesons live relativey long

mean decay length $\beta \gamma c \tau \sim 200 \mu m$ data taking period(s) (displaced vertices) [1999-2010] = 1 ab⁻¹ [2019-...] = ... [Belle II from 2019] \rightarrow 50 ab⁻¹ 3 [LHCb upgrade from 2021]

$\mathbf{B}_{(s)} \rightarrow \mu \mu$: ultra rare processes...

loop diagram + suppressed in SM + theoretically clean = an excellent place to look for new physics

higher-order FCNC allowed in SM $B(B_s \rightarrow \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ $B(B_d \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

[Bobeth et al, PRL 112 (2014) 101801]

same decay in theories extending the SM (some of NP scenarios may boost the B→μμ decay rates)

Leptonic decays

$$\begin{split} B^0_{(s)} &\to \ell^+ \ell^- \\ BR(B^0_{(q)} \to \ell^+ \ell^-) &= \frac{\tau_B G_F^4 M_W^2 \sin^4 \theta_W}{8\pi^{5|}} |C_{10} V_{tb} V_{tq}^*| F_B^2 m_B m_\ell^2 \times \left| \sqrt{1 - \frac{4m_\ell^2}{m_B^2}} \right| \\ \end{split}$$

Branching ratio proportional to the lepton mass squared

$$\frac{BR(B^0_{(q)} \to \tau^+ \tau^-)}{BR(B^0_{(q)} \to \mu^+ \mu^-)} \sim \frac{m_\tau^2}{m_\mu^2} \qquad \qquad \frac{BR(B^0_{(q)} \to \mu^+ \mu^-)}{BR(B^0_{(q)} \to e^+ e^-)} \sim \frac{m_\mu^2}{m_e^2}$$

Helicity suppression, same reason why the pion decays into muon instead of electron \Rightarrow true only in SM

$$\frac{BR(B^0_{(d)} \to \mu^+ \mu^-)}{BR(B^0_{(s)} \to \mu^+ \mu^-)} = \frac{\tau_{B^0_d}}{\tau_{B^0_s}} \frac{m_{B^0_d}}{m_{B^0_s}} \frac{F_{B^0_d}}{F_{B^0_s}} (\frac{V_{td}}{V_{ts}})^2$$

All parameters either measurable or calculable with high precision valid only in Minimal Flavour Violating Models (where the flavour structure is described only by CKM)

In a ''general'' NP scenarios, the branching ratio of B leptonic decay is given by

$$BR(B_s^0 \to \mu^+ \mu^-) \propto (1 - \frac{4m_\ell^2}{m_B^2})|C_s - C_s'|^2 + |(C_P - C_P')^2 + 2\frac{m_\ell^2}{m_B^2}(C_{10} - C_{10}')|^2$$

$\mathbf{B}_{(s)} \rightarrow \mu \mu$: ultra rare processes...

$\mathbf{B}_{s} \rightarrow \mu^{+} \mu^{-}$ results

Constraints on NP models

Sensitivity to new physics in rare B decays

 $\Rightarrow~2~orders~of~magnitude~smaller~than~b \rightarrow s\gamma~but~rich~NP$ search potential

may interfere w/ contributions from NP

Many observables:

• Branching fractions

 $\circ~$ Isospin asymmetry $(A_{\rm I})$, Lepton forward -backward asymmetry $(A_{\rm FB})$, CP asymmetry ...

 $\circ\,$ and much more...

⇒ Exclusive $(B \rightarrow K^{(*)}l^{+}l^{-})$, Inclusive $(B \rightarrow X_{s}l^{+}l^{-})$

• Start with $b \rightarrow s \gamma$

• Start with $b \rightarrow s \gamma$, pay a factor $\alpha_{EM} = \frac{1}{137}$ \rightarrow Decay the γ into 2 leptons

• Start with $b \rightarrow s \gamma$, pay a factor α_{EM} • Decay the γ into 2 leptons • Add an interfering box diagram • $b \rightarrow lls$, very rare in the SM $B(B \rightarrow llK^*) = (3.3 \pm 1.0) \cdot 10^{-6}$

- Start with $b \rightarrow s\gamma$, pay a factor α_{EM} • Decay the γ into 2 leptons • Add an interfering box diagram • $b \rightarrow lls$, very rare in the SM $B(B \rightarrow llK^*) = (3.3 \pm 1.0) \cdot 10^{-6}$
- Sensitive to Supersymmetry, Any 2HDM, Fourth generation, Extra dimensions, Axions...
- Ideal place to look for new physics

- Start with $b \rightarrow s \gamma$, pay a factor α_{EM} • Decay the γ into 2 leptons • Add an interfering box diagram • $b \rightarrow lls$, very rare in the SM $B(B \rightarrow llK^*) = (3.3 \pm 1.0) \cdot 10^{-6}$
- But beware of LD effects:
 - Tree $b \rightarrow c \overline{c} s$, $(c \overline{c}) \rightarrow ll$
 - Can be removed by mass cuts
 - Interferes elsewhere

First observation

Lepton Photon 01, 2001 July 23, Roma

Lepton flavor universality (LFU)

How do the SM gauge bosons couple to charged leptons of different flavors?

Universality in neutral current interactions

$$U^{\dagger}U = V^{\dagger}V = \mathbb{I}_{3\times3} \implies \mathcal{L}_{\mathrm{nc}}^{\ell} \equiv \left(\overline{\widehat{e}}\gamma_{\mu}\widehat{e} + \overline{\widehat{\mu}}\gamma_{\mu}\widehat{\mu} + \overline{\widehat{\tau}}\gamma_{\mu}\widehat{\tau}\right) \left(g_{\gamma}A^{\mu} + g_{Z}Z^{\mu}\right)$$

The photon and Z-boson couple with the same strength to the three lepton families

Universality

How do we test this feature of the Standard Model?

$$R_Y = \frac{\mathrm{BR}\left(X \to Y e_i^+ e_i^-\right)}{\mathrm{BR}\left(X \to Y e_j^+ e_j^-\right)} \qquad i \neq j$$

SM expectation

Experimental results

 $R_Y = 1 + \mathcal{O}\left(\frac{m_{i,j}^n}{m_Y^n}\right)$

We'll see...

Situation pre-LHCb

 $\mathbf{B} \rightarrow \mathbf{K}^* \mathbf{l}^+ \mathbf{l}^-$ decays

• Channels: $K^* \rightarrow K^+ \pi^-$, $K^0_S \pi^+$, $K^+ \pi^0$, $l = e \text{ or } \mu$

Test of LFU with $B \rightarrow K^{*0} \mu \mu$ and $B \rightarrow K^{*0} ee$, $R_{K^{*0}}$

Two regions of q^2

- \circ Low [0.045-1.1] GeV²/c⁴
- Central [1.1-6.0] GeV^2/c^4

Different q² regions probe different processes in the OPE framework short distance contributions described by Wilson coefficients

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum \left[C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right]$$

- Measured relative to $B^0 \rightarrow K^{*0} J/\psi(ll)$ in order to reduce systematics
- \circ Challenging:
 - due to significant differences in the way $\boldsymbol{\mu}$ and e interact with detector
 - Bremsstrahlung
 - Trigger

Strategy

◦ Measured relative to $B^0 \rightarrow K^{*0} J/\psi(ll)$ in order to reduce systematics

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \,(\to \mu^+ \mu^-))} \left/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \,(\to e^+ e^-))} \right.$$

> Selection as similar as possible between $\mu\mu$ and ee

- » Pre-selection requirements on trigger and quality of the candidates
- » Cuts to remove the peaking backgrounds
- » Particle identification to further reduce the background
- » Multivariate classifier to reject the combinatorial background
- » Kinematic requirements to reduce the partially-reconstructed backgrounds
- » Multiple candidates randomly rejected (1-2%)

> Efficiencies

» Determined using simulation, but tuned using data

<u>Fit results – μμ</u>

<u>Fit results – ee</u>

<u>Results</u>

- The compatibility of the result in the $low-q^2$ with respect to the SM prediction(s) is of **2.2-2.4** standard deviations
- The compatibility of the result in the **central-q²** with respect to the SM prediction(s) is of 2.4-2.5 standard deviations

Test of lepton universality using B^+ \rightarrow K^+ l^+ l^- decays

 R_{K} : ratio of branching fractions for dilepton invariant mass squared range $1 < q^{2} < 6 GeV^{2}/c^{4}$

 Most precise measurement to date, disagreement with SM at 2.6σ level

 $\Rightarrow B(B^+ \rightarrow e^+ e^- K^+) = (1.56^{+0.19}_{-0.15}(stat) {}^{+0.06}_{-0.05}(syst)) \times 10^$ compatible with SM predictions

BSM LFNU and effect is in $\mu\mu$, not ee

Test of lepton universality using $B^+ \rightarrow K^{(*)}l^+l^-$ decays

no evidence of New Physics in a series of ''clean'' flavor-changing observables, such as $\Delta F=2$, but also $b \rightarrow s \gamma$ but ...

Test of lepton universality using $B^+ \rightarrow K l^+ l^-$ decays

Test of lepton universality using $B^+ \rightarrow K^{(*)}l^+l^-$ decays

Model candidates

Model with extended gauge symmetry

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

Models with leptoquarks

- ✓ Effective operator from LQ exchange
- ✓ Yukawa interaction with LQs provide flavor violation

Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow s e \mu$, $b \rightarrow s e \tau$,...

Differential Branching Fractions

Results consistently lower than SM predictions

Sheldon Stone (LHCb)

Should we believe LFU violation?

Yes

- R measurements are double ratio's to J/ψ, check with K*J/ψ→⁻e⁺e⁻/μ⁺μ⁻ =1.043±0.006±0.045
- 𝔅(B⁻→K⁻e⁺e⁻) agrees with SM prediction, puts onus on muon mode which is well measured and low
- Both R_K & R_{K*} are different than ~1
- Supporting evidence of effects in angular distributions

No, not yet

- Statistics are marginal in each measurement
- Need confirming evidence in other experiments for R_K & R_{K*}
- Disturbing that R_{K*} is not ~1 in lowest q², which it should be, because of the photon pole
- Angular distribution evidence is also statistically weak

DPF, August, 2017

anything else ?

Found by LHCb (and perhaps hinted by Belle)

Many observables: global pattern

Neutral current

1-loop (and CKM-suppressed) in the SM

The New Physics can be heavy

Event reconstruction in B \rightarrow D^{(*)} \tau \nu at B factories

uncertainties from form factors F_v and F_s can be studied with $B \rightarrow Dl \nu$ (more form factors in $B \rightarrow D^* \tau \nu$)

B→**D**^(*)τν [PRL 109, 101802 (2012)]

- $\circ~$ 2D unbinned fit to m^2_{miss} and p^*_l
- fitted samples
 - 4 $D^{(*)}l$ samples $(D^0l, D^{*0}l, D^+l$ and $D^{*+}l)$
 - 4 $D^{(*)}\pi^0 l$ control samples $(D^{**}(l/\tau)\nu)$

 $\Rightarrow \mathbf{D}\tau \mathbf{v} \text{ and } \mathbf{D}^*\tau \mathbf{v} \text{ clearly observed}$

$\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \mathbf{v}$

Summary for $B \rightarrow D^{(*)} \tau \nu$ in 2016

BaBar
Belle
$ \begin{array}{c} \mathbf{R}(\mathbf{D}) = 0.375 \pm 0.064 \pm 0.026 \\ \mathbf{R}(\mathbf{D}^*) = 0.293 \pm 0.038 \pm 0.015 \end{array} $
$R(D^*) = 0.302 \pm 0.030 \pm 0.011$
LHCb
$R(D^*) = 0.336 \pm 0.027 \pm 0.030$
<u>average</u>

 $R(D) = 0.397 \pm 0.040 \pm 0.028$ R(D^{*}) = 0.316 ± 0.016 ± 0.010

difference with SM predictions is at 4.0σ level

$\underline{\mathbf{B}} \rightarrow \mathbf{D}^{*+} \tau \nu \text{ at } \mathbf{LHCb}$

need a strong background suppression: $B(B^0 \rightarrow D^* 3 \pi + X)/B(B^0 \rightarrow D^* \tau \nu; \tau \rightarrow 3 \pi)_{SM} \sim 100$ \Rightarrow detached vertex method

[LHCb-PAPER-2017-017] $\tau \rightarrow 3 \pi (\pi^0)$ B→D*⁻π⁺π⁻π⁺(+Σ $B^{o} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$ Δ7>4σ. Events / (0.1 LHCb simulation D*πππΧ 10^{3} D*DX 10^{2} 10 0 10 $\Delta z \sigma_{\Lambda z}$ components of 3D fit (q^2 , 3π decay time, BDT): $\tau \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}, \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ anti-D. $X_h \rightarrow D^{**} \tau v_\tau$ $B \rightarrow D D_{s(I)} X$ (relative) yields constrained $X_{h} \rightarrow DDX$ from control samples $B(B^{0} \rightarrow D^{*}\tau\nu)/B(B^{0} \rightarrow D^{*}3\pi) = (1.93 \pm 0.13 \pm 0.17)$ \Rightarrow R(D^{*}) = 0.285 ± 0.019 ± 0.025 ± 0.014

R(D), $R(D^*)$ still at 4σ away from SM

Summary for $B \rightarrow D^{(*)} \tau \nu$

$$\mathbf{R}(\mathbf{D}^{(*)}) = \frac{\mathbf{BF}(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \mathbf{v}_{\tau})}{\mathbf{BF}(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{l} \mathbf{v}_{l})}$$

BaBar
$R(D) = 0.440 \pm 0.058 \pm 0.042$
$R(D^*) = 0.332 \pm 0.024 \pm 0.018$
Belle
$R(D) = 0.375 \pm 0.064 \pm 0.026$
$R(D^*) = 0.293 \pm 0.038 \pm 0.015$
$R(D^*) = 0.270 \pm 0.035 ^{+0.028}_{-0.025}$
$R(D) = 0.307 \pm 0.037 \pm 0.016$
$R(D^*) = 0.283 \pm 0.018 \pm 0.014$
LHCb
$R(D^*) = 0.336 \pm 0.027 \pm 0.030$
$R(D^*) = 0.280 \pm 0.018 \pm 0.029$
<u>average</u>
$R(D) = 0.340 \pm 0.027 \pm 0.013$
$R(D^*) = 0.295 \pm 0.011 \pm 0.008$
difference with SM predictions is at 3σ level

Hadronic full reconstruction at Belle II

Particle	# channels (Belle)	# channels (Belle II)
D*/D**/D _s *	18	26
D ⁰ /D* ⁰	12	17
B+	17	29
B ⁰	14	26

 More modes used for tag-side hadronic B than Belle, multiple classifiers

Algorithm	MVA	Efficiency	Purity		
Belle v1 (2004)	Cut based (Vcb)				
Belle v3 (2007)	Cut based	0.1	0.25		
Belle NB (2011)	Neurobayes	0.2	0.25		
Belle II FEI (2017)	Fast BDT	1 0.5	0.25		

Projections for Belle II R(D^(*))

Systematic uncertainty dominated by D^{**} and missed soft pions:

- $\circ~$ Studies of $D^{**} l\,\nu$ and $D^{**} \tau\,\nu$ planned
- Branching ratios and decay modes from data

Other observables from B \rightarrow D^{(*)} \tau v

Additional observables as $P_{\tau}(D^*)\,(F_L(D^*))$ and q^2 distribution can help discriminate between New Physics models

Projections for $P_{\tau}(D^*)$ at Belle II [Belle, arXiv:1612.00529] Stat. $\mathbf{P}_{\tau}(\mathbf{D}^*) = -0.38 \pm 0.51 \stackrel{+0.21}{_{-0.16}}$ Sys. $P_{\tau}(D^*)$ uncertainty uncertainty at 5 ab⁻¹ 0.180.08at 50 ab⁻¹ 0.060.04 $P_{T}(D^{*})$ q^2 spectrum $B \rightarrow D^* \tau v$ Belle II Projection Belle Combination 50ab⁻¹ projection SM prediction: PRD85 094025 (2012), PRD87 034028 (2013) 0.5 Scalar Vector PRD87 034028 (2013) Events 1200 Tensor 0 1000 800 600 -0.5 400F Type II 2HDM 200 0.2 0.3 0.25 0.35 0.4 0, 5 10

39 R(D*)

 q^2 (GeV²/c²)

$\underline{\mathbf{B}} \rightarrow \mathbf{D}^{(*)} \tau \nu \text{ and other observables}$

Found by LHCb (and perhaps hinted by Belle)

Many observables: global pattern

Neutral current

1-loop (and CKM-suppressed) in the SM

The New Physics can be heavy

Found by several experiments (LHCb, BaBar and Belle)

Two observables: R(D) and R(D*)

Charged current

Tree-level in the SM

The New Physics must be light

Test of lepton universality using $B^+ \rightarrow K^{(*)}l^+l^-$ decays

Model candidates

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- $\checkmark\,$ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow s e \mu$, $b \rightarrow s e \tau$,...

G.Isidori, **FPCP 2020**: correlations among $b \rightarrow s(d)ll'$ within the U(2)-based EFT

	μμ (ee)	ττ	16 TR 1	C RE AN	aller h
$b \rightarrow s$	R _K , R _{K*}	$B \to K^{(*)} \tau \tau$			
	O(20%)	$\left(\rightarrow 100 \times \text{SM}\right)$	P		C.C.
$b \rightarrow d$	$B_d \rightarrow \mu\mu$	$B \rightarrow \pi \ \tau \tau$			
	${ m B} ightarrow \pi \mu \mu$ ${ m B}_{ m s} ightarrow K^{(*)} \mu \mu$	$\rightarrow 100 \times SM$	and the second	Hugen	TH BAR
($O(20\%) [R_K = R_\pi]$	42		V	Y

$$\underline{\mathbf{B}} \rightarrow \mathbf{K}^{(*)} \tau \tau$$

[B.Capdevila et al, arXiv:1712.01919]

 q^2 range for predictions for B → Hτ⁺τ⁻: from 4 m_τ² (~ 12.6 GeV²) to (m_B – m_H)² to avoid contributions from resonant decay through ψ(2S), B→Hψ(2S), ψ(2S)→τ⁺τ⁻ predictions restricted to q² > 15 GeV²:

```
B(B→Kτ<sup>+</sup>τ<sup>-</sup>)<sub>SM</sub> = (1.2 ± 0.1) 10<sup>-7</sup>
B(B→K<sup>*</sup>τ<sup>+</sup>τ<sup>-</sup>)<sub>SM</sub> = (1.0 ± 0.1) 10<sup>-7</sup>
```


[B.Capdevila et al, arXiv:1712.019191

 q^2 range for predictions for $B \rightarrow H\tau^+\tau^-$: from $4 m_{\tau}^2 (\sim 12.6 \text{ GeV}^2)$ to $(m_B - m_H)^2$ to avoid contributions from resonant decay through $\psi(2S)$, $B \rightarrow H \psi(2S)$, $\psi(2S) \rightarrow \tau^+ \tau^$ predictions restricted to $q^2 > 15 \text{ GeV}^2$: 10 $B(B \rightarrow K \tau^{+} \tau^{-})_{SM} = (1.2 \pm 0.1) \ 10^{-7}$ 8 $B(B \rightarrow K^* \tau^+ \tau^-)_{SM} = (1.0 \pm 0.1) 10^{-7}$ R_D(*)&R_J/ψ 2σ Br × 10⁴ 6 R_D(*)&R_J/ψ 1σ $\blacksquare Br[B_s \rightarrow \tau \tau]$ Br[B→ K^* ττ] 4 Br[B→Kττ] strategy used: [BaBar, arXiv:1605.09637] \square Br[B_s $\rightarrow \phi \tau \tau$] B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_l \nu_{\tau}$ 2 Entries/0.04 background: mostly $B \rightarrow D^{(*)} l \overline{v_1}, D^{(*)} \rightarrow K l' \overline{v_{1'}}$ 1.2 1.3 1.4 1.5 1.1 R_{χ}/R_{χ}^{SM} 150 100 0 0.2 0.4 0.6 0.8 1.2 14 -0.2MLP output

BaBar's result with had tag: $B(B^+ \rightarrow K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ at 90%CL [Belle II, arXiv:1808.10567]

Observables	Belle $0.71 \text{ ab}^{-1} (0.12 \text{ ab}^{-1})$	Belle II 5 ab ⁻¹	Belle II 50 ab ⁻¹
$Br(B^+ \rightarrow K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0

Test of lepton universality using $B^+ \rightarrow K^{(*)}l^+l^-$ decays

Model candidates

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- $\checkmark\,$ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow se\mu$, $b \rightarrow se\tau$,...

G.Isidori, **FPCP 2020**: correlations among $b \rightarrow s(d)$ ll' within the (2)-based EFT

	μμ (ее)	ττ	νν	τμ	μe
$b \rightarrow s$	R _K , R _{K*}	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^{(*)} \tau \tau \\ \hline \to 100 \times \mathrm{SM} \end{array}$	$B \rightarrow K^{(*)} vv$ $O(1)$	$\begin{array}{c} \mathbf{B} \to \mathbf{K} \ \mathbf{\tau} \mathbf{\mu} \\ \hline \to 10^{-6} \end{array}$	В → К µе ???
$b \rightarrow d$	$B_{d} \rightarrow \mu\mu$ $B \rightarrow \pi \mu\mu$ $B_{s} \rightarrow K^{(*)} \mu\mu$	$\begin{array}{c} \mathbf{B} \to \boldsymbol{\pi} \ \boldsymbol{\tau} \boldsymbol{\tau} \\ \hline \to 100 \times \mathbf{SM} \end{array}$	$\frac{B \rightarrow \pi \nu \nu}{O(1)}$	$\frac{B \rightarrow \pi \tau \mu}{\rightarrow 10^{-7}}$	$B \rightarrow \pi \mu e$???
l	$O(20\%) [K_{K} = R_{\pi}]$	46	-	:	

LFV B \rightarrow **K** τ **l**(**l** = **e**, μ) **decays**

[BaBar, arXiv:1204.2852] strategy used: B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_1 \nu_{\tau}$, $(n \pi^0) \pi \nu$, with $n \ge 0$ using momenta of K, l and B, **can fully determine the** τ **four-momentum** unique system: no other neutrino than the ones from one tau ($\neq B \rightarrow \tau \nu$, D^(*) $\tau \nu$...)

 $B(B^{+} \rightarrow K^{+} \tau^{-} \mu^{+}) < 4.5 \times 10^{-5} \text{ at } 90 \% \text{CL}, B(B^{+} \rightarrow K^{+} \tau^{+} \mu^{-}) < 2.8 \times 10^{-5} \text{ at } 90 \% \text{CL}$ (also results for $B \rightarrow K^{+} \tau^{\pm} e^{\mp}, B \rightarrow \pi^{+} \tau^{\pm} \mu^{\mp}, B \rightarrow \pi^{+} \tau^{\pm} e^{\mp} \text{ modes}$)

[Belle II, arXiv:1808.10567]

Observables	Belle $0.71 \text{ ab}^{-1} (0.12 \text{ ab}^{-1})$	Belle II $5 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab}^{-1}$
$\text{Br}(B^+ \rightarrow K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	_	_	< 2.1
${\rm Br}(B^+\to K^+\tau^\pm\mu^\mp)\cdot 10^6$	_	_	< 3.3
$Br(B^0 \rightarrow \tau^{\pm} e^{\mp}) \cdot 10^5$	_	_	< 1.6
$Br(B^0 \rightarrow \tau^{\pm} \mu^{\mp}) \cdot 10^5$	_	_	< 1.3

⇒ can we do better ? combining hadronic tag with an more inclusive tag... ⇒ can do $K^{*} \tau e$, $K^{*} \tau \mu$ with similar sensitivity...

Nice complementarity

A. Angelescu et al., arXiv:2103.12504v2 (21 Apr 2021)

<u>cLFV: beyond the Standard Model</u>

$$\mathcal{B}_{\nu SM}(\tau \to \mu \gamma) = \frac{3\alpha}{32\pi} \left| U_{\tau i}^* U_{\mu i} \frac{\Delta m_{3i}^2}{m_W^2} \right|^2 < 10^{-40}$$

					$\tau \rightarrow 3\mu$	$\tau \rightarrow \mu \gamma$	$\tau \rightarrow \mu \pi^+ \pi^-$	$\tau \rightarrow \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$	
Model	Reference	τ→μγ	т→µµµ	4-lepton →O ^{4ℓ} _{S,V}	· ·	_	_	_	_	_	İ
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10 ⁴⁰	dipole	1	1	\checkmark	1	_	—	
SM L boow Maive		10-9	10-10	O _V	← -	-	✓ (I=1)	\checkmark (I=0,1)	_	—	
Sivi + neavy Iviaj vR	FND 00 (2002) 034008	10-5	10-10	O ^q S	← _	_	✓ (I=0)	\checkmark (I=0,1)	_	_	
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10-8	⇒pton-gluon →O _{GG}	. –	-	✓	1	_	-	
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10	O _A ^q	← -	_	-	_	✓ (I=1)	✓ (I=0)	
				O ^q P	← -	-	-	_	✓ (I=1)	✓ (I=0)	
nSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10 ⁻⁹	→O _{GĜ}	. –	_	_	_	_	✓	
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7		L lepton	-quark		Celis, C	irigliano, Pa	ssemar (2014	4)
											_

cLFV: beyond the Standard Model

 τ LFV searches at Belle II will be extremely clean with very little background (if any), thanks to pair production and double-tag analysis technique.

In contrast, hadron collider experiments must contend with larger combinatorial and specific backgrounds

Background modes normalised to $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$ (BR ~ 10⁻⁵)

Relative

abundance

1

0.87

0.13

0.13

0.06

0.05

Most improvement in coming decade is expected from Belle II, which can reach 1×10^{-9} [arXiv:1011.0352] and will do even better if can achieve ~ zero bckgd