Beautiful paths to probe physics beyond the standard model of particles

Future Flavours: Prospects for Beauty, Charm and Tau Physics, April 2022

Program of the lectures

- How to study elementary particles
- indirect searches for New Physics
- experiments through history of particle/flavour physics
- what is Belle (II) experiment (s)
- Rare B decays
- quest for New Physics (beyond Standard Model)
- two approaches for the same quest (LHCb vs Belle)
- sign of New Physics?

2 words on my background

$$
\begin{aligned}
& \mathbf{e}^{+} \mathbf{e}^{-} \text {@ Z } \mathbf{e}^{+} \mathbf{e}^{-} \text {@ } \mathbf{Y}(4 \mathrm{~S}) \quad \mathrm{pp} @ \text { 8-13 TeV } \mathbf{e}^{+} \mathbf{e}^{-} \text {@ } \mathbf{Y}(4 \mathrm{~S}) \\
& \text { ALEPH (CERN), Belle (KEK), LHCb (CERN), Belle II (KEK) }
\end{aligned}
$$

CPPM (France), Osaka U (Japan), U Hawaii (USA), KEK (Japan), EPFL (Switzerland), IJCLab (France)

KEK

High Energy Accelerator Research Organization

- Tsukuba, Japan
- Largest Accelerator Facility in Japan (in Asia ?)
- Institute for High Energy Physics
(Particle Physics)
- Various researches using accelerators are being done (Universe, Matter, Life)

4

KEK

High Energy Accelerator Research Organization

more than 20 years ago...

New generation, new experiment

 start taking data in 2018...

Belle II

keywords:
particle physics flavor physics beauty, charm, $\tau \ldots$ intensity frontier indirect search

Standard Model in a nutshell

In the Standard Model (theory of the Particle Physics) ${ }^{\text {b quark! }}$ following particles are considered to be elementary particles:

components of SM:

Matter (fermions)
3 generations : quarks and leptons
Source of Force (Gauge bosons)

Electromagnetic y Weak interaction $\mathrm{W}^{ \pm}, \mathrm{Z}^{0}$ Strong interaction g (quark only)
$\}$ Electro-weak (unified) $\operatorname{SU}(2) \times U(1)$ QCD SU(3)

Source of Mass
Higgs Boson H^{0} (discovered by LHC in 2012)
(Spontaneous breakdown : vacuum expectation \rightarrow mass)
Weinberg - Salam (1976) [gravity is not included]

Parameters of the Standard Model

- 3 gauge couplings + QCD vacuum angle
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses
- (3 lepton mixing angles + 1 phase)

Cabibbo-Kobayashi-Maskawa

flavour parameters
() = with Dirac neutrino masses

importance of flavour physics, indirect searches...

SSI2018 • July 30 - August 10 • 46TH SLAC Summer Institute

The

STANDARD MODEL at 50: Successes \& Challenges

The 2018 SLAC Summer Institute will provide a broad overview of the Standard Model. In addition to providing a survey of the historical development of the different components of the SM, both theoretical and experimental status reports of all aspects of the SM framework will be given showing both the successes and the various challenges that it faces. Lectures will generally be given in the momings during both weeks. Atternoons include special lectures and topical talks which alternate with discussion sessions, student project sessions and tours. Evening events include poster sessions and social activities. SSI is especially targeted for graduate students and young postdocs.

SHOL
The Origins of the Standard Mode Precision Electroweak Theory Standard Model Probes in Atoms, Molecules \& Nucle Evolution of Electroweak Theory Low Energy Precision Measurements The Development of QCD
Evolution of Accelerators \& Technology
Precision QCD \& the Standard Model Nuclear Physics Measurements as Tests of the SM

QCD at the LHC Astro-Cosmology Window on the SM-Theory \& Experiment QCD on the Lattice ts Establishing the SM History of the Higgs The Higgs in the SM Properties of the Higgs at the LHC The Physics of Neutrinos The , lysteries of Flavor-Theory \& Experiment he Baryon Asymmetry What \& Where is Dark Matter -Theory \& Experiment The Hierarchy \& Fine-Tuning Problems The Physics of Future Colliders-No Lose Theorem? What Future Higgs Measurements Will Tell Us

The View Ahead

CONTACT:

SSI2018, SLAC, MS 81 2575 Sand Hill Road Menlo Park, CA 94025 email: ssi@slac.stanford.edu

SPONSORSHIP:

The SLAC Summer Institute is hosted by Stanford University and co-sponsored by the US Department of Energy and

How to study Elementary Particles \Rightarrow experiments ! !

- In 1911, Rutherford performed an experiment to irradiate α particles to a gold foil.
$\checkmark \alpha$ particle : nucleus of He atom
$\checkmark \alpha$ particle from Radium (radioactive source)

E. Rutherford

Most a particles passed through the gold foil. However, surprisingly, a very small fraction of them were deflected by much larger than 90 degrees.

\Rightarrow observation (''detectors are our eyes''):
''it was as if you fired a 15 -inch shell at a piece of tissue paper and it came back and hit you ''

- Rutherford
\Rightarrow interpretation:
'Standard Model''
(' 'Panettone' ${ }^{\text {atom model) }}$
' 'New Physics' ${ }^{\prime}$
\Rightarrow good example of indirect search...
\Rightarrow proper experimental setting is most important good control of the beam, good shielding... good coverage of the detector

Particle physics experiments

Detectors and other electronic apparatus are required for various purposes in every experiment. The tasks required for most experiments include:

- tracking
- momentum analysis
- neutral particle detection
- particle identification
- triggering, and
- data acquisition

12

Identifying particles

A detector cross-section, showing particle paths

insert PID detectors minimizing material in front of calorimeters

Main actors in B physics

(ARGUS, CLEO)

14

logo designed by undergraduate student...

logo designed by undergraduate student...

asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider producing B mesons

Upsilon meson discoveries

' 'Observation of a Dimuon Resonance at 9.5 GeV in 400 GeV Proton-Nucleus Collisions '" Summer of 1977, a team of physicists, led by Leon M.Lederman, working on experiment 288 in the proton center beam line of the Fermilab fixed target areas discovered the Upsilon Y

1970 proposal: study the rare events that occur when a pair of muons or electrons is produced in a collision of the proton beam from the acccelerator on a platinum target Only one Upsilon is produced for every 100 billion protons which strike the target

The Upsilon apparatus

' 'The Upsilon fits very nicely into the picture of a super-atom consisting of the bound state of a bottom quark and antiquark

$\mathrm{Y}(4 \mathrm{~S})=\mathrm{Y}(10580)$ B-factory

Particle Data Group

$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$	
$r(1 S)$ MASS	$9460.30 \pm 0.26 \mathrm{MeV}(\mathrm{S}=3.3)$
$r(1 s)$ WIDTH	$54.02 \pm 1.25 \mathrm{keV}$
$\Gamma(g g g, \gamma g g \rightarrow \bar{d}$ anything)/ $\Gamma(\mathrm{ggg}, \gamma \mathrm{g} g \rightarrow$ anything $)$	$(3.36 \pm 0.34) \times 10^{-5}$
$\mathbf{Y}(2 S) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$	
$r(2 S)$ MASS	$10023.26 \pm 0.31 \mathrm{MeV}$
$m_{Y(3 S)} m^{(2)}$	$331.50 \pm 0.13 \mathrm{MeV}$
$r(2 S)$ WIDTH	$31.98 \pm 2.63 \mathrm{keV}$
$\Upsilon(3 S) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$	
$r(3 S)$ MASS	$10355.2 \pm 0.5 \mathrm{MeV}$
$m_{Y(3 S)^{-}}-m_{Y(2 S)}$	$331.50 \pm 0.13 \mathrm{MeV}$
$r(3 S)$ WIDTH	$20.32 \pm 1.85 \mathrm{keV}$

$\Upsilon(4 S) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$
also known as $Y(10580)$

Y(4S) B-factory

$$
\mathrm{Y}(4 \mathrm{~S})
$$

- 2 B's and nothing else!
- 2 B mesons are created simultaneously in a $\mathrm{L}=1$ coherent state
\Rightarrow before first decay, the final states contains a B and a \bar{B}

The naive parton model:

$$
\mathrm{R}(\mathrm{~s})=\frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)}=\sum_{\mathrm{q}} \mathrm{Q}_{\mathrm{q}}^{2}
$$

$1 \mathrm{GeV} \leq \sqrt{\mathrm{s}} \leq 3 \mathrm{GeV}, \mathrm{u}, \mathrm{d}$ and s quarks

$$
R(s)=3 \cdot\left\{1 \cdot\left(\frac{2}{3}\right)^{2}+2 \cdot\left(-\frac{1}{3}\right)^{2}\right\}=2
$$

$14 \mathrm{GeV} \leq \sqrt{\mathrm{s}} \leq 45 \mathrm{GeV}, \mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}$ and b quarks

$$
R(s)=3\left\{2 \cdot\left(\frac{2}{3}\right)^{2}+3 \cdot\left(-\frac{1}{3}\right)^{2}\right\}=\frac{11}{3}
$$

Y(4S) B-factory

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B} \overline{\mathrm{~B}}\right) \simeq 1.1 \mathrm{nb}
$$

- '' continuum' ' production ($\mathbf{q} \overline{\mathbf{q}}=\mathbf{u} \overline{\mathbf{u}}, \mathbf{d} \overline{\mathbf{d}}, \mathbf{s} \overline{\mathbf{s}}, \mathbf{c} \overline{\mathbf{c}}$)

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{c} \overline{\mathrm{c}}\right)=1.3 \mathrm{nb}
$$

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{s} \overline{\mathrm{~s}}\right)=0.4 \mathrm{nb}
$$

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{u} \overline{\mathrm{u}}\right)=1.6 \mathrm{nb}$
$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{d} \overline{\mathrm{d}}\right)=0.4 \mathrm{nb}$

- $\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \tau^{+} \tau^{-}\right) \sim \mathbf{1} \mathbf{n b}$
- $\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mu^{+} \mu^{-}\right) \sim \mathbf{1} \mathbf{~ n b}$ (calibration)
- bhabha: $\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}\right) \sim 100 \mathbf{n b}$ (luminosity)

Spherical BB events

Why high luminosity required?

Only small fraction of collision reaction is useful for rare decays.

High statistics to search for slight difference btw matter and anti-matter

A large quantity of collision events needed.

| Number of collision
 events/sec |
| :--- | | Luminosity
 $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ |
| :---: | | cross-section of
 reaction |
| :--- |
| (subject to nature) |
| cm^{2} |

1 barn $=10^{-24} \mathrm{~cm}^{2} \Rightarrow$ integrated luminosity : $1 \mathrm{fb}^{-1}$, cross-section $=1 \mathrm{nb}\left(10^{6} \mathrm{fb}\right)$

$$
\Rightarrow 10^{6} \text { events }
$$

B factories: BaBar and Belle

Belle in a nutshell

very stable detector, good particle identification, (kaon, pion, proton, electron, muon), $\mathrm{e}^{+} \mathrm{e}^{-}$is a clean environment: excellent tracking , triggering, tagging ...

Belle in a nutshell

$\mathbf{K L M}\left(\mathbf{K}_{\mathbf{L}} \boldsymbol{\mu}\right)$ Detector: Sandwich of 14 RPCs and 15 iron plates

Silicon Vertex Detector :

3/4 detection layers
Vertex resolution $\sim 100 \mu \mathrm{~m}$
8.0 GeV e ${ }^{-}$

Central Drift Chamber 8,400 sense wires PID with dE/dx
3.5 GeV e ${ }^{+}$

Electromagnetic Cal : CsI(Tl) crystal $\sigma_{\mathrm{E}} / \mathrm{E} \sim 1.6 \%$ @ 1 GeV

Time-of -Flight Counter : K/ π-ID of high p

Aerogel Cerenkov Counter : Refractive index $\mathrm{n}=1.01$-1.03 K / π of middle p
very stable detector, good particle identification, (kaon, pion, electron, muon), $\mathrm{e}^{+} \mathrm{e}^{-}$is a clean environment : exceldqnt tracking, triggering, tagging ...

Belle in a nutshell

KLM ($\left.\mathbf{K}_{\mathbf{L}} \boldsymbol{\mu}\right)$ Detector: Sandwich of 14 RPCs and 15 iron plates

Silicon Vertex Detector :
3/4 detection layers
Vertex resolution $\sim 100 \mu \mathrm{~m}$
8.0 GeV e ${ }^{-}$

Central Drift Chamber 8,400 sense wires PID with dE/dx

Electromagnetic Cal : CsI(Tl) crystal $\sigma_{\mathrm{E}} / \mathrm{E} \sim 1.6 \%$ @ 1 GeV

Time-of -Flight Counter : $K / \pi-$ ID of high p

Aerogel Cerenkov Counter: Refractive index $\mathrm{n}=1.01$-1.03 K / π of middle p
very stable detector, good particle identification, (kaon, pion, electron, muon), $\mathrm{e}^{+} \mathrm{e}^{-}$is a clean environment : exceldgnt tracking, triggering, tagging ...

How to detect particles in Belle

How to measure charged particles.

- Magnetic field (1.5 T at Belle) is applied in parallel to the beam axis.
\checkmark Charged particles curls in the plane perpendicular to the beam axis.
- Measure the trajectory of the charged particles.
\checkmark Momentum can be obtained by the relation $p[G e V]=0.3 B[T] R[m]$.

More exactly, only transverse momentum (p_{T}) can be obtained. But, we also know the direction of the particle. Hence the momentum vector can be calculated.

How to detect particles in Belle

Central Drift Chamber

 Sense wire 30 micron diameter gold plated tungsten Field wire Gas126 micron diameter aluminium mixture of Helium 50% and $\mathrm{C}_{2} \mathrm{H}_{6} 50 \%$

+ superconduction magnet inner radius $=170 \mathrm{~cm}, \mathrm{~B}=1.5 \mathrm{~T}$

Configuration 52 layers
8.4 k anodes radius $=8.5-90 \mathrm{~cm}$
$-77 \leq \mathrm{z} \leq 160 \mathrm{~cm}$

How to detect particles in Belle

Silicon Vertex Detector $300 \mu \mathrm{~m}$ thick, 3-4 layer radius $=2.0-8 \mathrm{~cm}$
Length $=22-40 \mathrm{~cm}$

readout: $\phi \sim 40 \mathrm{k}, \theta \sim 40 \mathrm{k}$ resolution: $\sigma_{z} \sim 30 \mu \mathrm{~m}$

p -side
DSSD

Belle in a nutshell

$\mathbf{K L M}\left(\mathbf{K}_{\mathbf{L}} \boldsymbol{\mu}\right)$ Detector: Sandwich of 14 RPCs and 15 iron plates

Silicon Vertex Detector :

3/4 detection layers
Vertex resolution $\sim 100 \mu \mathrm{~m}$
8.0 GeV e

Central Drift Chamber
8,400 sense wires PID with dE/dx

> Aerogel Cerenkov Counter : Refractive index $n=1.01-1.03$
> $\mathrm{~K} / \pi$ of middle p
very stable detector, good particle identification, (kaon, pion, electron, muon), $\mathrm{e}^{+} \mathrm{e}^{-}$is a clean environment : excel29nt tracking , triggering, tagging ...

examples of particle detectors

Comparision different PID methods for K / π separation

illustration of various particle identification methods for K / π separation along with characteristic momentum ranges.

a detector system for PID combines usually several methods

How to detect particles in Belle

- We now know the momentum of the charged particles, but we don't know what the particle is.
\checkmark Candidates : electron $\left(\mathrm{e}^{ \pm}\right)$, muon $\left(\mu^{ \pm}\right)$, pion $\left(\pi^{ \pm}\right)$, kaon $\left(\mathrm{K}^{ \pm}\right)$, proton $(\mathrm{p}, \overline{\mathrm{p}})$.
\checkmark Other charged particles decay before reaching to the detector.
- Next step : Particle identification.

Example: TOF (time of flight)

- Measure the flight time from the interaction point to the detector.
\checkmark From the flight time, one can calculate the velocity of the particle.
\checkmark The mass of the particle can be obtained from the velocity and momentum ($p=$ $\mathrm{mv} \gamma$).

The low momentum (up to 1.2 GeV) $\pi^{ \pm} / \mathrm{K}^{ \pm}$is separated by the timing of plastic scintillation counters with 100ps time resolution

How to detect particles in Belle

ACC = Aerogel Cherenkov Counter

$12 \times 12 \times 12 \mathrm{~cm}^{3}$ blocks 960 barrel / 228 endcap FM - PMT readout, 1788ch

20 photoelectrons per pion detected at 3.5 GeV

Base \& Preamplifer $/ \Rightarrow \mathrm{K} / \pi$ separation : 1.2 to 3.5 GeV
 32

How to detect particles

Now, we know the momenta of charged particles, and their masses (form the particle species) $\Rightarrow 4$-momentum is known

How about neutral particles?

- π^{0} decays $\left(\pi^{0} \rightarrow \gamma \gamma\right) . \mathrm{K}_{\mathrm{s}}{ }^{0}$ also decays $\left(\mathrm{K}_{\mathrm{s}}{ }^{0} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}\right.$ with $\left.\mathrm{c} \tau=2.7 \mathrm{~cm}\right)$.
- The most important neutral particle is the photon (γ).
\checkmark Not detected inside the tracking device (CDC etc.).
\checkmark But, photons lose all the energy in the calorimeter (i.e. energy of a photon is measured in the calorimeter).
\checkmark Direction is known from the measured position $\Rightarrow 4$-momentum is measured.

Long-lived neutral particles (neutrons, $\mathrm{K}_{\mathrm{L}}{ }^{0} \ldots$) are not easy to measure (hadronic interaction). Neutrino is impossible to detect.

How to detect particles in Belle

Belle II detector

Main challenge: Preserve detector performances while luminosity (so beam background) increases

Beam collision

Electron and positron bunches collide.

Very small probability of collision for each particle. Most particles pass through without collision.
 the bunches collide again. during storage in the ring.

Luminosity frontier of $e^{+} e^{-}$colliders

Higher and higher /uminosity

SuperKEKB, the first new collider in particle physics since the LHC in 2008

Phase 1

Background, Optics commissioning Feb - June 2016
Brand new 3 km positron ring

Phase 2: Pilot run

Superconducting Final Focus add positron damping ring First Collisions $\left(0.5 \mathrm{fb}^{-1}\right)$ April 27-July 17, 2018

Phase 3: Physics run

 Since April, 2019Nano-beams and more beam current to increase luminosity

	E (GeV) LER/HER	$\beta_{y}^{\star}(\mathrm{mm})$ LER/HER	$\beta^{\star} \times(\mathrm{cm})$ LER/HER	φ (mrad)	$I(\mathrm{~A})$ LER/HER	L($\left.\mathrm{cm}^{-2} \mathrm{~S}^{-1}\right)$
KEKB	$3.5 / 8.0$	$5.9 / 5.9$	$120 / 120$	11	$1.6 / 1.2$	2.1×10^{34}
SuperKEKB	$4.0 / 7.0 \quad 0.27 / 0.30$	$3.2 / 2.5$	41.5	$3.6 / 2.6$	80×10^{34}	
factor 20						

(electron-positron ($\mathrm{e}^{+} \mathrm{e}^{-}$) rather than proton-proton (p-p))

 Squeeze strongly at IP

$$
\begin{aligned}
& \Rightarrow \text { to reach } \sim 6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& \Rightarrow \text { cumulate } 50 \mathrm{ab}^{-1} \text { by } \sim 2030
\end{aligned}
$$

First collision

Horizontal beam-beam kick

Introduction of SuperKEK B: accelerator (K. Akal, KEK)

charm and beauty re-discoveries using less than $1 \mathrm{fb}^{-1}$ (spring-summer 2018)

Rediscovering charm: $\mathbf{D}^{*+} \rightarrow \mathbf{D} \pi^{+}, \mathbf{D} \rightarrow \mathbf{K}^{-} \pi^{+}, \mathbf{K}^{-} \pi^{+} \pi^{0}, \mathbf{K}^{-} \pi^{+} \pi^{-} \pi^{+}$

46

At a B-factory...

At a B-factory...

How many B candidates can I reconstruct with $1 \mathrm{fb}^{-1}$?
$1 \mathrm{fb}^{-1} \rightarrow 1 \times 10^{6}$ B produced
but $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{D}^{0} \pi^{-}\right)=5 \times 10^{-3}$
and $\mathrm{BF}\left(\mathrm{D} \rightarrow \mathrm{K}^{-} \pi^{+}\right)=3.8 \%$ and reconstruction efficiency $\sim 10 \% \ldots$ signal yield ~ 10 events !!

Reconstruct a B candidate...

Energy difference:
$\Delta \mathrm{E}=\mathrm{E}_{\mathrm{B}}^{*}-\mathrm{E}_{\text {beam }}$
(resolution $\sim 10 \mathrm{MeV}$)
Beam-energy-constrained mass:
$\mathrm{M}_{\mathrm{bc}}=\sqrt{\left(\mathrm{E}_{\text {beam }} / \mathrm{c}^{2}\right)^{2}-\left(\mathrm{p}_{\mathrm{B}}^{*} / \mathrm{c}\right)^{2}}$
(resolution ~2.5 MeV)

Rediscovering beauty: $\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{h}+\mathbf{B} \rightarrow \mathbf{J} / \psi \mathbf{K}^{(*)}$

with very limited statistics $\left(<1 \mathrm{fb}^{-1}\right)$, Belle II can rediscover the B meson

Show capacity for charm physics in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{c} \overline{\mathbf{c}}$

- $\mathrm{D}^{0}, \mathrm{D}^{+}, \mathrm{D}^{*}$
- Cabibbo favoured and suppressed modes
... for B-physics
- hadronic modes from $\mathrm{b} \rightarrow \mathrm{c}$
- semileptonic decay modes from $\mathrm{b} \rightarrow \mathrm{c}$

