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Does a ﬁefaf—tﬁeoreu’c c[escr@’pu'on exist and 1f so, what does it look [ike?
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Foundations of Elasticity Theory

®@Long-range order distinguishes
crystalline solids from liquid:
“reference structure”

® Displacements from this reference
structure, coarse-grained defines a
symmetric tensor: the strain tensor

® Stress is defined as the derivative of
the free-energy with respect to strain

3 ® Broken Symmetry: Goldstone modes,
gapless (phonons)
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Jammed Solids
® Long-r: der distinguishies crystalline
solids from liguid: re structure”

isplacements from this referente
structure, coarse-=ardained defines a
symmeiTiC tensor: the strain

~ =
\J

® Stress—is~-defined as the derivetive ot the
free-enerqy_wi espe 0 strain




Continuum Elasticity
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Continuum Elasticity
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“double curl” of strain field is zero: provides enough equations



Jammed Solids

Lack of reference structure invalidates the foundational role
of the strain tensor in elasticity theory
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Jammed Solids

Lack of reference structure invalidates the foundational role
of the strain tensor in elasticity theory
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Both equations valid for jammed solids:
EVEN with friction modulo boundary fterms



Jammed Solids

Lack of reference structure invalidates the foundational role
of the strain tensor in elasticity theory
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Both equations valid for jammed solids:
EVEN with friction modulo boundary fterms

Hunt for a "stress-only” formalism: active field in early 20005 :
J.-P. Bouchaud Les Houches Lectures
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Where have we seen this before ? Gauss’s law in E&M
Charge Conservation Generates Gauge Transformations
U P = - O |Btctustiics
ot VeBE = 7%
Yx B = 0

Is there a tensorial equivalent of this U(1) gauge theory with charges now being vectors ?
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Where have we seen this before ? Gauss’s law in E&M
Charge Conservation Generates Gauge Transformations
U P = - O |Btctustiics
ot VeBE = 7%
Yx B = 0

Is there a tensorial equivalent of this U(1) gauge theory with charges now being vectors ?

Formulated in the context of “Tensorial Spin Liquids”: M. Pretko (2017)
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Analog of Faraday’s Law ?

Two of Maxwell’s equations of the vector-charge theory

Gives us the statics: stress-only description of the
mechanical response of jammed solids



Compare to the “classical” theory of elasticity: crystals
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Isotropic Elasticity
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Compare to the “classical” theory of elasticity: crystals
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Same as strain-tensor equation

Same as equations of elasticity if stress ~ strain

Isotropic Elasticity

Can we do better ? Is there an “emergent” elastic
modulus tensor ?

Yes ! Consider amorphous solids as a “polarizable”
medium: a dielectric



P

oooooo.ooooowiqdcooo.oooodo.o

-~ ".
-




This solid has been created by
forces exerted at the boundary
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This solid has been created by
forces exerted at the boundary

Eyxr

Electric field created by charges: no E
field if there are no charges

Bound charges (dipoles)
~ contact forces created by imposed forces

Dipole tensor: contact vector + contact force

Jishnu N. Q\famyootﬁiri, Yinqiao Wang, Kabir Ramola, Jie Zﬁang, Subhro CBﬁattacﬁaq’ee, and Bulbul Cﬁaﬁmﬁorty
Tﬁys. ‘Rev. Lett. 125, 118002



This solid has been created by
forces exerted at the boundary

Electric field created by charges: no E

field if there are no charges

contact vector + contact force

~ contact forces created by imposed forces

Bound charges (dipoles)

Dipole tensor

and Bulbul Cﬁaﬁmﬁorty

Jishnu N. Cl\fam}oootﬁiri, Yinqiao Wang, Kabir Ramola, Jie Zﬁang, Subhro CBﬁatmcﬁaq’ee,

Tﬁys. ‘Rev. Lett. 125, 118002

Polarizability maps to elastic modulus tensor: can be

correlations

measured through stress-stress spatial



Experiments (Jie Z and Yingiao W)

Stress-correlations (isotropic compression
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Quadrupolar structure (monopoles and dipoles are conserved in this “E&M?”)




Stress-correlations (Sheared)

S gew @ [
m:ﬂ....
ety " e ed
... .. e "0 ..M... (]
.".00. S “
P ”..l ...: 'Q..O H '.' .-
... = a
= - ] [s)
b sue @ * »
elenge#*® “liee Sagre
1 '..'.““.0".’ e .
(XL T Tl g .
S . 'g. ..
Ve %
-

T < T T

- ..'. [ TN

..'." [ L4
ag
£ .‘.
o.'\%'.'o

L
oot laie®®

9

. .’o‘
@

.‘..
2o% oy
oo,

[}
9%

oo
.‘O
o
[

e 03a g’

=
2 0% 05 o 5
aw

9 &
F AN . 20
', S

20

¢ elacer?
o %", ¥



;\.‘ IO
?fﬂ-&lﬂ




-0 - 0- 0 (

——T

O,QQ“L

PRI 1
P 7

hQ

: ™ Olﬂ.*.«%ﬁa“\w’

T T T T T Q IJ \ _ —
E ) OQ Vx\ -0
fls iy 3
@k@l e
L R /wa I
B :
) i
O T
[ e Jﬂfllﬂ\@l\l\ wi\\\@(\ @\ == §L -
T, - 5 s
OFD\@ o .
O B o
T —
2| s o = |5
= -_— .
nyv >
3 o D »
T 0 O O |
-~ @v\‘ r 5
. > O 3
AUAN.U/J' -~ %
e
L . o | m
S mumwfu @) =
o o
i~ h(@\\lw _ \\Q\\‘ -
Y |
el ——
.WQ/ -
L 1 1 L O o d :W«//
\U ) s, SO _ -
N, [ee} © - = = |
o Q Q < S w M % % -
o o o o = = = n_u _
L o " _J.UJ T p T . _ | | | mu
O~ |
» ﬁ@m}/ yvuv‘//./c R 3
O ﬂ% O~ /.‘v.n‘mf%w
L e O
°7Y o . s
s o € )
( &
( o
i @ ° ]
\@\\\Ct O g 19
S 65 D
@ ® g
x | M\.\\\\\OO | s
x Q e 4 O s
x O d,/% 2 )
O
B A o O
= ( g |
w ¢ oo 2!
4@;/ 5
\/O @
| : o
( o@° 18
Q Ou B -
o @ ©
- o_3& o
% \@%u\\ O lg
00 =
QP2
0
= ) ; - _ L 1 1 1 1 o
& ©
= 8 3 8§ °© 8§ 3 8§ 8 =
o o o = S 2 g 2 .
- T T : U_ ‘ \@ : @u ; - ROu
\ s ov
SEN 3
' R
- o L O @\,\uo .
v i P s
o) v ;\\\:‘.\ﬁww\mﬂ
3 m,@ %
=
- S o |
= 2
o0 ) Omm O
| @u O 4 4 @) Ol m
y ya D%u ~
y O telS. -
- O%
y B Aﬁwb @) ,,// " -
y OO/.,_ O ./ Q R1u
_og ©°
@ o9 \a\\y&@c
L O f O
@] Aw@/ /O C) S - m
O ffﬁﬂ_vﬂff/ B
3 P
L . Amw o
o5 o
IYe)
o) o\
g/ ©
1 L 1 1 AN @U :\m V,\JL |
o = = M w p m . !
) = = 2 : : .



3D Simulations (frictionless): Stress-correlations (isotropic compression)
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2D Simulations (frictionless)
Response to point force (isotropic compression)

Difference (Ao) B Response (0,,) from theory
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Different Paradigms

Elasticity from constraints and
an emergent gauge theory




3D Simulations (frictionless): Stress-correlations (isotropic compression)

(0420yy) from numerics

Lambda orthotropic




2D Simulations (frictionless)
Stress-correlations (isotropic compression)
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Torque-correlations

Contact-stresses




Dielectric formalism
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Dielectric formalism
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Like displacements BUT these are gauge potentials NOT physically
observable fields






