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General motivation

A well-known one-dimensional model with duality is the
transverse field Ising model

This model is integrable and has a duality.
The self-dual point corresponds to a quantum critical point,
separating an ordered phase from a disordered phase

We want to generalize this to other models with duality but
which have a different symmetry and may not be integrable

The nature of the self-dual point is then interesting to study



General motivation

A family of such models was introduced long ago and some of the
models were studied using mean-field theory and series expansions

The models have Ising interactions involving p neighboring sites
and a transverse field at all sites

Turban, J. Phys. C 15, L65 (1982)

Penson, Jullien and Pfeuty, Phys. Rev. B 26, 6334 (1982)

Igloi, Kapor, Skrinjar and Sólyom, J. Phys. A 19, 1189 (1986)

The transverse field Ising model corresponds to the case p = 2,
summarized in the next two slides

We will then present a detailed study of the model with p = 3.
Similar models can be realized in triangular configurations of
optical lattices with two atomic species



Recall: model with two-spin Ising interaction

Using X , Y , Z to denote the Pauli matrices σx , σy , σz ,
the Hamiltonian for the transverse field Ising model is

H2 = −
L∑

n=1

Zn Zn+1 − h
L∑

n=1

Xn

for a L-site system with periodic boundary conditions

This has a duality: define a dual lattice with coordinates at
the mid-points of the original lattice, and dual spin variables

X̃n+1/2 = Zn Zn+1

This gives Xn = Z̃n−1/2 Z̃n+1/2. Hence the dual Hamiltonian is

H̃2 = −
L∑

n=1

X̃n+1/2 − h
L∑

n=1

Z̃n−1/2 Z̃n+1/2



Model with two-spin Ising interaction · · ·

Thus the Hamiltonian changes from

H2 = −
L∑

n=1

Zn Zn+1 − h
L∑

n=1

Xn

to

H̃2 = −
L∑

n=1

X̃n+1/2 − h
L∑

n=1

Z̃n−1/2 Z̃n+1/2

Effectively, we have mapped h → 1/h

There is a subtlety that, with periodic boundary conditions,
the mapping only works if both

∏
n X̃n+1/2 = 1 and

∏
n Xn = 1



Model with three-spin Ising interaction
The Hamiltonian is

H3 = −
L∑

n=1

Zn Zn+1 Zn+2 − h
L∑

n=1

Xn

This also has a duality. The sites of the dual lattice coincide with
the sites of the original lattice

We define

X̃n = Zn−1 Zn Zn+1

This gives Xn = Z̃n−1 Z̃n Z̃n+1. Hence the dual Hamiltonian is

H̃3 = −
L∑

n=1

X̃n − h
L∑

n=1

Z̃n−1 Z̃n Z̃n+1

which effectively maps h → 1/h



Model with three-spin Ising interaction

H3 = −
L∑

n=1

Zn Zn+1 Zn+2 − h
L∑

n=1

Xn

This commutes with three Z2-valued operators. Assuming periodic
boundary conditions and L to be a multiple of 3, the operators are

D1 =

L/3∏
j=1

X3j−2 X3j−1

D2 =

L/3∏
j=1

X3j−1 X3j

D3 =

L/3∏
j=1

X3j−2 X3j

Only two of these are independent operators since D1 D2 D3 = I.
Hence the system has a Z2 × Z2 symmetry



Symmetries

Given the two commuting and conserved Z2 operators, the states
of the system lie in 4 sectors in which states have the following
combinations of eigenvalues of the operators (D1, D2, D3)

(1,−1,−1), (−1,1,−1), (−1,−1,1) and (1,1,1)

One-fourth of all the states lie in each of these sectors.

Next, translation by one site, T , commutes with H.
We can show that

T D1T−1 = D2 , T D2T−1 = D3 , T D3T−1 = D1

We can then prove that states |ψ⟩ with momentum k , satisfying
T |ψ⟩ = eik |ψ⟩ will come with a 3-fold degeneracy with momenta
k , k + 2π/3 and k + 4π/3 if they lie in the first three sectors,
(1,−1,−1), (−1,1,−1), (−1,−1,1),

and will not be degenerate if they lie in the sector (1,1,1)



Energy-momentum dispersion at h = 1

We first used exact diagonalization to study this model with
periodic boundary conditions

The system size L = 27. The dispersion is gapless and linear near
k = 0, 2π/3 and 4π/3. The velocity in those regions is v = 3.44



Four lowest energy levels

For |h| > 1, the ground state is unique and is separated by
a gap from the next three energy levels (which are degenerate)

For |h| < 1, the ground state is separated from the next
three energy levels by a gap which goes to zero exponentially
as L increases. So there is a four-fold degeneracy as L → ∞

This implies a symmetry breaking phase transition at h = ±1

L = 15



Ground state fidelity
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The fidelity is defined as F(h) = ⟨ψ0(h − δh/2)|ψ0(h + δh/2)⟩

We take δh = 0.005. There is a clear dip at h = 1



Critical exponents

Near a second-order quantum phase transition, various quantities
scale as powers of h − hc as L → ∞ or powers of L at h = hc

The correlation length scales as

ξ ∼ |h − hc |−ν

The scaling of a quantity O is typically given by

O ∼ |h − hc |−θ ∼ ξθ/ν for L ≫ ξ

∼ Lθ/ν for h = hc



Dynamical critical exponent z

Taking h = 1 as the critical field, the dynamical critical exponent
z gives the scaling with the system size L of the energy gap
∆E = E1 − E0 between the ground state and the first excited state

∆E ∼ L−z for h = hc

Using data for L = 12, 15, 21, 24, 27 we find z ≃ 1.027



Central charge
The fact that z ≃ 1 suggests that the low-energy sector at the
critical point is Lorentz invariant and is described by a conformal
field theory characterized by a central charge c.
The value of c can be extracted in two ways

The entanglement entropy between subsystems of lengths l , L− l is

S(l) =
c
3

ln [
L
π

sin(
πl
L
) ] + c′

l

l
This gives c ≃ 1.064



Central charge

At h = hc , the first two terms in the ground state energy go as

E0 = αL − πvc
6L

where α is a non-universal constant, and v = 3.44 is the
velocity near the gapless points where the dispersion is linear

Cardy, J. Phys. A 19, L1093 (1986)

This gives c ≃ 0.959. We see that c = 1



Magnetization

Taking the three-sublattice structure into account, we define
sublattice order parameters

mA =
3
L

L/3∑
j=1

Z3j−2, mB =
3
L

L/3∑
j=1

Z3j−1, mC =
3
L

L/3∑
j=1

Z3j

We then define a combined order parameter

m = [ ⟨m2
A + m2

B + m2
C⟩ ]1/2



Magnetization exponent β

From m|hc ∼ L−β/ν , we find that β/ν ≃ 0.129



Susceptibility exponent γ

We add a longitudinal field hz in the Hamiltonian

H3 = −
L∑

n=1

Zn Zn+1 Zn+2 − h
L∑

n=1

Xn − hz

L∑
n=1

Zn

At the critical point h = hc , the magnetic susceptibility
χ = (∂m/∂hz)hz→0 scales as Lγ/ν

We find that γ/ν ≃ 1.788



Weak universality

The facts that z = 1, c = 1, and β/ν and γ/ν are close to
1/8 and 7/4 suggest that the critical point of this model lies on
the Ashkin-Teller (AT) line of critical models which exhibit
weak universality

Conformal field theories with c = 1 have a marginal operator
which can give rise to a line of critical points on which ν, β, γ
can vary continuously but the ratios β/ν, γ/ν do not change
along the line



Weak universality

The Ashkin-Teller line is described by a Hamiltonian of the form

HAT =
∑

n

( σx
n + τ x

n + λ σx
nτ

x
n

+ σz
nσ

z
n+1 + τ z

n τ
z
n+1 + λ σz

nτ
z
n σ

z
n+1τ

z
n+1 )

where σa
n , τ

a
n describe two spin-1/2 objects at each site,

and λ is a parameter which varies along the line

Two special points on the AT line correspond to two copies of the
transverse field Ising model (λ = 0, ν = 1) and the four-state
Potts model (λ = 1, ν = 2/3). It is known that

ν =
1

2 − π
2 [arccos(−λ)]−1



Correlation length exponent ν

For our model, we can extract ν from the energy gap ∆ at
h = hc for different system sizes

d(∆Lz)

dh
|hc ∼ L1/ν

We find that ν ≃ 0.754



Correlation length exponent ν

Given the Ashkin-Teller line of Hamiltonians

HAT =
∑

n

( σx
n + τ x

n + λ σx
nτ

x
n

+ σz
nσ

z
n+1 + τ z

n τ
z
n+1 + λ σz

nτ
z
n σ

z
n+1τ

z
n+1 )

and the expression

ν =
1

2 − π
2 [arccos(−λ)]−1

the value ν ≃ 0.754 implies that λ ≃ 0.827

However this disagrees with results that we get from the
Binder cumulant



Binder cumulant U2

In our model, the Binder cumulant is defined as

U2 = 2 − ⟨m4⟩
⟨m2⟩2

m2 =
1
L2

[
(
∑

n

σz
n)

2 + (
∑

n

τ z
n )

2

]

U2 is defined in such a way that it approaches 1 and 0 as
h approaches 0 and ∞ respectively



Binder cumulant U2
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We see that the Binder cumulant is non-monotonic both for our model
and the four-state Potts model, but is monotonic for the transverse
field Ising model (λ = 0) and λ ≃ 0.827



Binder cumulant U2

The Binder cumulant suggests that our model lies close to the
four-state Potts model (λ = 1) rather than near λ ≃ 0.827
on the Ashkin-Teller line

It is known that there are significant log corrections at the critical
point of the four-state Potts model. These may make estimates
of critical exponents from exact diagonalization of small systems
unreliable

We therefore studied the system using the density-matrix
renormalization group (DMRG) method which can go up to
much large system sizes, but with open boundary conditions



DMRG studies

Including log corrections, we use the expressions

∆|hc L
|hc |

= a∗ +
b

ln(L)
+ · · ·

∆(h) L = F(A(h − hc)L3/2(lnL)−3/4)

as where F is a universal function, to fit the DMRG data

We find that the DMRG data for our model is consistent with
the four-state Potts model with λ = 1 and A = 2



DMRG results
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(a) Entanglement entropy showing c = 1.012, (b) ∆ L at h = hc
showing agreement between our model and the four-state Potts
model. (c-d) ∆(h) L versus h



Why does the four-state Potts model appear?

The Hamiltonian on the Ashkin-Teller line

HAT =
∑

n

( σx
n + τ x

n + λ σx
nτ

x
n

+ σz
nσ

z
n+1 + τ z

n τ
z
n+1 + λ σz

nτ
z
n σ

z
n+1τ

z
n+1 )

has a Z2 × Z2 symmetry for all λ. But for the four-state Potts
model with λ = 1, the low-energy sector has an enhanced
symmetry given by the permutation group of four objects

Dijkgraaf, Verlinde and Verlinde, Comm. Math. Phys. 115, 649
(1988)

Why does this symmetry appear at the critical point of our
three-spin model?



Why does the four-state Potts model appear?

Qualitative argument: Consider the Hamiltonian

H3 = −
∑

n

Zn Zn+1 Zn+2 − h
∑

n

Xn

In the limit h ≪ 1, this has four ground states given by the spin
configurations

(Z3j−2, Z3j−1, Z3j) = (↑, ↑, ↑), (↑, ↓, ↓), (↓, ↑, ↓), (↓, ↓, ↑)

for all j . Hence the three sublattice magnetizations can take
four possible values

(⟨mA⟩, ⟨mB⟩, ⟨mC⟩) = (1,1,1) (1,−1,−1), (−1,1,−1), (−1,−1,1)

These define the corners of a tetrahedron, and the symmetry group
of a tetrahedron is the permutation group of four objects



Energy level spacing distribution

To probe the integrability or nonintegrability of the model, we studied
the distribution of the energy level spacing in a particular symmetry
sector of the model

sn = En+1 − En

r̃ =
min(sn, sn−1)

max(sn, sn−1)

We find that the average value of r̃ is 0.533 which describes
the Gaussian orthogonal ensemble (GOE). Hence the model
seems to be nonintegrable

We also find that the probability distribution P(r̃) is in good
agreement with the Wigner-Dyson distribution

P(r) =
27
4

r + r2

(1 + r + r2)5/2 Θ(1 − r)



Energy level spacing distribution

Probability distribution of r̃ in the symmetry sector with
(D1,D2,D3) = (1,−1,−1) for an 18−site system with
open boundary conditions, for h = 1 (the plot does not
vary much with h)



Zero energy states

For H3 = −
∑

n [Zn Zn+1 Zn+2 + h Xn], the operator C =
∏L

n=1 Yn
anticommutes with H3. This implies that the energies must appear in
± E pairs. If L is even, there are also zero energy states for any
value of h. The number of such states grows as 1.43L

This is consistent with an index theorem which says that the number
of zero energy states must grow at least as fast as (

√
2)L

Schecter and Iadecola, Phys. Rev. B 98, 035139 (2018)



Zero energy states

It turns out that the zero energy states are of two types

Writing H3 = Z + h X , where

Z = −
∑

n

Zn Zn+1 Zn+2 and X = −
∑

n

Xn

we find that there are type-I states |ψ⟩ which satisfy Z |ψ⟩ = 0
and X |ψ⟩ = 0 separately, while type-II states |ψ⟩ satisfy
H3 |ψ⟩ = 0, but not Z |ψ⟩ = 0 and X |ψ⟩ = 0 separately

Hence type-I states do not change at all as h is varied.
Further, they have very low entanglement entropy between
two halves of the system

Hence they qualify as many-body scars which violate ETH



Type-I zero energy states

(a) (b)

Half-chain entanglement spectrum for all the energy states of
systems with 12 and 18 sites. The red points denote type-I
scar states



Type-I scar states

We have analytically found some scar states built out of products
of singlets (these form a subset of RVB states)
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Some scar states for an 8− site system. The number of these
states grows linearly with L. There are also scar states involving
products of singlets and triplets



Autocorrelation functions near one end of the system

In an attempt to see if there are strong zero modes, we have
looked at the infinite-temperature autocorrelation functions

Azz
l (t) =

1
2L Tr[σz

l (t)σ
z
l ]

Axx
l (t) =

1
2L Tr[σx

l (t)σ
x
l ]

for sites l close to one end of the system

(a) (b) (c)

Azz autocorrelation at sites l = 1, 2, · · · , 6 for (a) h = 0.2,
(b) h = 1, (c) h = 5. We see long-lived oscillations (note the
log scale for time)



Autocorrelation functions near one end

(a) (c)(b)

Axx autocorrelation at sites l = 1, 2, · · · , 6 for (a) h = 0.2,
(b) h = 1, (c) h = 5. We again see long-lived oscillations

The oscillations can be understood using perturbative arguments
for h ≪ 1 and h ≫ 1. But the decays at very long times are
not understood analytically

The anomalous behavior at very long times for l = 2 and
h = 0.2 is also not understood



Summary

• We have studied a one-dimensional model with three-spin Ising
interactions and a transverse field. The model has duality, and
there is a quantum phase transition at the self-dual point

• The model has a Z2 × Z2 symmetry, giving rise to four different
symmetry sectors. Three of these sectors are degenerate in
energy, while the fourth sector is non-degenerate

• The quantum critical point seems to lie in the universality
class of the four-state Potts model

• The energy level spacing distribution indicates that the model
is nonintegrable

• The model has an exponentially large number of zero energy
states. A subset of these are scar states.
How does the number of scar states grow with system size?

• The autocorrelation functions near one end of the system show
anomalous relaxation with time. Why does this happen?



References and acknowledgments

Adithi Udupa Samudra Sur Sourav Nandy Arnab Sen

Udupa et al, Phys. Rev. B 108, 214430 (2023)

We thank H. Katsura and C. Krishnan for stimulating discussions,
and funding from PMRF (Samudra Sur), Slovenian Research
Agency (Sourav Nandy), and SERB (Diptiman Sen)


