ICTS-RRI Maths Circle, Saturday 13 January, 2024

Disha Kuzhively

January 5, 2024

2:30 pm

Divisibility

The division algorithm is a fundamental mathematical concept that provides a systematic way to divide one integer by another, with the result expressed as a quotient and a remainder. The division algorithm ensures that when you divide a by b, you can express a as a multiple of b plus a remainder, and the remainder is always less than the absolute value of the divisor b. We say that b divides a when the remainder is zero.

Tests of divisibility are rules or criteria that help determine whether a given number is divisible by another without performing the actual division. You may have already come across these in your school.

Let's consider a problem: What is the remainder when 2^{100} is divided by 101 ?
We can solve such problems without actually performing the division. Here are some warmup problems to help you get started.

1. Check if the following numbers are divisible by 4 :
(a) 632 ,
(b) 7896,
(c) 245 ,
(d) 1584
2. Check if the following numbers are divisible by 6 :
(a) 846 ,
(b) 729 ,
(c) 312 ,
(d) 990
3. Check if the following numbers are divisible by 8 :
(a) 1248,
(b) 572 ,
(c) 896 ,
(d) 633
4. Investigate the divisibility by 5 of the sum of the squares of the first 10 positive integers: $1^{2}+2^{2}+3^{2}+\ldots+10^{2}$.
5. Find the smallest positive integer that is divisible by 8 , consists of only the digits 1 and 0 , and each digit appears at least once.
6. Investigate the divisibility by 9 of the sum of the cubes of the first 5 positive integers: $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}$.
7. Determine the largest five-digit number that is divisible by 10, has all distinct digits, and the sum of its digits is 25 .

3:45 pm: Break for refreshments
4:00 pm onwards

Modular Arithmetic and Test for Divisibility by 7

Let's take a step back and try to understand how these tests for divisibility can be constructed. One way to go about this is by examining the remainders when powers of $10,10^{0}, 10^{1}, 10^{2}, \ldots$, are divided by a specific number.

Compute the remainders when the powers of $10\left(10^{0}, 10^{1}, 10^{2}, \ldots\right)$ are divided by 3 . Do you observe any patterns or repetitions in the remainders? Repeat this exercise for the number 7. Based on your observation, propose a divisibility test for determining whether a number is divisible by 7 ?

What can be said about the remainders when powers of a different number, say $8\left(8^{0}, 8^{1}\right.$, $\left.8^{2}, \ldots\right)$ are divided by 3 or 7 ? Do you notice any patterns?

Explore Further

1. Is there a number that gives a remainder of 1 when divided by 3 , remainder 2 when divided by 4 , remainder of 3 when divided by 5 , and a remainder of 4 when divided by 6 ?
2. Show that every fourth Fibonacci number is divisible by 3 .
3. Given n is an integer not divisible by 3 , prove that $n^{2}-1$ is always divisible by 3 .
4. Check whether $1^{11}+2^{11}+3^{11}+\ldots+10^{11}$ is divisible by 11 . What can you say about the divisibility of $1^{n}+2^{n}+3^{n}+\ldots+(n-1)^{n}$ by n where n is any natural number?
5. Arrange the ten digits; $0,1,2,3,4,5,6,7,8,9$ to create a number that is divisible by all the numbers from 2 to 18 . How many such arrangments can you make?
