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1. Flamess approach

Controllability

A system
dx

ot
with x € R", u € R™, is exactly controllable in time T if for any xg, x7, one may find a
function u = u(t), called a control input, such that

= f(x,u)

x(0)=xp and x(T)=xt.
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1. Flamess approach

What is Flatness?

m Powerful criterions enable us to decide whether a nonlinear control system is
controllable or not, but most of them do not provide any indication on how to
design an explicit control input steering the system from a point to another one.

m There exists, however, a large class of systems, the so-called flat systems, for
which explicit control inputs can be found.

m Roughly, the flatness approach consists in a parameterisation of the trajectory by
some (flat) output. It was introduced in 1995 by M. Fliess, J. Lévine, Ph. Martin,
P. Rouchon for (linear or nonlinear) ODE, and it is still very popular thanks to its
numerous applications in Engineering.
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1. Flatness approac

Let us consider a smooth control system
x=f(x,u), xeR", ueR™ (1.1)

given together with an output y € R™ depending on x, u and a finite number of
derivatives of u
y = h(x,u, i, ..., u).

We say that y is a flat output if x and u can be expressed as functions of y and of a
finite number of its derivatives
X = g7y, (1.2)
= h(y,y,..y9). (1.3)

In (1.2)-(1.3), p and g denote some nonnegative integers, and g and h denote some
smooth functions. Conversely, it is assumed that a pair (x, u) as in (1.2)-(1.3) solves

(1.1).
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1. Flamess approach

Control constraints

We aim to solve the control problem

X

f(x, u), (1.4
x(0) = xo, x(T)=xr (1.5

=

e The ODE (1.4) is satisfied whenever x and u are parameterized by y.
e To satisfy the constraints x(0) = x9, x(T) = xr, it remains to design a smooth
output y such that

X(O):g(y,y,,y(p))(O) X0, (16
X(T)=h(y,y,..YONT) = xr 17

The last conditions are easy to satisfy.

— =
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1. Flatness ap,

Example 1

m Consider the double integrator (linearized pendulum)
X = X (1.8)
X2 = U (1.9

where the state is x = (x4, x2) € R? and the control is u € R.

m Pick y = xq. ltisaflatoutput,as xy = y, xo = y,and u = j.

m To steer the system from xo = (0,0) to x; = (1,0) in time T, we have to pick a
function y € C*>°([0, T],R) such that

y(0)=0, y(0)=0, y(T)=1, y(T)=0.

m Clearly, y(t) = t3(2T — t)?/T* is convenient.
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1. Flatness approac

Example 2

= Consider the nonlinear system

).(1 = W (110)
).(2 = U (111)
)'(3 = Xo Uy (112)

where the state is x = (X, X2, x3) € R® and the control is (u1, Up) € R2.

= How to find a flat output? Eliminating the input vy in (1.10)-(1.12) yields
Xo = X3/Xy, S0 that xo can be expressed as a function of xy, x3 and their
derivatives. The same is true for u, thanks to (1.11).

m Pick as output y = (y1, y2) = (X1, X3).

m Then y is a flat output. Indeed, we have

(%1, %0, %) = (mf,yz) (1.13)
(U, 1) = m%). (1.14)

= Note that y4 vanishes somewhere if x; (0) = x;(T). Thus y has to be designed in
such a way that y»/y; is well defined and smooth. If we choose for y; and y»
some analytic functions, it is sufficient to impose that y» vanishes at (at least) the
same order as y; where y; vanishes.
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1. Flamess approach

Example 2 (2)

m Pick xo = (0,0,0) and x7 = (0,0, 1). Any candidate y = (y1, y2) is such that
y1(t) = 0 for some t € [0, T]

= Recall that (X17X2’X3) = (y1 ’ %,}’2)

= We have to find a pair (y1, y2) of analytic functions such that y»/yy is (well
defined) analytic on [0, T] with

¥1(0) = y2(0) =0, y2(0) =0, andy;(0) #0.
yi(T)=0, yo(T)=1, y2(T)=0, andy(T)#0,

A =Ra(3) =0, JA(Z)£0, andjs(t)#0fort £ o
= The function

120 15 3Tt* T2

0n(0.pe0) = (17 -0, - 25 - S0 TEY)

is convenient.
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2. Flatness approach for the control of PDE

2. Flatness approach for the control of PDE
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2. Flatess approach for the control of PDE

Introduction

= Let © c RN be a smooth, bounded open set, and let v C A be a (nonempty)
open set. Consider a boundary-initial value problem

P(D)z =0, te(0,7), xeQ (2.1)
By(D)z = 14u, te(0,T), x€0Q (2.2)
B,(D)z =0, te(0,T), x €09, (2.3)
z(x,0) = zo(x), xeqQ. (2.4)
Here D = (—idt, —iOx,, ..., —idxy ), and P, By, B, are polynomial functions.

m We say that system (2.1)-(2.4) is exactly controllable in some space H in time
T > 0, if for any 2z, zy € H, one may pick a control input u s.t. the solution of
(2.1)-(2.4) satisfies
z(x, T)=2z1(x), x€Q
= If the above property holds for any zy, but (solely) for z; = 0, we say that system
(2.1)-(2.4) is null controllable.
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2. Flatess approach for the control of PDE

Introduction (2)

0 — A0 [+f(6,VO)] =0, xeQ, te(0,7),
0=14u, x€0Q, te(0,7),
0(x,0) = 6p(x), xeq.

m It was proved by Lebeau-Robbiano (1995) and Fursikov-Imanuvilov (1996) that
the above system is null controllable for any T > 0 and any control region ~.

m To derive such a result, a parabolic Carleman estimate due to Fursikov-Imanuvilov
can be used

.
/ /[(30)_1 (IAVI + [v[2) + A2(s0) Vv R + A (0)°|v|2]e 25 dxalt
0JQ

T T
< (// |vt+Av|ze‘2dedt+//)\(se)la,ﬂ/zl8nv|2e_25*"dcrdt>
0Ja 0Jy

for s > sp and A > )\g, with the weights
EXlllicee _ pAgp(x) A (x)
e2 e e
XH=——— (X, )= ——
o) (T — 1) x0:=17"5
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2. Flatess approach for the control of PDE

Boundary control of the heat equation

Let Q ¢ RN be a bounded smooth open set, Iy C 8Q be a (nonempty) open set, and
T>0.

We are concerned with the null controllability problem:
given 6y, find a function u = u(t, x) s.t. the solution of

0 —N0 = 0 (t,x) €(0,T) x Q,
0
g— = 1r0U(t, X) (t7 X) € (0’ T) X 89’
14
0(0,x) = 6o(x), xeQ

satisfies
0(T,x)=0 x € Q

15/146



2. Flatness approach for the control of PDE

Null controllability of the heat equation

m Duality methods (observability estimate for the adjoint eq.)
= Fattorini-Russell *71, Luxembourg-Korevarr *71, Dolecki 73 (1D, using biorthogonal
families and complex analysis)
s Lebeau-Robbiano 95, Imanuvilov-Fursikov *96 (ND, V(, 'y, T), using Carleman
estimates)
m Direct methods
= Jones ’77, Littman 78 (construction of a fundamental solution with compact support in
time, [y = 0Q)
= Guo-Littman "95 (solution of ill-posed problems)
n Laroche-Martin-Rouchon 2000 (approximate controllability using a flatness approach)

Here, we shall revisit the flatness approach, obtain the null controllability, and show
its relevance to numerics.

16/146



2. Flatness approach for the control of PDE

2.1 Null controllability of the heat equation in 1D

P. Martin, L. Rosier, P. Rouchon, Null controllability of the heat equation using flatness,
Automatica 50 (2014), 3067-3076
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2. Flatess approach for the control of PDE

Flatness for PDE

m The flatness method was applied by Laroche-Martin-Rouchon in 2000 to derive
the approximate controllability of

the 1D heat eq;
the beam equation;
the linearized KdV equation.
m They proved that prepared initial data can be driven to 0 by using control inputs
that are Gevrey.
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2. Flatness approach for the control of PDE

Classe C{Mp} (see W. Rudin, Real and complex analysis)

m Let My, My, Ms, .. be positive real numbers such that My = 1 and
M2 < Mp_1M,,4 forall n

m Let C{Mn} be the class of functions f € C>°(R) such that there exist some
positive constants C = C(f), R = R(f) s.t.

Mn

[ || oo my < Coo vn >0,

where (") = d"f/dx"

Each class C{Mn} is an algebra with respect to pointwise multiplication.

m Aclass C{Mp} is said to be quasi-analytic if the conditions f € C{Mx} and
f(M(0) =0 forall n > 0 imply f(x) = 0 for all x € R.

C{Mn,} is quasi-analytic iff the only function in C{Mn} with compact support is the
trivial one.
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2. Flatess approach for the control of PDE

The Denjoy-Carleman Theorem

Theorem (Denjoy-Carleman)

Suppose My = 1, M2 < M,_1M,_1 forn=1,2 3, .... Then the class C{M,} is NOT

quasi-analytic iff >~ M,\”/,;‘ < 00

Assume that

() (nhs
[F(x)| < C7 Vx €R, VneN
so that f € C{Mn} with M := (n!)S.
if s <1, C{Mn} is quasi-analytic : f cannot be a nontrivial function with compact
support
if s > 1, C{Mp} is NOT quasi-analytic : f can be a nontrivial function with a
compact support
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2. Flatess approach for the control of PDE

Gevrey functions (1)

m Afunction y € C*°([0, T]) is Gevrey of order s > 0 if there exist R, C > 0 such
that
a e
YOO < Cp, WP EN VE[0,T]

The larger s, the lessregular yis (s =1 < y € Cv¥)
For s < 1, y is entire (complex analytic on C)
0 € C*°([ty, ] x [0, 1]) is Gevrey of order s in x and s; in ¢ if

)51 (pol )52
e A R R CRAI (R
1 2
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2. Flatess approach for the control of PDE

Gevrey functions (2)

m The set of Gevrey functions of order s > 0 on [0, T] is an algebra for the
multiplication of functions (fg)(t) = f(t)g(t)

m There are Gevrey functions of order s > 1 with compact support. Easy to
construct from the “Gevrey step function”

1 ift <o,
_ 1
s(t) = _L(M)r —ifo<t<t,
e -07 ;e 7
0 ift>1

which is Gevrey of order s =1+ r~' for r > 0.
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2. Flatness approach for the control of PDE

Gevrey functions of order less than 1

We denote by G ([0, T]) the space of functions of Gevrey order o > 0 on [0, T].
If o < 1, those functions are analytic, and entire if o < 1.

Proposition

LetT >0andf e G°([0, T]), o > 0, and set

g = inf{s>0; fe G0, T]},
inf{k >0, 3rp > 0, Vr > o, |mlax |f(z)| < exp(rf)}.
z|=r

p

Assume g < 1. Then f is an entire function of order p < (1 — g)~'. If, in addition,

p > 1, then

p=(1-9)"

o Note that the assumption p > 1 is needed, as for polynomial functions g = p = 0.
e For instance, a function which is Gevrey of order not less than 1/2 (g = 1/2), and for
which p > 1, is an entire function of order p = 2 (Ex. x — exp(Cx?)) .



2. Flatess approach for the control of PDE

More about Laroche-Martin-Rouchon result

m The heat control problem reads:
et_exx - 07 X€(0,1)
0x(t,0) 0, Ox(t,1)=u(t),
Q(O,X) = 90.

m Laroche, Martin, and Rouchon proved in 2000 that for initial data decomposed as

Sl
Oo(X) =D Yisr:
>0 (2i)!
with
j1s ,
lyil < Cﬁu i>0

with s € (1,2), C, R > 0, the system can be driven to 0 with a control u(t) which
is Gevrey of order s.
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2. Flatess approach for the control of PDE

Flat output, trajectory, control,...

Take y = 6(t,0) as output. It is flat, in the sense that the map 6 — y is a bijection
between appropriate spaces of functions.

Seek a candidate solution (analytic in x) in the form

i
0(t.x) = > a0
>0
Plugging this sum in the heat eq. gives 3>~ q[aiy2 — &/ ]’f—,’ =0 (' = d/dt), and hence
ajyo = a}, i>0.

Since ap(t) = 6(t,0) = y(t) and ay(t) = 0, we arrive at

a1 =0, ay=y"i>0,

. 2i ()
0tx) = Sy X wty = ety =3 L0

x u
>0 (2i)! = (2i — 1)!
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2. Flatess approach for the control of PDE

Gevrey functions

Since 0(t,x) = X5 y(")(t)(xz—f;!, it remains to find y € C>°([0, T]) s.t. the series
converges and _ '

yO0) =y, yO(T)=0, i>o0.
Impossible to do with an analytic function, but possible (as we shall see later) with a
function Gevrey of order s > 1.

Our first aim is to show that the above computations are fully justified when y is Gevrey
of order s € [0, 2).
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2. Flatness approach for the control of PDE

Flatness property

Proposition

Lets e [0,2) andy € C>([ti, t]) (—oo < t§ < b < o0) be Gevrey of order s on

[t1, ]. Let
X2/
0(t, x) Z (21)'

i>0

Then 0 is Gevrey of order s in t and s/2 in x on [t;, t2] x [0, 1] and it solves the
ill-posed problem
0t —0xx = 0, (t,X) S [t1:t2] X [0:1]7

Thus u(t) = 0x(t,1) = 3=+ % is Gevrey of order s on [ty, b].




2. Flatess approach for the control of PDE

Proof of the flatness property

We want to prove that the formal series

ooyt x) = >

2i>n

X2i—n

my(im)(f) (2.5)

is uniformly convergent on [t1, 2] x [0, 1] with an estimate of its sum of the form

mis ni3
[970%6(t, x)| < C??., Rig (2.6)
Since y is Gevrey of order s, we have for all (t, x) € [t, &2] x [0, 1]
X2i7n y(l+m)(t) < M (I+ m)ls
(2i — n)! —  RHm (2i — n)!
M (2+mjl mn)s
< . ~ 7
-  RHm  (2i—n)!
.M (2-2\/xi (2i)1)2 s

Ri*m  (2i—n)!
oS s
(7”) ‘ n! % ﬂ

Ri(2i—ni'=2 R

where we have set Ry = 275R, used (i + j)! < 2"t/iljl and (2i)! ~ %i!z.
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2. Flatess approach for the control of PDE

Thus, the formal series in

amana(t, x) = Z

2i>n

i’ yEm ()

is uniformly convergent on [t;, 2] x [0, 1] for all m, n € N, and hence
0 € C>=([ty, 2] x [0, 1]).

On the other hand, picking any R. € (0, v/ Ry), since

My mi)*

— ) ViR, 2 i+t
2i>n R’(Q’ mri=2 = 2

.
>0 R2j11—3
for some constant C > 0 independent of n, we conclude that
nl2 mis
[o876(t, x)| < Cﬁ qun,

which proves that 6 is Gevrey of order sin t and s/2 in x, as desired.

2> ——— <CR",
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2. Flatness approach for the control of PDE

Main result

Theorem

Let@y € L?(0,1) and T > 0. PickT € (0, T) and s € (1,2). There exists
y € C>([r, T]) Gevrey of order s on [, T] such that, setting

" 0 fo<t<r
u(t) = (i) .
Tiso gty FT<t<T,

the solution 6 of

0t —0xx = 0, x € (0,1)
Ox(t,0) =0, Ox(t,1) = u(t),
0(0,x) = 6p(x)

satisfies (T, .) = 0.
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2. Flatess approach for the control of PDE

Short proof of the null controllability of the heat equation

1. Decompose the initial state 6y as a Fourier series of cosines, namely

fo(x) =>_ cnV2cos(nmx) in L%(0,1)

n>0
where 2|cof2 + 3,51 [enl? = [ [60(x)|20x < co.
2. Denote the free evolution (u = 0) by 4. It reads

ot,x)=>" cne~ "™ 1/2 cos(nmx),

n>0

and it can be proved that 4 is Gevrey of order 1 in t and 1/2in x in [r, T] x [0, 1] for all
0<7<T.
3. In particular, the trace

0(t,00=v2>" Cre~

n>0

is analytic on (0, +o0), hence Gevrey of order 1 on the interval [r, T] for any = € (0, T).
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2. Flatess approach for the control of PDE

Short proof of the null controllability of the heat equation

4. To solve the null control problem, it is sufficient to apply the flatness property by
solving the (ill-posed) problem

0t — Oxx = 0, (t,x) € (0, T) x (0,1),
0(t,0) = y(t) = ds(-=T)A(1,0),  te(0,T)
0x(t,0) =0, te (0, 7).

where 0 < R < T — 7 and ¢s is the “Gevrey step function” of order s (defined before):
1 ift<0
¢’S(t)_{ 0 ift>1

This is closely related to the approach developed in Guo-Littman ’95 in the semilinear
case. Here, however, the solution can be given explicitly:

0(t,x) = 0(t,x) = ¢cn e~"m*1\/2 cos(nnx), if t<r
n>0
X2/ i
0(t,x)=> —— if t>7(r0<t<T)

>0 (2/)I

32/146



2. Flatness approach for the control of PDE

Numerical simulations (N=1) Trajectory

Initial state: 0y := 1(1/2,1)(X) — 1(0,1/2)(X)
Parameters: 7=0.3,R=02,T=7+R=05,s=1.6

0.5

0.3
0.4 05 O
space x

time t
Fig.1. 6(¢, x)

Computations by Philippe Martin
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2. Flatess approach for the control of PDE

Numerical simulations (N=1) Control

Initial state: 6 := 1(1/271)(X) — 1(0,1/2)(X)
Parameters: 7 =0.3,R=02, T=7+R=05,s=1.6

15

101

2 I

I
0 005 01 015 02 025 03 035 04 045 05

Fig. 2. T(t) (blue) and [[T(t)][ 2(0,¢) (9reen)

Computations by Philippe Martin
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2. Flatess approach for the control of PDE

Numerical computation of a large number of derivatives

With this approach, we have to compute N > 20 derivatives of some functions,
e.g.

(1) = exp(—t (1 - 7")
where k = (s — 1)~ ".
Purely numerical methods (using e.g. finite differences) are not appropriate!
Symbolic computations limited to N < 20.
We compute the derivatives by induction as follows: Derivating ¢ yields

P =kpy

where p(t) = t(1 —t).
Derivating i times that identity and using Leibniz’ rule results in

i .
Pt + 57 ( j ) (P = k(pp? + ipel 1)
j=1

This equation gives (1) in terms of (@ , ..., (), and of (pk+1)W), j < i.
In practice, N = 140 derivatives can be computed on line.

35/146



2. Flatness approach for the control of PDE

2.2 Null controllability of the heat equation on cylinders

P. Martin, L. Rosier, P. Rouchon, Null controllability of the heat equation using flatness,
Automatica 50 (2014), 3067-3076.
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2. Flatness approach for the control of PDE

The dimension N

= So far, the flatness approach was applied to 1D PDE (and for radial solution of 2D
problems). The expansion of the solution as a power series in all the spatial
coordinates seems not to work well, even in 2D.

m Here, we shall see that we can deal with the null controllability of the heat
equation on a cylinder
Q=wx(0,1)cRM

where w C RN=' is a smooth, bounded open set, and N > 2. We thus consider
the control problem (x = (x/, xy))

0~ 00 = O, (t,x) € (0, T)x Q
%(t,x’,ﬂ = u(t,x"), (t,x)e(0,T) xw
%(l‘,x) = 0 (t,x) € (0,T) x (99 \ w x {1})
0(0,x) = 6(x), X EeEQ

m For N = 3, this is nothing but the control of the temperature of a metallic rod by
the heat flux on one lateral section.



2. Flatness approach for the control of PDE

Expansion of the solution

= The good way to solve the problem is to consider “hybrid” expansions of § mixing
Fourier series in x’ (no control on dw) and power series in xy (control at xy = 1).

= Introduce an orthonormal basis in L?(w), (&j)j>0, constituted of eigenvectors for
the Neumann Laplacian inw ¢ RN-1 i.e.

—A’e,» = g inw
86] 0 o
—_— = on ow
ov'
where A’ = 92 +---9%, _, v/ = outward unit normal to w,

0= X <A <A< A<
m Decompose 0(t, x’,0) as
o(t,x',0) =Y z(t)g(x').
j=0

We claim that the system is flat, with (z;(t));>0 as “flat output”. Indeed, given a
sequence (Z;(t));>o of smooth functions, we seek a formal solution of the heat
equation in the form

/ _ Xli\l ’
9(t7x 7XN) - Z Wai(tvx )
i>0
where the a;’s are still to be defined.
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2. Flatess approach for the control of PDE

Expansion of the solution (2)

i
Plugging the formal solution 6 = Z:>o a, in the heat equation gives

> X,.—!N[a,-+2(r,x’) — (@~ A)a(t.x)] =0

i>0
so that aj o = (0 — A’)g; for all i > 0. Moreover
ao(t,x') =0(t,x',0)=>"z(t)ei(x"),  a(t,x')=0.
j>0
Therefore, for all i > 0

a1 = 0,
a = (0r—48)a => (3 — A [z(e(x)] =D e(x')(0: + A)'z(t)
j>0 j>0
S gxe My ()
j>0

where we have set y;(1) := e'z(t). We arrive at

0t ) = 3 e Mg () Yy (0T

j>0 i>0 39/146



2. Flatness approach for the control of PDE

Flatness property

Proposition

Letse (1,2), —co< i < b < oo, and lety =

constants M, R > 0

(0) i®
(o) < M,

Then the function
0(t, X', xy) =
=0

is well defined in [t;, &] x Q, and it is Gevrey
in xy. It solves the ill-posed problem

0—A0 = O,
o(t,x',0) = Y e
j=0
QXN(tvxlvo) = 0.

V’:/Z 0, vVt e [t17t2]‘

e Me(x) Sy R

(¥)j>0 in C>=([ty, tz]) satisfy for some

(2i)
@i)!

i>0

ofordersint,1/2 inxy,...,Xxy_1 and s/2
(t,x) € [t1, 1] x Q,

“Nly(e(x'),




2. Flatness approach for the control of PDE

e
Thus u(t, x') = Oxy (1, X', 1) = 350 € Ne(x) sy /EUER Gevrey of order s in t

@i=1)
and 1/2in xq, ..., Xn_1.

The proof is similar to those in dimension 1, but more technical (we need Weyl's
2
formula \; ~ jN=T).
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2. Flatess approach for the control of PDE

Null controllability of the heat equation on cylinders

Consider the control system

0 — A0 =0, (t,x) €(0,T) xQ
0t x' 1) =u(t,x'), (tx)€(0,T)xw

() 20(t,x)=0 (t,x) € (0, T) x (8 \ w x {1})
0(0, x) = 6p(x), xeq

Here Q :=w x (0,1) ¢ RN, N > 2, is a cylinder.
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2. Flatness approach for the control of PDE

Main result

Theorem

LetQ =w x (0,1) C RN=1 x R, 6y € L3(Q) and T > 0 be given. Pick any r € (0, T)
and any s € (1,2). Then there exists a sequence (y;);>o of functions in C>°([r, T])
that are Gevrey of order s on [r, T| and such that, setting

g ifo<t<m,
u(t,x’) = P .
Yijo€ Vgmme(x) ifr<t<T,

we have
o(T,.)=0.

Here, (e}, \j) denotes the jt pair of eigenfunction/eigenvalue for the Neumann
Laplacian onw c RN=1,

More about the regularity: the control u is Gevrey of order sint and 1/2in xq, ..., XN_1
on [0, T] X @.

Furthermore, 8 € C([0, T], L(R)) N C>°((0, T] x ), and 9 is Gevrey of order sin t,
1/2in xq,...,xy—1 and s/2in xy on [¢, T] x Q for all e € (0, T).



2. Flatess approach for the control of PDE

Construction of the trajectory

Assume given T > 0,7 € (0, T), s € (1,2), and 6y € L?(Q) decomposed as

Oo(X', xn) = > Gnei(x")V2cos(nmxy).

Js;n=0

where —A’ej(x’) = Aigj(x') inw C RN=1, 9e;/8" = 0 on dw.
i j € j

The exact solution ¢ of the previous control problem such that (T,.) =0 is

ot x',xy) = > c,,,,e_(*/”z”z)tej(x’)\@cos(mrxN), 0<t<,
j,n>0
sothat O(t,x',0) = > e Nlg(x)vV2> cj_yne‘"zﬂz’, 0<t<,
>0 n>0
o(t, X", x, = e Mlei(x’ ’) <t<T
( N) Z j( Zy] (2[ TSUS T,
j>0 i>0

where (With0 < R< T — 1)

Yj(t)*qﬁs )ch,ne"”' 0<t<T. 2.7)

n>0
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2. Flatess approach for the control of PDE

Step 1 (no control)

In practice, only partial sums can be computed. They prove to give accurate
approximations of both the trajectory and the control.
During the free evolution, we take as approximation of 6

ot x )= > > c,-’,,e*(*ﬁ"z”z)’ej(x’)\@cos(mrxN), 0<t<r

0<j<j 0<n<h

where j,7i € N.
Clearly, for0 <t < 7,

2.2
1O =)Dy = D e 2NN g,
(M ¢[0,1x[0,7]

hence 6 — 0 in C([0, 7]; L>(R)) as j — oo and i — oo.
Better estimates can be derived if the initial data is more regular...
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2. Flatness approach for the control of PDE

Step 2 (control process)

Introduce the approximations

- / _ /
utx) = > e Ne) Y v i—1)!’ T<t<T,

0<j<j 0<i<i
ot x ) = > e Ngx) > v (2i)', r<t<T,
0<j<j 0<i<i )
with
Vi) =os(=——) > ¢ LT << T
0<n<n

Then we have

16(t) = 6()llo @) < C1f(7,), Ml6oll 2y, VEE [T, T], (2.8)

,‘L <= —
where f(i, ], k) = e~ C2I""T 4 g=Cailni 1 e=Cs™  |n (2.8) we can pick any Cs < Ay,
any C3 < 2 — s, and any Cy < w7, while Cy = Cy(N,w, T, s, Ca, C3, Cy).
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2. Flatness approach for the control of PDE

(Stronger norms) For all g € N*, we have

IN

116(8) — 0(D)lIwa.o ((r, T)x ) Cif(i,J, M)16oll 2(q)
lu(t) = UD)llwa—1.00((r,1yxy < CIFLT, Mol 20

A

for some constants C{, C{’ depending on N,w, 7, s, g, Cz, C3, C4.
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2. Flatness approach for the control of PDE

Real solution associated with the approximated control

Let & denote the control defined by 0 for t € [0, 7] and by T for t € [, T], and let § be
the corresponding solution issuing from the same initial data 6, as 6.

Then we have

116(1) — ()| 0,1y x) < C1F(i,J, )l 60ll12(c) (2.9)

for some constants C}’ depending on N,w, 7, s, Cz, C3, Cy.
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2. Flatness approach for the control of PDE

Numerical simulations (N=2) Trajectory

Initial state: 90 = (1(1/2Y1)(X1 -1 0.1 2)(X1 )) (1 (0Y1/2)(X2) — 1(1/2Y1)(X2)) Parameters:
=0. 25, T=74+R=03,s=1.65
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2. Flatness approach for the control of PDE

Numerical simulations (N=2) Control

Initial state: 6 := (1(1/2,1)(x1) — 1(0,1/2)(1)) (1(0,1/2)(X2) — 11 /2,1)(X2)) Parameters:
7=0.05,R=025T=03,s=1.65

Control effort u
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Fig. 4. u(t, x1)

Computations by Philippe Martin
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2. Flatness approach for the control of PDE

2.3. Null controllability of the 1D Schrddinger equation

P. Martin, L. Rosier, P. Rouchon, Null controllability of the 1D Schrédinger equation
using flatness, Automatica J. IFAC 91 (2018), 208—-216.
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2. Flatess approach for the control of PDE

Controllability of Schrodinger eq. by flatness approach

m For the sake of simplicity, we limit ourselves to the 1D case

0t +0xx = 0, 0<x<1
0(t,0)=0, o(t,1) = u(t)
0(0,x) = 6o(x).

m The null ( < exact) controllability can be established by the same flatness
approach as for the heat eq. However, the first step (smoothing effect) has to be
modified, for the application of a null boundary control does not smooth out the
solution as for the heat eq.
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2. Flatness approach for the control of PDE

m Following an idea in LR-Bing-Yu Zhang (2009), we notice that a strong smoothing
effect occurs if we consider Schrédinger equation on the whole line with a
compactly supported initial data:

vi+ vy = 0, —co<Xx<oo
0o(x) if x € (0,1)
v(0,x) = w(x):= —6o(—x) ifx e (—1,0),
0 if x € (—o0,—1)U (1, 4+00)

For any 6y € L2(0, 1), the function (t, x) — v(t, x) is Gevrey of order 1/2 in x and 1
in t on any rectangle [e, T] x [—-L,L], for 0<e < T,L > 0.
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2. Flatness approach for the control of PDE

Flatness applied to Schrodinger

Theorem

Lety € L?(0,1) and T > 0. Pick = € (0, T) and s € (1,2). There exists
y € C°([r, T]) Gevrey of order s on [, T] such that, setting

0 v(t,1) fo<t<r
u(t) = , (k) .

Zky(—’)kékiﬁ))! fr<t<T,
the solution 6 of

0 +0xx = 0, x € (0,1)
0(t,0) =0, 6(t,1) = u(t),
6(0,x) = 6o(x)

satisfies 6(T,.) = 0. Furthermore, u is in L*(0, T) and

6 € C([0, T], L?(0,1)) n C*>((0, T] x [0, 1]).




2. Flatness approach for the control of PDE

Numerical simulations for Schrodinger: initial data

1 0.6 0.3 0 0.3 0.6 1
2F 4
° L
2 ,“\ 4
1 1 | 1 1 1 1
-1 -0.6 -0.3 0 0.3 0.6 1

Initial condition 6y (red) and odd extension (blue);
real parts (top), imaginary parts (bottom)
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2. Flatness approach for the control of PDE

Numerical simulations for Schrodinger

S o 0.2
02 S — o1
space x 0 0 time t

04

02
space x 0 0 time t

Evolution of 6: real part (left), imaginary part (right)

Computations by Philippe Martin
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2. Flatness approach for the control of PDE

2.4-2.5 Null controllability of parabolic equations
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2. Flatness approach for the control of PDE

Variable coefficients

= Consider now the equation
(a(x)0x)x + b(x)0x + c(x)8 — p(x)0; =0

where a, b, ¢, p € L'(0,1).
m Alessandrini-Escauriaza (2006) proved the null controllability of this equation
(with internal or Dirichlet boundary control) when a, b, ¢, p € L>°(0, 1) with
a(x) >K >0 andp(x)>K>0 ae.in(0,1)

Method of proof: Lebeau-Robbiano strategy + complex variable analysis.

= We shall see that this result can be extended to parabolic equations with singular
or degenerate coefficients by using the flatness approach.
(for degenerate eq., we refer to Cannarsa-Martinez-Vancostenoble 2004,...)



2. Flatness approach for the control of PDE

2.4 Null controllability of (weakly degenerate) parabolic
equations

P. Martin, L. Rosier, P. Rouchon, Null controllability of one-dimensional parabolic

equations by the flatness approach, SIAM J. Control Optim. Vol. 54 (2016), No. 1, pp.
198-220
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2. Flatness approach for the control of PDE

Main result

Let a, b, ¢, p with
a(x) > 0and p(x) >0 forae. x € (0,1)

(1.2 e el o1

JK >0, ox) <K forae. x € (0,1)
p(X)

1
Ipe (1,00], arpe LP(0,1).

Theorem

Let (av b7 c, P) be as above, and ((}!07 50) # (07 0)7 (Oé1 s B ) # (07 O)

Letdy € L;(X)dx(o, 1) and T > 0. PickT € (0, T) ands € (1,2 — p— ). Then there

exists a control h = h(t) Gevrey of order s on [0, T] such that the solution 6 of

(a(x)bx)x + b(x)0x + c(x)8 — p(x)6; = O, x € (0,1)
apf(t,0) + Bo(adx)(t,0) = O,
a1 6(t,1) + B1(adx)(t,1) = h(1),
0(0,x) = 6o(x)

satisfies (T, .) = 0. 60/146



2. Flatness approach for the control of PDE

Examples

m (a(x)bx)x — 0 = 0, with a(x) > 0 a.e. and
a1/ae L'(0,1)

Possible: a(x) ~ (x — xp)" with
m —1 < r < 0 (singular) or
m 0 < r < 1 (weakly degenerate)

Degeneracies can occur
- at a single point xy € [0, 1] (ex a(x) = x7),
- at a sequence of points. Ex:
a(x)=|sin(xN|", —-1<r<1

The strongly degenerate case 1 < r < 2 has been treated with the flatness
approach by Ilvan Moyano, 2016.

m Oxx + X%G —0; =0, u < 1/4 (no need of Carleman or Hardy inequal.).
m Transmission problem (a and p discontinuous)
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2. Flatness approach for the control of PDE

Sketch of the proof

Using changes of variables, we can put the system in the canonical form

O —p(X)0: = 0, xe(0,1)
apf(t,0) + Bobx(t,0) = O,
a10(t, 1) + B10x(t,1) = h(1),
0(0,x) = 0o(x)

where p € [P(0,1),1 < p < co.




2. Flatess approach for the control of PDE

More details about the changes of variables

B(x) = /OX b(s) 4o

a(s)
a(x) = a(x)ef®
&(x) (Kp(x) — c(x))e®X).

Then B € W'1(0,1), ¢ € L'(0,1), and
a(x) > 0and &(x) > O forae. x € (0,1).

We introduce the solution v to the elliptic boundary value problem

—(aw)x+¢cv = 0, xe€(0,1),
v(0) =v(1) 1,
and set (x.0
t
1) = e Mu(x, b), ) = S D
b0 1= oMk, we(x, ) i= =
Finally, let

X

L:= /01(a(s)v2(s)e5(5))‘1ds, y(x) = 11/0 (a(s)v?(s)eP®)~1ds
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2. Flatness approach for the control of PDE

Let finally

0y, ) = we(x, 1), Aly) = L2a(x)v*(x)e2¥p(x)
forO <t < T,y = y(x)with x € [0, 1]. Then the following result holds.

(i) v€ Wh1(0,1) and 0 < v(x) < 1Vx € [0,1];
(i) y : [0,1] — [0, 1] is an increasing bijection with y, y—' € W'1(0,1);
(iii) p(y) > 0 fora.e. y € (0,1), and p € LP(0,1);

(iv) U solves the system

Oy — piy =0, ye(0,1),te(0,T) +bc. andi.c.
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2. Flatess approach for the control of PDE

In the time interval (0, 7), we apply a null control to smooth out the state, while in
the interval (7, T) we apply a non-trivial control to reach 0 attime t = T. The
trajectory will be written as

o(x,t) = > e en(x), xe(0,1), te[o,r],
n>0

ox,t) = > yO(ta(x), xe€(0,1), te[rT]
i>0
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2. Flatess approach for the control of PDE

Sketch of the proof (2)

Fort € (0,7), 0(x,t) = 3,50 & *en(x).
(en, An) is the nf pair of eigenfunction/eigenvalue for

—e, = Xnpen, x€(0,1)
agen(0) + Boen(0) = O,
asen(1) + Brep(1) = 0,

We proved that A\, > Cn by using a Prifer substitution

e = rcosb, (2.10)

e = rsind (2.11)

We can improve the estimate in A\, > Cn? for pure Dirichlet b.c. or Neumann b.c.
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2. Flatess approach for the control of PDE

Generating functions

For t € (7, T), we have

o(x, 1) =>_ y(1)gi(x) (2.12)

i>0
where the generating function g; is defined inductively as follows:
9 = 0, xe(0,1)
0go(0) + Bogy(0) 0,
Bogo(0) — 0 gg(0) 1

for i =0, and g;, for i > 1, is the solution to the Cauchy problem

g'" = pgi—1, x€(0,1)
gi(0) = 0
gi(0) = 0
We can prove
C
19illwe.p(0,1) < o1
Ri(iN" 7

which allows to prove the convergence of the series in (2.12) if y is Gevrey of order
se(1,2—-1/p).
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2. Flatess approach for the control of PDE

Sketch of the proof (3)

= To ensure that the two expressions of 0 agree at t = 7, we have to relate the
eigenfunctions en to the generating functions g;.

m We have

en(x) =Cn Y _(=Mn)gi(x) ()

i>0

with ¢, € R. o
[similar to cos(nmx) = 3750 (—n?m2) x?/(2i1) ]

= Thus, the generating function g; € W2P(0, 1) replaces the function x? /(2i)! we
had for the heat equation with Neumann b.c.
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2. Flatess approach for the control of PDE

Transmission pb. (piecewise constant coef.)

pobt = afxx, 0<x<X
P10t = a10x, X <x<1
0, X") = o(tX")
abx(t, X7) = aox(t,Xh)

Parameters: X = 1/2, (ao, po, a1, p1) = (10/19,15/8,10,1/8)
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2. Flatness approach for the control of PDE

Numerical simulations (N=1, transm. pb) Trajectory

Initial state: 60 = %1(1/2‘1)(X) — %1(0’1/2)(X)
Parameters: 7 = 0.3, T = 0.35, s = 1.6, (ao, po, a1, p1) = (10/19,15/8,10,1/8)

015 / ~— space x

time t

Fig.1. 6(¢, x)

Computations by Philippe Martin
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2. Flatess approach for the control of PDE

Degenerate heat equation

We consider a weakly degenerate (0 < v < 1) heat equation with a control applied at
the point (x = 0) where the equation is degenerate.

0i—(xX70x)x = 0, 0<x<1
ap0(0, 1) + Bo(X7O0x(X, 1)) jx=0 = u(t)
Oé19(1,t)+ﬁ10x(1,t) = 0

0(x,0) = 6p(x), 0<x<1.
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2. Flatness approach for the control of PDE

Degenerate heat equation

v=1/2

Initial, intermediate and final states
Sinulated trajectory

o ol 02z 03 04 05 06 07 08 09 1

5 o~ 5210 Final state (zoom)

Time ¢

v = 0 (left) v = 2/3 (right)

Simulated trajectory

0 ol 02 03 04 05 06 07 08 09 1

Sinmilated trajectory 6
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2. Flatness approach for the control of PDE

2.5 Null controllability of (strongly degenerate) parabolic
equations

A. Benoit, R. Loyer, L. Rosier, Null controllability of strongly degenerate parabolic
equations, ESAIM Control Optim. Calc. Var. 29 (2023), Paper No. 48, 36 pp.
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2. Flatness approach for the control of PDE

= We consider the control system:

(a(x)ux)x + q(x)u = p(x)ut, x € (0,1), te(0,T),
(aux)(0,t) =0, te (0, T),
au(1,t) + B(aux)(1,t) = h(t),
u(x,0) = up(x), x €(0,1)

where (o, 8) € R2 \ {(0,0)}, T > 0, up € L2(0,1) and h € L2(0, T).
m Goal: u(x,T) =0 Vx € [0,1].
m Difficulties:

= amay be strongly degenerate (e.g. a(x) = x>75,0 < & < 1)
m g may be singular (e.g. g(x) = x~°)
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2. Flatess approach for the control of PDE

Previous results

a(x) = x*75,1 < e < 2 (weak), 0 < = < 1 (strong):
Cannarsa-Martinez-Vancostenoble (2008-2020)

ac W"1(0,1), x — a(x)/x” nondecreasing: Fragnelli-Mugnai (2016-2021)
ae L*(0,1),0 < a < a(x) a.e.: Alessandrini-Escauriaza (2008)

a,1/a e L'(0,1): Martin-LR-Rouchon (2016) by the flatness approach

a(x) = x?7¢,0 < e < 1, g(x) = 0: Moyano (2016) by the flatness approach
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2. Flatness approach for the control of PDE

Assumption

a(x) > 0and p(x) > 0 forae. x € (0,1),

acL}.(0,1), (x— ﬂ) € LP(0,1),

p € L(0,1), limsupp(x) < oo,
Xx—0t

g xw” (f ) =

v(x) > 0 forall x € [0, 1],
(Hg)  3Ive Wh'(0,1) st { (avx)x + gv = 0in (0, 1),

(av)(0) = 0,

with
pe (1,—‘,—00], re (p/a+oo]7 p/ = %

I/\~c

(Hg) holds e.g. if fo a(x)~"( [ lq(s)|ds)dx < 1 orif g(x) < Cp(x) a.e.

6/1
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2. Flatness approach for the control of PDE

Theorem

Let the functions a, g, p, v : (0,1) — R satisfy the above assumptions for some
p € (1,+oc] andr € (p', +oc]. Let (a, B) € R2 \ {(0,0)} and T > 0. Pick any
Up € L2 andany s € (1,1 + % — 1). Then there exists a function h € G([0, T]) such

that the solution u of '
(a(x)ux)x + q(x)u = p(xX)ut, x€(0,1), te(0,T),
(aux)(0,t) =0, te (0, T),
au(1,t) + B(aux)(1,t) = h(t),
u(x,0) = up(x), x € (0,1)

satisfies

u(x,T)y=0 Vx e [0,1].




2. Flatess approach for the control of PDE

Reductions

m By (Hg) there exists v € W'1(0,1) s.t.

v(x) > 0 forall x € [0, 1],
(avx)x +qv =0in (0,1),
(avx)(0) =0

m Setting (x, t) := u(x, t)/v(x), &(x) := v(x)2a(x), p(x) = v(x)?p(x), we obtain
(atx)x = ply, x€(0,1),te(0,T),
(atx)(0) = 0,te (0, 7).
We can thus assume that g = 0.
= We first investigate the elliptic problem:

—(au")y = pf in (0, 1),
(au')(0) = O,
au(l) +B(av)(1) = O.
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2. Flatness approach for the control of PDE

Generalized Hardy inequality

Introduce the space

Ha:={ue W '(0,1); vau' € L2(0,1) and u(1) = 0}

loc

endowed with the norm

falln, = ( ] 1 0w (o)

Extend ato (0, 4+-o0) by setting a(x) = x2 for x > 1, and set

b(x) == a(x)~" (/XOO ﬁ) (0, 4o0).

a(s)

Then limy,_, o+ b(x) = +oo by our assumption, and we have the following

Lemma (Generalized Hardy inequality)

1 1
b(x)u(x)2dx < 4 / a(x)u (x)2dx, Vu € Ha
0 0
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2. Flatness approach for the control of PDE

Spectral problem (1)

Introduce the spaces
]
L2 = {f:(0,1)—>R;/O f(x)%p(x)dx < oo}

Hap = {ueW.'(0,1); vau' e [?(0,1)and /pu e L3(0,1)}
endowed respectively with the norms

Il = (/ fx x)dx) Ny, = (/01[a(x>u’<x)2+p(x)u(x)21dx)2

Then the embeddings Ha,, C L2(0,1) and Ha,, C L2 are compact.

Theorem

|

Let a, p and («, B) be as above. Then there are a sequence (€n)n>o in Lﬁ and a
nondecreasing sequence (An)n>o in (0, +o0) such that

(en)n>0 is an orthonormal basis in L2;
foralln >0, en € Ha,p, aej, € Wmn(2:)(0, 1), and e solves
—(ael,)) = Xnpen in(0,1),
(aep)(0) = 0,
aen(1) + B(ae,)(1) = O.
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2. Flatness approach for the control of PDE

Spectral problem (2)

Theorem

Let a, p, (o, B) and the sequences (en)n>0, (An)n>0 be as before. Then
en € WH1(0,1) and ael, ¢ W' (0,1) foralln > 0;
there exists some constant Cy > 0 such that

3 p'r
42y
lenllissoty < CiAn 7 ifAn>0;

/
(Forr = oo, %;, =p'.)

let k1= [%+,1J(r‘i/;,)]—1 > 0 ifp < oo and pick any k < 2 if p = co. Then there

exists some constant C, > 0 such that

An > Con™ Vn>0.
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2. Flatess approach for the control of PDE

Proof of the lower bound for Ap

We used a modified Prifer transform:
1
ae, = M} RpcosOp
_1
en = X\, *Rpsindp

Then 6, solves the Cauchy problem

Integrating over (0, 1) yields

]
cos 0
" dx

T_ 3o H
0,,(1)—5:)\,, A pSin Ondx + A2 A

Difficulty: 1/a & L'(0,1)

o'
Solution: for the 2nd integral term, write [ = OA” + fjn with Ap := (2CAn)P"—".
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2. Flatess approach for the control of PDE

Generating functions (1)

We consider the simplified system

(aux)x = pu
(aux)(0,t) = 0
and we seek a solution in the form
u(x, 1) =>_ yO(t)gi(x)
i=0

where y is the flat output and the g;’s are the generating functions, defined as

(ago,x)x = 0
(agix)x = pGi—1, Vi>1,
(agix)(0) = 0 Vi>0
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2. Flatness approach for the control of PDE

Generating functions (2)

Proposition

There are some constants C, R > 0 such that

c ,
1 VieN
et —

gillwi.10,1) + l1aGixllwrro,1) < —
Ri(i) "7

~i=

v

Proposition

Let (en, An) be a pair of eigenfunction/eigenvalue for some n € N. Then

en=en(0) Y (—An)'g; inW"'(0,1).
i>0
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2. Flatess approach for the control of PDE

Flatness approach

Let up € L2. Expand ug as
o0
=) cren €L

n>0
1 ift< L
Pick s € (1,1+ 2 — 1) and ¢ € G¥([0, T]) with o(t) =
0 ift>2
Set
y(t) = chen 7)‘"t, 0<t<T
and

[ wex) itt=0
“(X’”*{ S Y 0(Dg (x) o< (< T,

We can see that u(x, t) = 372, cne~*Men(x) for t < T/3 (free evolution)
The control input is taken as a trace:

h(t) = > yO(t) (agi(1) + B(agix)(1)) -

n=0

85/ 146



3. Reachable states

3. Reachable states
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3. Reachable states

3.1 Reachable states for the boundary control of the 1D heat equation

P. Martin, L. Rosier, P. Rouchon, On the reachable states for the boundary control of
the heat equation, Appl. Math. Res. Express. AMRX 2016, no. 2, 181-216.
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3. Reachable states

Reachable states

m A state 0 is said to be reachable (from 0 in time T) for the heat equation if there
exist some control inputs hy, hy € L2(0, T) so that the solution of

thexx = 07 XE(O,‘I)7 te(O, T)
0(t,0) = ho(t), 6(t,1) hy (1), te (0, 7)
00,x) = 0

satisfies
0(T,x) = 61(x)

m 01(X) = 3> Cnsin(nmx) is a reachable state if

oo
Je > 0 s.t. Z lcnln~ eI < oo Fattorini-Russell (FR), 1971

n=

\Cn\zneznﬂ < o0 Ervedoza-Zuazua (EZ), 2011

(]2

3
I
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3. Reachable states

= Both (FR) and (EZ) imply that the reachable state 64 has to satisfy the condition
6% 0) = 6*) (1) =0 VpeN.

Very conservative!! (no nontrivial polynomial function concerned!!)
= In what follows, we consider a control problem in (—1,1):

0i—0xx = 0, xe(=1,1),te(0,T)

o(t, —1) = ho(t), 6(t,1) hi(t), te(0,T)
0(0,x) = 0

for simplify the exposition.
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3. Reachable states

Two controls: 0(t,—1) = ho(t),0(t,1) = hy(t)

Such states should be complex analytic in the square {z = x + iy; |x| + |y| < 1}
(Gevrey 1926)

Notation: Hol(2) denotes the set of (complex) analytic functions in the domain Q C C.

Theorem (Martin-R-Rouchon)

If6; € Hol({z; |z| < R}) with R > Ry := e(®)™" ~ 1.2, then 6, is reachable
from 0 in any time T > 0.

Conversely, any reachable state belongs to

Hol({z = x + iy; |x| + |y| < 1})
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3. Reachable states

One control: 0(t,0) = 0,6(t,1) = hy(t)

0r— 0 = 0, xec(0,1),te(0,T)
0(t,0) =0, 6(t,1) = h (D), te(0,7)
0(0,x) = 0

Reachable states need also to be odd !

Theorem (Martin-R-Rouchon)

If6; € Hol({z; |z| < R}) with R > Ry := 9" ~ 1.2 and 6; is odd, then 6 is
reachable from 0 in any time T > 0.

Conversely, any reachable state is odd and it belongs to

Hol({z = x+iy; |x| + |y| < 1})

Y
1
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3. Reachable states

Remarks about the reachable states with 2 controls hg, hy

Def.

Any polynomial function is reachable!!

A function y = y(t), t € [0, T] is Gevrey of order s > 0 if there exist C, R > 0 s.t.

1S
YD) < 0%7 vte[0,T], VneN.

For the sufficient part, the control input driving the state to the target function can
be chosen Gevrey of order 2.

Result much better than the classical controllability to the trajectories. Indeed, the
controllability to the trajectories involves states of Gevrey order 1/2 (like
exp(cx?)), while the reachable states are solely complex analytic, that is Gevrey of
order 1, with possible poles.

Main tools in the proof: flathess approach + a Borel-Ritt thm
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3. Reachable states

Flatness property: the limit case S = 2

Proposition

Assume that for some constants M > 0, R > 1 we have
; (2i)! .
YO < M viz0,vteo,T]

Then the function

a(t, x) = Z (2/)1

i>0
is well-defined in [0,1] x [0, T], Gevrey of order 1 in x and 2 in t on [0, 1] x [0, T], and
it is the solution of the ill-posed problem
9[_9XX207 te(ovT)7X€(071)7
0(0,t) = y(t), te(0,7),
0x(0,t) =0, te (0, 7).




3. Reachable states

Borel-Ritt theorem

Theorem

For any R > 1 and any sequence (an)n>o of real numbers satisfying

(2n)!
lan| < CW

one can find a function f : R — R with compact support in [—1, 1] and Gevrey of order
2, such that

f(N(0) =ap, V¥n>0,

\th)\gO% vt e [-1,1]

where Ry = e(28) ' ~ 1.2.

Inspired by Petzsche 1988
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3. Reachable states

For Borel-Ritt theorem, see:
= Ramis (1978)
= Chaumat-Cholet (1994)
= Thilliez (2003) (complex analysis)
m Petzsche (1998) (real analysis)

However, in all these references, the issue of determining the greatest lower bound of
Ry was never considered.
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3. Reachable states

Recent improvements for the domain of analyticity

Theorem (Dardé-Ervedoza, SICON 2018)

If01 € Hol({z = x + iy; |x| + |y| < 1+¢&}) withe > 0, then 6 is reachable from 0
with two controls in L?(0, T).

Q = {z=x+iyeC |x|+lyl<1}
A%(Q) = Hol(Q)NL3(Q) (Bergman space)
E2(Q) = {0 A(Q); 0 c L?0RQ)and / 2"9(z)dz = 0 Vn e N} C A(Q)
o0

(Hardy-Smirnov space)

Theorem (Hartmann-Kellay-Tucsnak, JEMS 2018)

If 01 is reachable with two controls in L?(0, T), then 6 € A?(%).
If01 € E?(Q), then 0y is reachable with two controls in L?(0, T).
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3. Reachable states

The sharp result

Consider again the system
0t —0xx = O, x e (—1,1), te(0,T)
o(t,—1) = ho(t), 6(t, 1) hy (1), te(0,7)
0(0,x) = 0

Let Q = {x +iy; |x| + |y] < 1}. Assume that hg, hy € L?(0, T).

Theorem (Hartmann-Orsoni, J. Funct. Anal. 2021)

The reachable space is the Bergman space A%(Q) = Hol() N L2(Q).

Tools in the proof: Reproducing Kernel Hilbert space + separation of singularities in
Bergman spaces
A similar result was also given with only one control.
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3. Reachable states

3.2 Reachable states for the distributed control of the heat
equation.

M. Chen, L. Rosier, Reachable states for the distributed control of the heat equation, C.
R. Math. Acad. Sci. Paris 360 (2022), 627—639.
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3. Reachable states

Distributed control

Let0 < /; < b < 1. We are concerned with the reachable states for the control
problem

yf:yXX+1(l1,/2)u(X7 t): X€(071)7 t€(07 T)’
y(0,)=y(,)=0,  te(0,T),
y(x,0) =0, x € (0,1).

where u € L2(0, T, L2(0, 1)).
For any L > 0, we introduce the set

S(L) = {x+iy €C; |x| +|y| < L},
and the space

H(L) = {f € H'(0,L); fcan be extended as an odd analytic function on S(L)}.

99/146



3. Reachable states

Reachable states

Theorem

LetT >0and0< h < b < 1. Then

(i) forany u € L2(0, T; L?(0,1)), the solution y of the control system
satisfies y (-, T) € H}(0,1), y(-, T) € H(h) and
y(—-T)eH = b);

(ii) forany0 < e < (b —h)/2, forany yr € H}(0,1) with yr € H(h +¢)
and yr(1 —-) € H(1 — kb + ¢), there exists a control function
u € L2(0, T; L?(0, 1)) such that the solution y of the control system
satisfies y(-, T) = yr in (0,1).

Figure: Reachable states for homogeneous Dirichlet boundary conditions.
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3. Reachable states

Ideas in the proof

m In the limit case (4, k) = (0, 1) (control distributed everywhere), the reachable
space is nothing but H (0, 1).
This is proved using series of sinus.

= Using a partition of unity, we can use the characterization of the reachable states
corresponding to the boundary control.
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3. Reachable states

A new proof of Dardé-Ervedoza theorem

S(L)y={x+iy €C; |x|+|y| < L}

Theorem

LetL > 1, T >0, and+ € Hol(S(L)). Then there exist h_4, hy € G2([0, T]) such that
the solution w = w(x, t) of the control system

Wy — wxx = 0, (x,t) € (=1,1) x (0, T),
w(—1,t) = h_4(t), w(1,t) = hy (1), te (0,7),
w(x,0) =0, x e (—1,1),

satisfies w € C>°([—1,1] x [0, T]) and w(x, T) = ¥(x) forx € [—1,1].
If, in addition, +) is odd, then we can require that w(., t) be odd for all t € [0, T], so that
h_1(t) = —hy(t) and w(0,t) =0 forall t € [0, T].




3. Reachable states

Step 1: Separation of singularities
S(Ly={x+iyeC; |x|+|yl <L}, Qb,R):={zeC; dist(z,eR) < R}

Lemma

Let1 < | < Land € Hol(S(L)). Then there exist0; € (w, 3F), 0, € (),
r € (J5,+00), ¥ € Hol(Q%, 1)) and vz € Hol (%, r)) such that

50 ¢ Q(%,r)mﬂ(%,r),

FRIES L°°(Q(%,r)), i=1,2, j€N,
Y =11+ in S(1).
Proof: From Cauchy formula, ¢(z) = (27i)~ f P(¢)(¢ — 2)~1d¢. Next split .




3. Reachable states

Step 2: Integration of the heat kernel along an oblique line

O(6,R) :={z e C; |z— Re’®| < R}
Yy

Lemma

Leto € (%,%5), r > 1/V2, and € Hol(Q(§,r)) N L= (5, r)). Then the function

ooe2 2
F/ g & Fuz-0d

is well-defined and analytic in z and T for z € Q(g, r)andT € O(6,R) forany R > 0.
Furthermore, v satisfies

v(z,7) =

Vr —Vzz = 0, ZGQ( I‘)TEO(@R)

lim v(z,7) = 1(2), ZEQ(E’r)'

T—0—




3. Reachable states

3.3 Reachable states for the linear Korteweg-de Vries equation

P. Martin, 1. Rivas, L. Rosier, P. Rouchon, Exact controllability of a linear Korteweg-de
Vries equation by the flatness approach, SIAM J. Control Optim. 57 (2019), no.4,
2467-2486.
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3. Reachable states

Korteweg-de Vries equation

m The Korteweg-de Vries (KdV) equation was introduced by Boussinesq (1877) and
by Korteweg and de Vries (1895) as a model for water waves:

Vi+Yox+YYx+yx=0

where y; = 9y /04, yx = Oy /0x, etc.

= Well-posedness of KdV studied by R. Temam, J.-C. Saut, T. Kato, C. Kenig - G.
Ponce - L. Vega, J. Bourgain, F. Linares, T. Tao and many others...

m Control of KdV first considered by D. Russell and B.-Y. Zhang in 1996 (1993 for
the linear KdV)

Yi+Yox+yYyx=Gh xeT=R/Z.
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3. Reachable states

Boundary control of KdV

The KdV equation
Yi+Yox+YY«+yx=0

is supplemented with three boundary conditions
y(0,t) = u(t), y(Lt)y=v(t), yx(Lt)=w(t),

and an initial condition
y(x,0) = yo(x).

We say that the equation is exactly controllable (resp. null controllable) if for any yo and
for any y; (resp. for y; = 0), one can pick some boundary controls among u, v, w s.t.

y(x, T) = y1(x).
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3. Reachable states

Boundary control of KdV (2)

Yi+Yox+YYx+yx=0
y(0, 1) = u(t), y(L, 1) =v(t), Oxy(L t)=w(l)
y(x,0) = yo(x)

= With w as only control (u = v = 0), system exact control. for L # 27/ 7"2*'3"*’2
(LR, 1997)

= With u as only control (v = w = 0), system null control. (LR 2004, Glass-Guerrero
2008) Some Carleman inequality needed. Also controllability to the trajectories

m With v as only control (u = w = 0), system exact control. for L not critical
(Glass-Guerrero, 2010)
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3. Reachable states

Carleman inequality

For g = q(x, t) with
we have

L
{(59)°1a1? + (50)°qx|? + (50) | Q[ Y&~ 257 xalt

-
</ / lge + qXXX‘2 —25% dxdt + / [swqux\ze‘%“’} dl‘>
0 x=L

where o(x, t) = T it )) for some ¢ = 4(x) > 0, C > 0and s > sp.

e

\.
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3. Reachable states

Reachable states

We are now interested in describing precisely what are “all” the states that are indeed
reachable with the only control y(0, t) = u(t).
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3. Reachable states

Reachable states for the Korteweg-de Vries equation

In order to to make the exposition of our results easier, we assume that the space
domain is (—1,0) instead of (0, L) and we consider the control problem

Yi+Yyox +ayx =0, xe(-1,0)
y(=1,0)=u(t), y(0,t)=yx(0,t)=0,
¥(%,0) = yo(x)

where a > 0 is a coefficient. (In practice,a=0ora=1.)
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3. Reachable states

Null controllability

Theorem (Thm 1)

Letyy € L2(—1,0), T >0, ands € [g, 3). Then there exists a control input
u € G5([0, T]) such that the solution y of

Yi+Yox+ayx=0, xe(-1,0)
y(—1,t):U(l‘)7 y(07 t):yx((),t):o,
y(x,0) = yo(x)

satisfies y(., T) = 0. Furthermore, it holds that

y € C([0, T], L3(—1,0)) N G5 5([—1,0] x [¢, T]) Ve € (0, T).

Recall that a function y € G51:%2([xy, X2] X [, t2]) if there exist some constants
C, R, R> > 0 such that

()% (np!)®

07" o2y (x, ) < C n
R RY?

vny,na €N, V(Xv t) € [X17X2] X [t17t2]'
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3. Reachable states

Reachable space

Let
P = 83 + adx

so that KdV can be written 9;y + Py = 0, and, forany R > 1, let

Rp = {y € C%([~1,0]); 3z € H(D(0, R)), ¥ = z_1,0, and
(P"y)(0) = dx(P"y)(0) = 0 ¥n >0}

Theorem (Thm 2)

Letac Ry, T>0,and R> Ro(a) = e (1 + a)% > 1. Pick any y; € Rp. Then
there exists a control input u € G*([0, T]) such that the solution y of

Yi+Yox +ayx =0, xe(-1,0)
}/(—171):‘1(1)» y(ovt):6xy(ovt):07
y(x,0) =0

satisfies y(., T) = yi. Furthermore, y € G3([—1,0] x [0, T]).
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3. Reachable states

Examples of functions in Rg

The polynomial functions of the form y(x) = SN_ a,x31+2
The entire function ,
y(x) = &+ je + 2

where j := &% . Note that y is real-valued and y(—1) > 0
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3. Reachable states

Exact controllability

Combining Theorem 1 and Theorem 2, we obtain the following result which implies the
exact controllability of system

Yi+Yox +ayx=0, xe(-1,0)
y(=1,t) = u(t), y(0,t) =yx(0,1) =0,
y(x,0) = yo(x)

in Rg for R > Ry.

Letac Ry, T >0, R > Ry(a), yo € L?(—1,0) and y; € Rp. Then there exists
u € G¥([0, T]) such that the solution of the above system satisfies y(., T) = y;.
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3. Reachable states

Sketch of the proof of Thm 1

We need first to investigate the ill-posed problem

Yt + Yxxx +ayx =0, x € (—1,0), te(0,T), (3.1)
y(o) t) = yX(07 t) = 07 te (Oa T): (32)
yxx(0,t) = z(1), te (0, 7). (3.3)

Proposition (Flatness property)

Lets € [1,3), z € G5([0, T]). Then system (3.1)-(3.3) admits a solution
y € G35([-1,0] x [0, T]).
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3. Reachable states

Expression of the solution of the ill-posed problem

The solution of the ill-posed reads
y(X7 t) = Zg,'(X)Z(i)(t),
i>0

where the generating functions g; are defined as follows.
Qo is the solution of the Cauchy problem (" = d/dXx)

9 (x) +agy(x) = 0, x € (-1,0),
9(0) =gp(0) = 0O,
90 = 1
g; for i > 1 is defined inductively as the solution of the Cauchy problem
g"(x)+agi(x) = —g-1(x), xe(-1,0),
gi(0)=gj(0)=g/'(0) = o.

We can prove the

Letae Ry. Then foralli > 0

X3i+2
0001 < gy Wxe =10l




3. Reachable states

Smoothing effect

Consider the free evolution

Yt + Yxxx +ayx = 07 X e (71,0)7 te (07 T)7 (34)
Y(*LT)Z,V(OJ):,Vx(oaf):Q te(ov T)7 (35)
y(X,O) = yO(X)7 X e (_170)7 (36)

Then the following smoothing effect holds.

Leta> 0 and y, € L?(—1,0). Then the solution y of (3.4)-(3.6) satisfies

VAS Gz2'3 ([-1,0] x [, T]) forall0 < e < T < oco. More precisely, there exist some
positive constant K, Ry, R> such that

3n+p+3 n! 2 pl 2

|0782 y(x, )| < Kt~ R” Rp

Vp,n €N, Vt e (0, T], vx € [-1,0].
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3. Reachable states

Sketch of the proof of the smoothing effect

m Start from the global Kato smoothing effect (assuming T = 1 w.l.g.):

/ 19:v( OIE ot < 2 (@+ Dol
= Combining with energy estimate, we get
Dl < Sl Ve (0.1]
) H > \/? 0ll 2 s -

m Applying this estimate to y; and using interpolation yields successively
(P = 83 + adx)

C
Iy (s Ollgert < ﬁHYOHHP» forp € {0,1,2,3}, y € Xp, t € (0,1]
c’ 2
”'Dy(t)”L2 < FH)«)“L% fOI'y() €L (7170)» te (071]
2

= Splitting [0, f] into [0, L] U [£, 2] U U [2-1t, 1], we obtain
c

1
1Py (- O)ll2 < IIP” Yl < <

t
n
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3. Reachable states

Sharp smoothing effect on the line

We guess that for yy € L2(—1,0), we have that

ye G ([-1,0]x [, T]) VO0<e<T< oo
How to prove it??
The smoothing effect from L2 to G'/3 is much easy to establish on R for data with
compact support.

Proposition

Let yo € L?(R) be such that yo(x) = 0 fora.e. x € R\ [-L, L] for some L > 0. Let
¥y = y(x, t) denote the solution of the Cauchy problem

ay+08y = 0, t>0, xeR,
y(x,0) = y(x), xeR.

Theny € G3''([~1,1] x [¢, T]) forall > 0 and all 0 < & < T.
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3. Reachable states

Some technical facts in the proof of Thm 2

The flatness property has to be extended to the limit case s = 3.

Proposition

Assume that z € G3([0, T]) with

. !
|z (1) < M% Vj >0, Vte [0, T]

where R > 1, and lety = y(x, 1) = 3,5 gi(x)20(t).
Theny € G"3([-1,0] x [0, T]) and it solves the ill-posed problem

yf+yXXX+ayX:07 XG(—1,0), t€(07 T)7
y(0,1) = yx(0,t) =0, te(0,7),
yxx(0,1) = z(t), te(0,7).

1217146



3. Reachable states

Borel-Ritt theorem

(inspired by Petzsche, 1998)

Proposition (AMRX, 2016)

Let (dq)q>0 be a sequence of real numbers such that
|dg| < CRY(3q)! Vg >0

for some R > 0 and C > 0. Then for all p > e R, there exists a function f € C*>°(R)
such that

f(Q)(O)
|19 (x)|

dg Vq=>0,
Cp?(3g)! Vg >0, Vx €R.

IA




3. Reachable states

3.4 Reachable states for the linear Zakharov-Kuznetsov
equation

M. Chen, L. Rosier, Exact controllability of the linear Zakharov-Kuznetsov equation,
Discrete Cont. Dyn. Syst. Ser. B 25 (2020), no. 10, 3889-3916.
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3. Reachable states

Zakharov-Kuznetsov equation

m The Zakharov-Kuznetsov (ZK) equation
Us + aux + Aux + uux = 0,

provides a model for the propagation of nonlinear ionic-sonic waves in a plasma.
Au = 82u/0x? + 30, 82u/dy? where x,t € Rand y € RY (with d € {1,2})
The constant a > 0 is the sound velocity

Here, we consider only the case d = 1 (for the sake of simplicity) and the
linearized ZK equation (we remove the nonlinear term uuy).

We take Q := (—1,0)x x (0, 1), as spatial domain.

As for KdV, exact controllability results can be proved with a control on uy for
x =0,y € (0,1) (see Doronin-Larkin (2015))
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3. Reachable states

Control system

SetQ = (—1,0) x (0,1).

We are concerned with the control properties of the system:

Ut + Uxxx + Uxyy + a@ux = 0,

u(O,y, t) = ux(O,y, ) =0,
U(717y7t)_ (y t)
u(x,0,t) = u(x,1,t) =

M&%@zwvwh

(x,y) e, te(0,T),
y €(0,1), te(0,7),

y € (0,1), te (0, T7),

x €(—1,0), te (0, T),
(x.y) €9,

where ug = Up(x, y) is the initial data and h = h(y, t) is the control input.
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3. Reachable states

Null controllability

Theorem

Letug € L?(Q) and s € [%, 2). Then there exists a control input

he G25([0,1] x [0, T])

such that the solution u satisfies u(-, -, T)=0. Furthermore, it holds that

s sg

u e C([0, T); L3(Q)) N G2'25([—1,0]x x [0,1]y x [, T]¢), Ve e (0,T).
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3. Reachable states

Reachable states

Introduce the differential operator
Pu := Aux + aux
and the following space
(P’ (g1’
RPRJ
and P"u(0, y) = 0xP"u(0,y) = P"u(x,0) = P"u(x,1) =0, VneN, V(x,y) € Q}.

Rp,.p, i={u € C®(Q); 3C >0, |K] u(x,y)| < C vp,g €N, V(x,y) € Q,

Theorem

Let Ry := $/9(a + 2)e®®) ", and let Ry, By € (Ro, +o0). Then for any uy € RR, Ry
there exists a control input h € G'+2([0, 1] x [0, T]) such that the solution u of with

up = 0 satisfies u(-, -, T) = uy. Furthermore, u € G'"12([-1,0] x [0, 1] x [0, T]), and
the trajectory u = u(x, y, t) and the control h = h(y, t) can be expanded as series:

ux ) = 30> g02" (Dey),
j=1i=0
hy.t) = 33617 (&)

-
Il
R
Il
=}




4. Exact controllability of nonlinear PDE

4. Exact controllability of nonlinear PDE



4. Exact controllability of nonlinear PDE

4.1 Exact controllability of semi-linear heat equations

C. Laurent, L. Rosier, Exact controllability of semi-linear heat equations in spaces of
analytic functions, Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020), no. 4,
1047-1073.
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4. Exact controllability of nonlinear PDE

Semi-linear heat equation

m Our aim is to derive in a space of analytic functions the (local) exact
controllability of

oy =82y + f(x,y,0xy), xe[-1,1, teo,T],
y(=1,1) = h_4(1), te[o, 7],
y(1,8) = (1), te[o, 7],
y(x,0) = yo(x), x € [-1,1],

where f : R® — R is an analytic function in a neighbourhood of (0, 0, 0).

m Classical examples:

By = 82y + ¢(x)y (linear heat eq. with an analytic potential function ¢)
&y = 8%y — ydcy (viscous Burgers’ eq.)
&y =82y +y—y® (Alen-Cahn eq.)
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Assumptions about the nonlinear term

We assume that
f(x,0,0) =0 Vx € (—4,4)

and that

Yo, = D apar(0)Pm)X" V(X y0,01) € (—4,4)°
(p,q,r)EN®
with
Ia < M
a7 < g
b2 b7 s

where M >0, by > 4, by >4 and by > 4629 ~ 4.81.
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Main result (Exact controllability of the nonlinear heat equation)

For given R > 1 and C > 0, we denote by Rp ¢ the set
n!
Rec =1y [=1.1] = B; 3(an)nzo € B, |an| < Coo vn > Oand

y(x) = Zan’;—f vx e [-1,1]}.
n=0 :

Theorem

LetR > Ry :— 4e®) " ~ 4.81, let b, > Ry and let T > 0. Then there exists some
number C > 0 such that for all yo, y1 € Rp,c, there existh_q, hy € G?([0, T]) such
that the solution y of the nonlinear heat eq.

Oty = 9%y +f(X, ¥, 0xy)
with initial data yy and boundary data h_1, hy is defined for all t € [0, T] and it satisfies

yT)=ynkx) xe[-1,1].
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Method of proof

Study of a Cauchy problem in x:

82y = oy — f(x,y,0xy), xe[-1,1], te][0,T]
¥(0,1) = go(1),
Oxy(0, ) = g1(t)

See also Nirenberg (1972), Nishida (1977), Guo-Littman (1995).

Jet analysis (replacing fixed-point argument):

Study of the relationship between
the jets {07y(0, T)}n>0 U {0x0[¥(0, T)}n>o and the jet {07y(0, T)}n>0
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Step 1: Cauchy problem in X

We are concerned with the wellposedness of the following Cauchy problem in the x

variable:
By =0y —f(x,y,0xy),  xe[-1,1], t€ [t b] (4.1)
y(0,t) =go(t),  tet, b (4.2)
oay(0,0) =gi(t),  telt, bl (4.3)

Theorem

Let f be as in the main result, —oco < t; < tr < oo and R > 4. Then there exists some
number C > 0 s.t. for g, g1 € G?([0, T]) with

ny? .

19" (1)] < c%, i=0,1,n>0, t€[t,b)]

there exists a solution y of (4.1)-(4.3) defined for x € [—1,1], t € [t, t2]. Furthermore
y € G"3([-1,1] x [t1, 2]).

Proof: fixed-point in a scale of Banach spaces of Gevrey functions:
We consider a family of Banach spaces (Xs)se(o,1] satisfying for 0 < s’ < s <1

XS C XS’
fllx, < Ifllx, Ve Xs.
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Abstract existence theorem
We are concerned with the abstract Cauchy problem:
aU(X) = T()U(x), —1<x<T,
u(0) = U°

where U° € X; and (T(X))xe[—1,1 is a family of (nonlinear) operators with possible
loss of derivatives. The following result is inspired by Niremberg (1972), Nishida (1977).

Theorem ( well-posedness result)

For any € € (0,1/4), there exists D > 0 such that for any family (T(x))xe[—1,1] Of
nonlinear maps from Xs to Xy for0 < s’ < s < 1 satisfying

ITOOUx,

IN

— 11Ul

&l
U= Vi

N

ITCAU = T(x)Vlix,
for0 <s' <s<1,xe[-1,1]and U,V € Xs with||U||x, < D, ||V||x, < D, there
exists > 0 such that for any U° € X; with || X°|| x, <, there exists a solution

U e C([-1,1], Xs,) for some sy € (0, 1) to the integral equation

Ux) = U° + /0 T(r)U(+) dr.
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Step 2. Jet analysis

m For linear heat eq 8;y = 82y, we have
Oy =82"y and Oxdfy = 821y,
= For the nonlinear heat eq. d;y = 82y — f(x, y, dxy), there is still a one-to-one

correspondance between
the jets {97y(0, T)}n>0 U {0x97'y(0, T)}nxo and the jet {87y (0, T)}n>o0
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Step 2. Jet analysis (Quantification)

Let f be as in the main result. Pick any solution y € C>°([—1,1] X [t, t]) of
Oy = By — f(x,y,0xy)
if |oyy(0, T)] < Cn!/R" with R > 4 and C small enough, then
07y (0, T)| + |0x0fy(0, T)| < C'(2n)!/R™"

for some R’ € (4, R) and C’ > 0 with ¢’ —+ 0as C — 0.
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4.2 Exact controllability of anisotropic 1D equations

C. Laurent, I. Rivas, L. Rosier, Exact controllability of anisotropic 1D equations
equations in spaces of analytic functions, in progress.
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Anisotropic equations

We consider PDEs with more derivatives in space than in time

M
Ny =>"¢ohy +1(x,y,..,0¢ " y), where N < M.
j=0
Classical examples:
oty + ny + Oxy + yoxy =0 (KdV)
%y = £}y + 82y — 92(y?)  (good(-)/bad(+) Boussinesq equation)

=

By = €982y + e'?|y|2y (Ginzburg-Landau)
Bty + 8%y + 82y + ydxy = 0 (Kuramoto-Sivashinsky)

PDEs that are ill-posed (forward in time) are still concerned!!
Examples:

(8¢ + 82)y = 0 (backward heat equation);
(8¢ + 82)(0y — 82)y = 92y + d2(y?) (bad Boussinesq equation)
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Space of analytic functions

For given R > 1 and C > 0, we denote by Nz ¢ and Ry ¢ the sets

n!
Nac = {(an)n>o €RY, |an| < Cﬁ vn >0} C RN,
. = X"
Rrc = {y:[-1,1]=R; 3(an)n>0 € Ngc with y(x) = ZO‘”H vx € [-1,1]}
n=0 :

As for the semi-linear heat equation, our result will be stated in the space Rpg ¢.

Rmk. The result we shall obtain can be seen as a local exact controllability in some
Hardy space.

Let us introduce the Hardy space H3° = Hol(B(0, R)) N L*°(B(0, R)), which is a
Banach space for the norm || - || (B(0,R))- Let

Bre=1{y:[-1,1] = R; 3f € HE", |Ifll.(B0,R)) < C: fi—1,11 = ¥}-

Then
B,q,c C RFLC C Br,C(1—ﬁ)*1

for1 <r< Rand C > 0.
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Boundary conditions

Denote Py := Z,"‘io C/@i}’-

Introduce the vectors (“partial jets”)

(y(X, t),axy(x, t)v ey 8)0/,71}/()(7 t))
(y(Xv t)vaf}/(xv t)v ] 8;\/71)/()(7 t))

YX(x, 1)
Yi(x, 1)

The PDE
By = Py + f(x,¥,0x, ... o 'y)

is supplemented with the homogeneous boundary condition at x = 0
BY*(0,t) =0

where B € R¥"M is given, v € N being the numbers of boundary conditions at x = 0
(without any control).

The boundary controls are some traces of the state function y at x = 1 (to be chosen
as desired). Their numberis M — v.
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Compatibility set

From BY*(0, t) = 0 we infer that 8]BY*(0,) = O for all t € [0, T] and all / € N. Then

Let Py := Zj’\io (jé‘f'(y. For any | € N, there exist m = m(/) € N and a smooth
application J; : [—1,1] x (RN)™+1 — RM such that for any y € C>°([—1,1] x [0, T])
solution of
B:Vy = Py+f(X7y»axy7"'78y71y)
we have
AY* = Ji(x, Y1, 0 Y, .., 87YY)  in[-1,1] x [0, T]

We are in a position to define the compatibility set

C = {Yo € C([0, 1)"; BU(O, Yo, 0x Yo, -, " Yo) jxoo = 0 ¥/ € N}
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Exact controllability of the anisotropic 1D equation

Let

be the Gevrey regularity.

Theorem

Let B := 4NXe(*® " Then for f with b, > R and for R > R and T > 0, there exists
some constant C > 0 such that for all Y°, Y1 € (RH,C)N N C, there exists a solution of

the system
vay = Py+f(x,y,8xy,...,8y_1y)
BY*(0,t) = 0
Yix,0) = Y°x)
Yi(x,T) = Y'(x)

Furthermore, we have y € G'*([0,1] x [0, T]).
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Controllability of (good or bad) Boussinesq equation

Consider the control system
Ry =+4y + %y —95(y?),  x€(0,1), te (0, T),

Axy(0,1) =0, 0,7),

83(0,1) =0, 0,7),

Axy(1,t) = v(t), 0,7),

Ay, t) = w(t), 0,7),

y(x,0) = y°(x), x € (0,1),

yi(x,0) = y'(x), x € (0,1).

Recall that the bad Boussinesq equation (+) is severely ill-posed, even for the linear
part.

te(
te(
te(
te(

LetR> R and T > 0. Then there exists some number C > 0 such that for all pair of
functions (y°, y'), (7°,7') € (Rp &)? which are even with respect to 0, there exist

y € G'?([0,1] x [0, T]) and v, w € G?([0, T]) satisfying the system above together
with

y(, T) =720, y(x, T) =7'(x), vxe[0,1].

144/ 146



4. Exact controllability of nonlinear PDE

Conclusion

m The flatness approach is a robust method to derive almost sharp sets of reachable
states for parabolic-like equations, including the heat and the KdV equation. Also
useful for anisotropic 1D equations.

m First instance of an exact controllability result for a semilinear parabolic equation.
m Also effective for 1D anisotropic PDE, even if they are NOT well-posed
= Approach also useful to design efficient numerical schemes
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Thank you!
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