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 Initial Collision * Pre-Equilibrium QGP « Hydrodynamic
« Off-Thermal =) . Thermalization =) . Thermal
«  Gluon Saturationmsp |+ Chemical Equilibration| = «  Gluon/Quarks
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Effective Kinetic QCD

Effective Kinetic Theory (Arnold, Moore, Yaffe) at LO AMY,JHEPO01 (2003) 030

AMY,JHEP0206(2002)030
Kurkela, Mazeliauskas,PRD99 (2019) 054018

%fa(ﬁ, t) = -C>*[f1(p,t) - CL*[f1(p, 1)

s=gqg,u,u,d,d, s, 3

Explicitly solve Boltzmann equation for massless gluon and 3 light quarks/anti-quarks
as an integro-differential equation
including 2-2 elastic processes and 1-2 inelastic processes

IR

2-2: Color screening by Debye 1-2: Collinear radiation including
mass fit to HTL calculation LPM effect via effective vertex
resummation
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Kinetic and Chemical Equilibration
without Long. Expansion

Turhulence in Quark-Gluon Plasma
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Weak-Coupling Thermalization

Evolution of over-occupied plasma OVGI‘-OCCUpied Sy3tem3
<p><<T

Direct energy cascade

Far from equilibrium

Large separation of scales

Under-occupied systems
<p>>> T

Inverse energy cascade

Psplit(t) Schlichting, Teaney, Ann. Rev. of Nuc & Part. Sci. 69:447 (2019)
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Scaling Exponents from pure Yang-Mills plasma :) a=-4/7, B=-1/7
Also work for QCD plasma: Gluon domination /;D Berges, Boguslavski, Schiichting,
/;> Venugopalan, PRD89(2014)114007
: Abraao York, Kurkela, Lu, Moore,
Quark spectra are following gluon spectrum PEDBO(2014)074036
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Scale Evolution
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Self-similar Scaling: pow-law evolution

_Gor

Gluon(A=10,<p>,=1)
Quark(A=10,<p>3=1)
Gluon(A=1,<p>3=1)
Quark(r=1,<p>y=1)

o . 14 ¢
Not limited to pure Yang-Mills g 1ol
Even work for stronger coupling <
-y i
Chemical Equilibration 5 Ez _
Later than kinetic equilibration — > 0'4 i
Equilibration relaxation time t'Hooft coupling 0z Quark
~ 471'77/8 A =4dmasN, °0 05 1
TR= 7 — . -
Teq Kurkela, Mazeliauskas,PRD99 (2019) 054018

KOMPOST, PRC99 (2019) 034910
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» Kolmogorov-Zakharov spectrum (exponent k=7/2 for gluon)

frez(B,t) =n(t) (%)ﬁ

« Bottom-up thermalization R. Baier, et al. PLB502(2001)51

1. Emission of (soft) quarks and gluons

2. Radiative breakup by multiple branchings -> build up soft thermal bath
3. Mini-jet energy loss -> heating up thermal bath
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» Bottom up thermalization

« Kolmogorov-Zakharov spectrum
1. Quark follows k=5/2 to k=7/2
2. Gluon follows k=7/2

3. Antiquark follows gluon (secondary production)

« Same pattern as for in-medium mini-jet/jet evolution with
unified description of soft and hard sectors
» Equilibration of Jets Soudi, Schlichting, 2008.04928
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Hydrodynamic Attractor
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Isotropization

System initially highly anisotropic with CGC inspired gluon dist. & finite charge density

0.4
Isotropization:

0.3 F Larger chemical potential

Larger fraction of quarks

¥

Slower isotropization

Pressure over energy p /e

] Ineffectiveness of quark interaction:
15 2 25 3 35 4 Color factor

B=TT ¢ (4xI1) Spin degeneracy

Quantum statistics

1st-order hydrodynamics near equilibrium Non-equilibrium attractors

gq from kinetic theory

e 3 9(e+p)r 3 Im\e+p) L effective constitutive
const. I relations far-from equilibrium




Isotropization

Gluon isotropy faster
Quarks isotropy slower

Systems eventually isotropy

&0 1F hydrodynamization
~2 kinetic equilibration time
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Energy Attractor
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From conservation laws, connecting initial state to hydrodynamics

4 € (& 4 . ISR 1
(rte), = & (<;)) (rie), =€ (@) Cu (T_) (rte),
(Tﬁnf)& = (Tﬁﬂf)ﬂ

Extreme Nonequilibrium 10



Realistic Matching

0.3 Match
0.25 | net baryon density/chemical potential
0.2 1 charged particle multiplicity
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Realistic matching to hydrodynamics at finite density
(lower energy heavy-ion collisions, forward rapidity, etc...)

Chemical equilibration ~ 2 kinetic equilibration
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e Turbulent Nature of Quark-Gluon Plasma

» Over-occupied system follows a self-similar universal scaling, not limited to pure
Yang-Mills theory, even for moderately strongly coupled system

* Under-occupied system follows a bottom-up thermalization

« Radiations dominate the energy cascade

» Hydrodynamic Attractor at zero and finite charge density.
» Ineffectiveness of quarks in isotropization / equilibration

* Universal attractor towards hydrodynamics
« Validation of hydrodynamics ~ kinetic equilibration time << isotropization time

« Realistic matching to hydrodynamics at finite density by fixing certain scales
(entropy, baryon density, etc..)

Thank you!
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