Conformal limits of parabolic Higgs bundles

Richard A. Wentworth (with B. Collier and L. Fredrickson)

Vortex Moduli Bengaluru, 06-17 February, 2023

- $C = \text{compact Riemann surface of genus } g \ge 2.$
- \mathcal{N} = moduli of stable holomorphic SL(*n*) bundles on *C*.
- \mathcal{M}_{Dol} = moduli of stable holomorphic SL(*n*) Higgs bundles.
- \mathcal{M}_{dR} = moduli of irreducible flat SL(n) connections.

Nonabelian Hodge correspondence:

This diagram *does not commute*.

There is a commuting diagram:

The conformal limit extends this map (almost) everywhere:

$$\mathcal{M}_{Dol} \xrightarrow{----} \mathcal{M}_{dR}$$

It is *not continuous*, but interchanges two natural stratifications.

• The closed strata in \mathcal{M}_{Dol} are the *Hitchin components*.

• The closed strata in \mathcal{M}_{dR} are the *Opers*.

Conjecture (Gaiotto '14) – **Theorem** (Dumitrescu, Fredrickson, Kydonakis, Mazzeo, Mulase, Neitzke '16).

On a Hitchin component, the conformal limit exists and gives a biholomorphism between Hitchin components and components of the Opers.

Theorem (Collier, W. '18)

The conformal limit exists for almost all Higgs bundles and gives a biholomorphism between fibers of the BB stratifications in \mathcal{M}_{Dol} and \mathcal{M}_{dR} (Simpson).

- Higgs bundle: $(\bar{\partial}_E, \Phi), \Phi \in \Omega^{1,0}(\mathfrak{sl}_E), \bar{\partial}_E \Phi = 0.$
- Flat connection: $D = \overline{\partial}_V + \nabla$, $[\overline{\partial}_V, \nabla] = 0$.

$$\nabla: V \longrightarrow V \otimes K_C$$

► *NAH*: (assume stability) there is a *harmonic* metric *h* such that:

$$\bar{\partial}_V = \bar{\partial}_E + \Phi^{*_h} \quad , \quad \nabla = \partial^h_E + \Phi$$

In this case: D_ξ = ∂̄_E + ∂^h_E + ξ⁻¹Φ + ξΦ^{*h} is **flat** for all ξ ∈ C^{*}.
 Twistor space:

• There is a \mathbb{C}^* action on \mathcal{M}_{Dol} :

$$\lambda \cdot [(\bar{\partial}_E, \Phi)] = [(\bar{\partial}_E, \lambda \Phi)]$$

- Limits $\lim_{\lambda \to 0} \lambda \cdot [(\bar{\partial}_E, \Phi)]$ always exist in \mathcal{M}_{Dol} .[†]
- ► The fixed points are called *Hodge bundles*.
- ► The C*-action extends to one on M_{Hod} covering the usual action on C.

[†]or rather, in the completion by semistable Higgs bundles

• A Hodge bundle is a split Higgs bundle $E = E_1 \oplus \cdots \oplus E_\ell$: $\bar{\partial}_E = \bar{\partial}_{E_1} \oplus \cdots \oplus \bar{\partial}_{E_\ell} \quad , \quad \Phi : E_i \to E_{i+1} \otimes K_C$

• A filtration $V_{\bullet}: 0 \subset V_1 \subset \cdots \subset V_{\ell} = V$ on $(\bar{\partial}_V, \nabla)$ is called *Griffiths transverse* if:

$$\nabla: V_i \to V_{i+1} \otimes K_C$$

• Given a Griffiths transverse filtration we get a Hodge bundle:

$$E = \operatorname{Gr}(V_{\bullet}) \quad , \quad \Phi = \nabla : V_i/V_{i-1} \to (V_{i+1}/V_i) \otimes K_C$$

Theorem (Simpson). For any $(\bar{\partial}_V, \nabla)$ there is a Griffiths transverse filtration such that the associated Hodge bundle is semistable, and it is unique if the Hodge bundle is stable.

One can show that in \mathcal{M}_{Hod} ,

$$\lim_{\lambda \to 0} [(\bar{\partial}_V, \nabla)] = [(\bar{\partial}_E, \Phi)]$$

where $\bar{\partial}_E$ corresponds to $\operatorname{Gr}(V_{\bullet})$ and Φ to ∇ .

Example.

► Hodge bundle:

$$E = K_C^{-(n-1)/2} \oplus \cdots \oplus K_C^{(n-1)/2}$$
$$\Phi : K_C^j \to K_C \otimes K_C^{j-1} \text{ is the identity}$$

• Uniformizing Oper: $V = J^{n-1}(K_C^{-(n-1)/2})$. The connection ∇ comes from the Fuchsian projective structure on *C*.

• Then: (E, Φ) is obtained from the associated graded of (V, ∇) .

Stratifications: Fix a Hodge bundle $(\bar{\partial}_0, \Phi_0)$.

$$\blacktriangleright W^0(\bar{\partial}_0, \Phi_0) := \{ [(\bar{\partial}_E, \Phi)] \in \mathcal{M}_{Dol} \mid \lim_{\lambda \to 0} [(\bar{\partial}_E, \Phi)] = [(\bar{\partial}_0, \Phi_0)] \}$$

$$\blacktriangleright W^1(\bar{\partial}_0, \Phi_0) := \{ [(\bar{\partial}_V, \nabla)] \in \mathcal{M}_{dR} \mid \lim_{\lambda \to 0} [(\bar{\partial}_V, \nabla)] = [(\bar{\partial}_0, \Phi_0)] \}$$

• Fact. NAH does *not* take $W^0(\bar{\partial}_0, \Phi_0)$ to $W^1(\bar{\partial}_0, \Phi_0)$.

Gaiotto: Combine the \mathbb{C}^* action with the twistor line:

$$\bar{\partial}_E + \partial_E^{h_R} + \xi^{-1} R \Phi + \xi R \Phi^{*h_R}$$

and keep the ratio $\xi R^{-1} = \hbar$ fixed.

$$D_{R,\hbar} = ar{\partial}_E + \partial_E^{h_R} + \hbar^{-1}\Phi + \hbar R^2 \Phi^{*_{h_R}}$$

The limit $\lim_{R\to 0} D_{R,\hbar}$ (if it exists) is called the \hbar -conformal limit.*

Theorem (CW '18). If $\lim_{\lambda\to 0} \lambda \cdot [(\bar{\partial}_E, \Phi)] = (\bar{\partial}_0, \Phi_0)$ is a stable Hodge bundle, then the conformal limit exists and lies in $W^1(\bar{\partial}_0, \Phi_0)$. Moreover, this gives a biholomorphism $W^0(\bar{\partial}_0, \Phi_0) \xrightarrow{\sim} W^1(\bar{\partial}_0, \Phi_0)$.

^{*}from now on $\hbar = 1$

- The conformal limit is easy to describe it comes from a certain gauge fixing.
- Given a Higgs bundle $(\bar{\partial}_E, \Phi)$ with harmonic metric *h* and associated flat connection D = D'' + D' from NAH,

$$D'' = \bar{\partial}_E + \Phi \quad , \quad D' = \partial^h_E + \Phi^{*_h}$$

• Consider the pair of equations:

$$(eta, arphi) \in \Omega^{0,1}(\mathfrak{sl}_E) \oplus \Omega^{1,0}(\mathfrak{sl}_E) \quad, \quad egin{cases} D''(eta, arphi) + [eta, arphi] = 0 \ D'(eta, arphi) = 0 \end{cases}$$

The first says $(\bar{\partial}_E + \beta, \Phi + \varphi)$ is another Higgs bundle, and the second is a natural gauge fixing condition.

- If $(\bar{\partial}_E, \Phi)$ is stable, these equations define a *slice*: $S(\bar{\partial}_E, \Phi)$.
- Notice that $D + \beta + \varphi$ is again flat!

- Now suppose $E = E_1 \oplus \cdots \oplus E_\ell$, $\Phi : E_i \to E_{i+1} \otimes K_C$, is a Hodge bundle.
- Taking (β, φ) to be upper triangular with respect to this splitting defines a *subslice* S⁺(∂̄_E, Φ).
- One can show that $S^+(\bar{\partial}_E, \Phi)$ is biholomorphic to the BB-fiber over $(\bar{\partial}_E, \Phi)$.
- Moreover, for (β, φ) ∈ S⁺(∂̄_E, Φ), the conformal limit of the point (∂̄_E + β, Φ + φ) is D + β + φ.
- ► To *prove* this is the conformal limit, one needs a singular perturbation argument to relate *h*_{*R*} to the harmonic metric of the Hodge bundle (see [DFKMMN]).

- Gaiotto's original conjecture (part of it) was in the context of Higgs bundles with *parabolic structure*: $D = p_1 + \cdots + p_d$, consisting of:
 - a flag in $E_p, p \in D$;
 - weights $\alpha(p), 0 \leq \alpha_1 < \cdots < \alpha_{\ell(p)} < 1;$
 - Higgs field $\Phi \in H^0(C, \operatorname{End}(E) \otimes K_C(D));$
 - $\operatorname{res}_p \Phi$ preserves the flag for each $p \in D$.
- Simpson '90 proves the NAH in this case as well, where the correspondence is with logarithmic connections:

$$\nabla: V \longrightarrow V \otimes K_C(D)$$

► V has a parabolic structure (filtered) at D, and res(∇) preserves the flags.

- $(\bar{\partial}_E, \Phi)$ is *strongly parabolic* if res Φ is strictly upper triangular with respect to the flag structure.
- Assumption. *Either* strongly parabolic *or* full flags.
- Extended moduli space of parabolic Higgs bundles (see Yokogawa, Logares-Martens):

eigres :
$$\mathcal{M}_{Dol}^{par}(\alpha) \longrightarrow \prod_{p \in D} \mathfrak{l}_p$$

Here, $l_p \simeq$ traceless diagonal matrices.

- eigres⁻¹(0) is the strongly parabolic locus.
- We give a gauge theoretic construction of the moduli space (as a complex manifold) using weighted Sobolev spaces and Lockhart-McOwen analysis (Taubes, Mrowka, Matić, Biquard, Daskalopoulos-W., Konno, Nakajima, Biquard-Boalch, ...).

- Model connection: $d_{A_0} = d + i\alpha d\theta$, $\alpha = \text{diag}(\alpha_1, \dots, \alpha_\ell)$.
- Sobolev spaces $L^2_{k,\delta}$ with weight $e^{\tau\delta}$.
- $0 < \delta$ is chosen small depending on weights α .
- Connections are of the form $d_A = d_{A_0} + a$, $a \in L^2_{1,\delta}$.

- Admissible Higgs fields: $\Phi \in L^2_{1,-\delta}$ with $\bar{\partial}_{A_0} \Phi \in L^2_{\delta}$.
- Then $(\bar{\partial}_A, \Phi)$ defines a parabolic Higgs bundle with eigres (Φ) possibly nonzero.
- Technical point. Need to control $[\Phi_1, \Phi_2^*]$. This is *not* a priori in L^2_{δ} , but it is *under* the assumption of full flags.
- The same method gives a construction of $\mathcal{M}_{dR}^{par}(\alpha)$, consisting of logarithmic connections with residues preserving flags.

Theorem (Collier-Fredrickson-W.) Assume either *strongly parabolic or full flags*. Then:

- the conformal limit exists under the same assumptions as in the closed surface case;
- it gives biholomorphisms between BB-strata in $\mathcal{M}_{Dol}^{par}(\alpha)$ and $\mathcal{M}_{dR}^{par}(\alpha)$.

Simpson's table:

NAH	$(\bar{\partial}_E, \Phi)$	$(\bar{\partial}_V, abla)$	D
jump	α	$\alpha - 2b$	-2b
eigenvalue	b + ic	$\alpha + 2ic$	$\exp(-2\pi i\alpha + 4\pi c)$

Conformal limit table:

CL	$(\bar{\partial}_E, \Phi)$	$(ar{\partial}_V, abla)$	D
jump	α	α	-b
eigenvalue	b+ic	$\alpha + b + ic$	$\exp(-2\pi i(\alpha + b + ic))$

Thanks Sushmita & Nuno!!!