Conformal limits of parabolic Higgs bundles

Richard A. Wentworth (with B. Collier and L. Fredrickson)
(4) MNIVERSity OF

Vortex Moduli
Bengaluru, 06-17 February, 2023

MAX PLANCK INSTITUTE
FOR MATHEMATICS

- $C=$ compact Riemann surface of genus $g \geq 2$.
$-\mathcal{N}=$ moduli of stable holomorphic $\mathrm{SL}(n)$ bundles on C.
- $\mathcal{M}_{\text {Dol }}=$ moduli of stable holomorphic SL (n) Higgs bundles.
- $\mathcal{M}_{d R}=$ moduli of irreducible flat $\mathrm{SL}(n)$ connections.

Nonabelian Hodge correspondence:

This diagram does not commute.

There is a commuting diagram:

The conformal limit extends this map (almost) everywhere:

$$
\mathcal{M}_{D o l}--\overline{C L}->\mathcal{M}_{d R}
$$

It is not continuous, but interchanges two natural stratifications.

- The closed strata in $\mathcal{M}_{\text {Dol }}$ are the Hitchin components.
- The closed strata in $\mathcal{M}_{d R}$ are the Opers.

Conjecture (Gaiotto '14) - Theorem (Dumitrescu, Fredrickson, Kydonakis, Mazzeo, Mulase, Neitzke '16).

On a Hitchin component, the conformal limit exists and gives a biholomorphism between Hitchin components and components of the Opers.

Theorem (Collier, W. '18)
The conformal limit exists for almost all Higgs bundles and gives a biholomorphism between fibers of the BB stratifications in $\mathcal{M}_{\text {Dol }}$ and $\mathcal{M}_{\text {dR }}$ (Simpson) .

- Higgs bundle: $\left(\bar{\partial}_{E}, \Phi\right), \Phi \in \Omega^{1,0}\left(\mathfrak{s l}_{E}\right), \bar{\partial}_{E} \Phi=0$.
- Flat connection: $D=\bar{\partial}_{V}+\nabla,\left[\bar{\partial}_{V}, \nabla\right]=0$.

$$
\nabla: V \longrightarrow V \otimes K_{C}
$$

- NAH: (assume stability) there is a harmonic metric h such that:

$$
\bar{\partial}_{V}=\bar{\partial}_{E}+\Phi^{* h} \quad, \quad \nabla=\partial_{E}^{h}+\Phi
$$

- In this case: $D_{\xi}=\bar{\partial}_{E}+\partial_{E}^{h}+\xi^{-1} \Phi+\xi \Phi^{* h}$ is flat for all $\xi \in \mathbb{C}^{*}$.
- Twistor space:

- There is a \mathbb{C}^{*} action on $\mathcal{M}_{\text {Dol }}$:

$$
\lambda \cdot\left[\left(\bar{\partial}_{E}, \Phi\right)\right]=\left[\left(\bar{\partial}_{E}, \lambda \Phi\right)\right]
$$

- Limits $\lim _{\lambda \rightarrow 0} \lambda \cdot\left[\left(\bar{\partial}_{E}, \Phi\right)\right]$ always exist in $\mathcal{M}_{\text {Dol }}{ }^{\dagger}$
- The fixed points are called Hodge bundles.
- The \mathbb{C}^{*}-action extends to one on $\mathcal{M}_{\text {Hod }}$ covering the usual action on \mathbb{C}.

[^0]- A Hodge bundle is a split Higgs bundle $E=E_{1} \oplus \cdots \oplus E_{\ell}$:

$$
\bar{\partial}_{E}=\bar{\partial}_{E_{1}} \oplus \cdots \oplus \bar{\partial}_{E_{\ell}} \quad, \quad \Phi: E_{i} \rightarrow E_{i+1} \otimes K_{C}
$$

- A filtration $V_{\bullet}: 0 \subset V_{1} \subset \cdots \subset V_{\ell}=V$ on $\left(\bar{\partial}_{V}, \nabla\right)$ is called Griffiths transverse if:

$$
\nabla: V_{i} \rightarrow V_{i+1} \otimes K_{C}
$$

- Given a Griffiths transverse filtration we get a Hodge bundle:

$$
E=\operatorname{Gr}\left(V_{\bullet}\right) \quad, \quad \Phi=\nabla: V_{i} / V_{i-1} \rightarrow\left(V_{i+1} / V_{i}\right) \otimes K_{C}
$$

Theorem (Simpson). For any $\left(\bar{\partial}_{V}, \nabla\right)$ there is a Griffiths transverse filtration such that the associated Hodge bundle is semistable, and it is unique if the Hodge bundle is stable.

One can show that in $\mathcal{M}_{\text {Hod }}$,

$$
\lim _{\lambda \rightarrow 0}\left[\left(\bar{\partial}_{V}, \nabla\right)\right]=\left[\left(\bar{\partial}_{E}, \Phi\right)\right]
$$

where $\bar{\partial}_{E}$ corresponds to $\operatorname{Gr}\left(V_{\bullet}\right)$ and Φ to ∇.

Example.

- Hodge bundle:

$$
\begin{aligned}
& E=K_{C}^{-(n-1) / 2} \oplus \cdots \oplus K_{C}^{(n-1) / 2} \\
& \Phi: K_{C}^{j} \rightarrow K_{C} \otimes K_{C}^{j-1} \text { is the identity }
\end{aligned}
$$

- Uniformizing Oper: $V=J^{n-1}\left(K_{C}^{-(n-1) / 2}\right)$. The connection ∇ comes from the Fuchsian projective structure on C.
- Then: (E, Φ) is obtained from the associated graded of (V, ∇).

Stratifications: Fix a Hodge bundle $\left(\bar{\partial}_{0}, \Phi_{0}\right)$.

- $W^{0}\left(\bar{\partial}_{0}, \Phi_{0}\right):=\left\{\left[\left(\bar{\partial}_{E}, \Phi\right)\right] \in \mathcal{M}_{\text {Dol }} \mid \lim _{\lambda \rightarrow 0}\left[\left(\bar{\partial}_{E}, \Phi\right)\right]=\left[\left(\bar{\partial}_{0}, \Phi_{0}\right)\right]\right\}$
- $W^{1}\left(\bar{\partial}_{0}, \Phi_{0}\right):=\left\{\left[\left(\bar{\partial}_{V}, \nabla\right)\right] \in \mathcal{M}_{d R} \mid \lim _{\lambda \rightarrow 0}\left[\left(\bar{\partial}_{V}, \nabla\right)\right]=\left[\left(\bar{\partial}_{0}, \Phi_{0}\right)\right]\right\}$
- Fact. NAH does not take $W^{0}\left(\bar{\partial}_{0}, \Phi_{0}\right)$ to $W^{1}\left(\bar{\partial}_{0}, \Phi_{0}\right)$.

Gaiotto: Combine the \mathbb{C}^{*} action with the twistor line:

$$
\bar{\partial}_{E}+\partial_{E}^{h_{R}}+\xi^{-1} R \Phi+\xi R \Phi^{*_{h_{R}}}
$$

and keep the ratio $\xi R^{-1}=\hbar$ fixed .

$$
D_{R, \hbar}=\bar{\partial}_{E}+\partial_{E}^{h_{R}}+\hbar^{-1} \Phi+\hbar R^{2} \Phi^{*_{h_{R}}}
$$

The limit $\lim _{R \rightarrow 0} D_{R, \hbar}$ (if it exists) is called the \hbar-conformal limit.*
Theorem (CW '18). If $\lim _{\lambda \rightarrow 0} \lambda \cdot\left[\left(\bar{\partial}_{E}, \Phi\right)\right]=\left(\bar{\partial}_{0}, \Phi_{0}\right)$ is a stable Hodge bundle, then the conformal limit exists and lies in $W^{1}\left(\bar{\partial}_{0}, \Phi_{0}\right)$.
Moreover, this gives a biholomorphism $W^{0}\left(\bar{\partial}_{0}, \Phi_{0}\right) \xrightarrow{\sim} W^{1}\left(\bar{\partial}_{0}, \Phi_{0}\right)$.

- The conformal limit is easy to describe - it comes from a certain gauge fixing.
- Given a Higgs bundle $\left(\bar{\partial}_{E}, \Phi\right)$ with harmonic metric h and associated flat connection $D=D^{\prime \prime}+D^{\prime}$ from NAH,

$$
D^{\prime \prime}=\bar{\partial}_{E}+\Phi \quad, \quad D^{\prime}=\partial_{E}^{h}+\Phi^{*_{h}}
$$

- Consider the pair of equations:

$$
(\beta, \varphi) \in \Omega^{0,1}\left(\mathfrak{s l}_{E}\right) \oplus \Omega^{1,0}\left(\mathfrak{s l}_{E}\right) \quad, \quad\left\{\begin{array}{l}
D^{\prime \prime}(\beta, \varphi)+[\beta, \varphi]=0 \\
D^{\prime}(\beta, \varphi)=0
\end{array}\right.
$$

The first says ($\bar{\partial}_{E}+\beta, \Phi+\varphi$) is another Higgs bundle, and the second is a natural gauge fixing condition.

- If $\left(\bar{\partial}_{E}, \Phi\right)$ is stable, these equations define a slice: $\mathcal{S}\left(\bar{\partial}_{E}, \Phi\right)$.
- Notice that $D+\beta+\varphi$ is again flat!
- Now suppose $E=E_{1} \oplus \cdots \oplus E_{\ell}, \Phi: E_{i} \rightarrow E_{i+1} \otimes K_{C}$, is a Hodge bundle.
- Taking (β, φ) to be upper triangular with respect to this splitting defines a subslice $\mathcal{S}^{+}\left(\bar{\partial}_{E}, \Phi\right)$.
- One can show that $\mathcal{S}^{+}\left(\bar{\partial}_{E}, \Phi\right)$ is biholomorphic to the BB-fiber over $\left(\bar{\partial}_{E}, \Phi\right)$.
- Moreover, for $(\beta, \varphi) \in \mathcal{S}^{+}\left(\bar{\partial}_{E}, \Phi\right)$, the conformal limit of the point $\left(\bar{\partial}_{E}+\beta, \Phi+\varphi\right)$ is $D+\beta+\varphi$.
- To prove this is the conformal limit, one needs a singular perturbation argument to relate h_{R} to the harmonic metric of the Hodge bundle (see [DFKMMN]).
- Gaiotto's original conjecture (part of it) was in the context of Higgs bundles with parabolic structure: $D=p_{1}+\cdots+p_{d}$, consisting of:
- a flag in $E_{p}, p \in D$;
- weights $\alpha(p), 0 \leq \alpha_{1}<\cdots<\alpha_{\ell(p)}<1$;
- Higgs field $\Phi \in H^{0}\left(C, \operatorname{End}(E) \otimes K_{C}(D)\right)$;
- $\operatorname{res}_{p} \Phi$ preserves the flag for each $p \in D$.
- Simpson '90 proves the NAH in this case as well, where the correspondence is with logarithmic connections:

$$
\nabla: V \longrightarrow V \otimes K_{C}(D)
$$

- V has a parabolic structure (filtered) at D, and $\operatorname{res}(\nabla)$ preserves the flags.
- $\left(\bar{\partial}_{E}, \Phi\right)$ is strongly parabolic if res Φ is strictly upper triangular with respect to the flag structure.
- Assumption. Either strongly parabolic or full flags.
- Extended moduli space of parabolic Higgs bundles (see Yokogawa, Logares-Martens):

$$
\text { eigres : } \mathcal{M}_{D o l}^{\text {par }}(\alpha) \longrightarrow \prod_{p \in D} \mathfrak{r}_{p}
$$

Here, $\mathfrak{l}_{p} \simeq$ traceless diagonal matrices.

- eigres $^{-1}(0)$ is the strongly parabolic locus.
- We give a gauge theoretic construction of the moduli space (as a complex manifold) using weighted Sobolev spaces and Lockhart-McOwen analysis (Taubes, Mrowka, Matić, Biquard, Daskalopoulos-W., Konno, Nakajima, Biquard-Boalch, ...).

- Model connection: $d_{A_{0}}=d+i \alpha d \theta, \alpha=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$.
- Sobolev spaces $L_{k, \delta}^{2}$ with weight $e^{\tau \delta}$.
- $\quad 0<\delta$ is chosen small depending on weights α.
- Connections are of the form $d_{A}=d_{A_{0}}+a, a \in L_{1, \delta}^{2}$.
- Admissible Higgs fields: $\Phi \in L_{1,-\delta}^{2}$ with $\bar{\partial}_{A_{0}} \Phi \in L_{\delta}^{2}$.
- Then $\left(\bar{\partial}_{A}, \Phi\right)$ defines a parabolic Higgs bundle with eigres (Φ) possibly nonzero.
- Technical point. Need to control $\left[\Phi_{1}, \Phi_{2}^{*}\right]$. This is not a priori in L_{δ}^{2}, but it is under the assumption of full flags.
- The same method gives a construction of $\mathcal{M}_{d R}^{p a r}(\alpha)$, consisting of logarithmic connections with residues preserving flags.

Theorem (Collier-Fredrickson-W.) Assume either strongly parabolic or full flags. Then:

- the conformal limit exists under the same assumptions as in the closed surface case;
- it gives biholomorphisms between BB-strata in $\mathcal{M}_{\text {Dol }}^{\text {par }}(\alpha)$ and $\mathcal{M}_{d R}^{\text {par }}(\alpha)$.

Simpson's table:

NAH	$\left(\bar{\partial}_{E}, \Phi\right)$	$\left(\bar{\partial}_{V}, \nabla\right)$	D
jump	α	$\alpha-2 b$	$-2 b$
eigenvalue	$b+i c$	$\alpha+2 i c$	$\exp (-2 \pi i \alpha+4 \pi c)$

Conformal limit table:

CL	$\left(\bar{\partial}_{E}, \Phi\right)$	$\left(\bar{\partial}_{V}, \nabla\right)$	D
jump	α	α	$-b$
eigenvalue	$b+i c$	$\alpha+b+i c$	$\exp (-2 \pi i(\alpha+b+i c))$

Thanks Sushmita \& Nuno!!!

[^0]: ${ }^{\dagger}$ or rather, in the completion by semistable Higgs bundles

