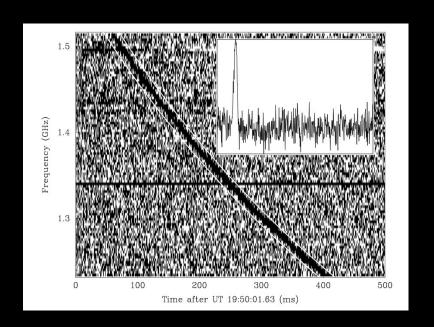
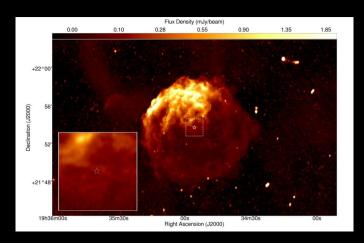
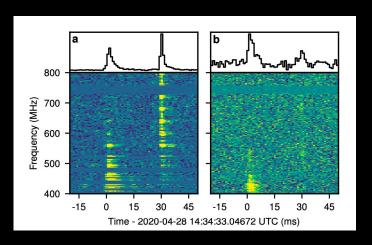
Testing the Young FRB Progenitor Hypothesis: A Crossmatch of Catalog-1 CHIME Bursts with Historical Local Universe Supernovae


Alice (Wanqing) Liu

Supervisor: Dr. Mohit Bhardwaj
Department of Physics, Carnegie Mellon University


Fast Radio Burst (FRB)


- Intense burst of radio waves of millisecond duration
- Originated from extragalactic
 Sources (> 1 Mpc)
- First reported in 2007 [1]
- As of today, astronomers have detected over 1,000 frbs
- Origin still unknown!
- The most promising potential origin of FRB: young magnetar

Observations

- 1. FRB-like emission detected from a known magnetar formed from core-collapse supernova (SGR 1935+2154)
- 2. Host galaxies where FRBs were formed are mostly star-forming galaxies
- 3. Several FRB models [1] propose that **young** (< 1000 yrs) and highly magnetized neutron stars can produce FRBs

Hypothesis

Young magnetars formed from core-collapse supernovae are sources of FRBs

Methodology:

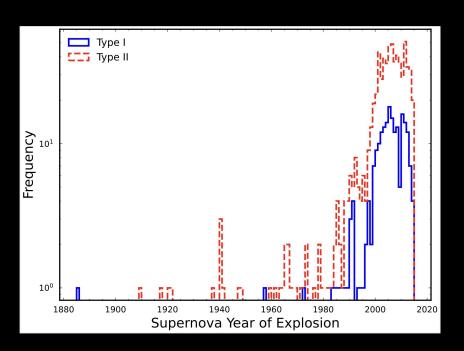
cross matching catalog-1 CHIME FRBs with type II and type I core-collapse historical supernovae.

Canadian Hydrogen Intensity Mapping Experiment (CHIME)

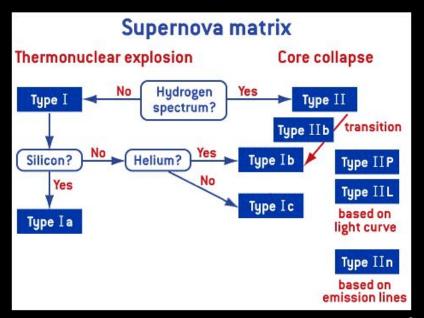
- A transient telescope for FRBs
- Area: 800 m²
- Field of view: ~ 200 deg²
- Surveying the northern sky in the 400–800
 MHz band

Catalog-1: 474 non-repeating FRBs

128 baseband Localization


2 side-lobes FRBs localization

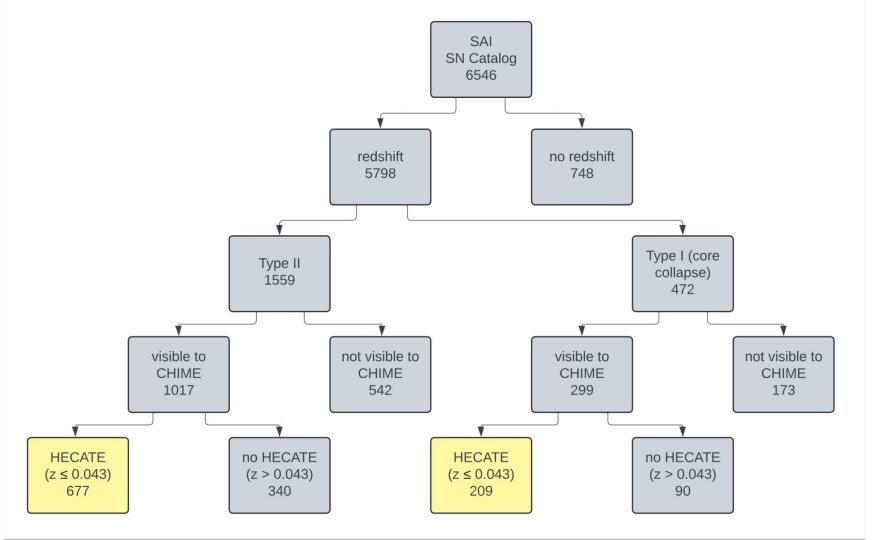
344 header localization



SAI Supernova Catalog

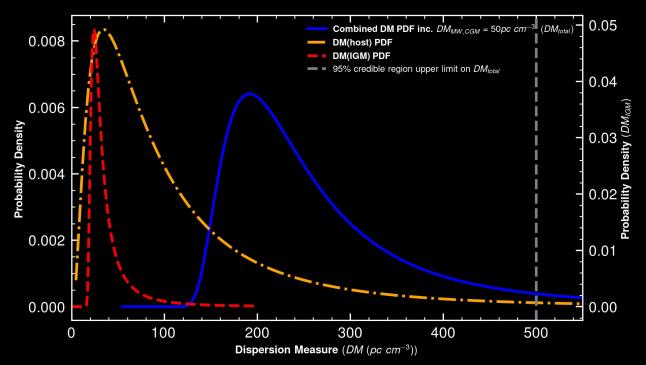
6546 pre-2014 Supernovae in total

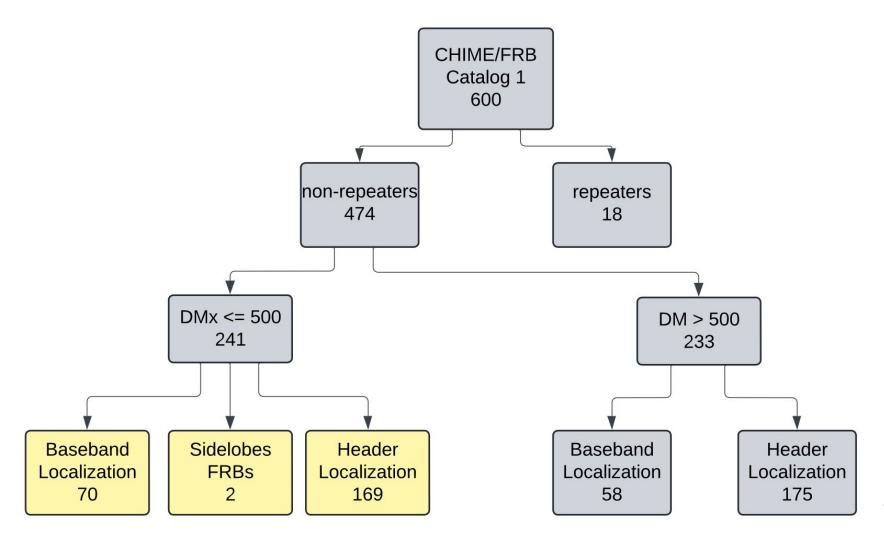
Include only **Type II** and **Type I** core-collapse SNe

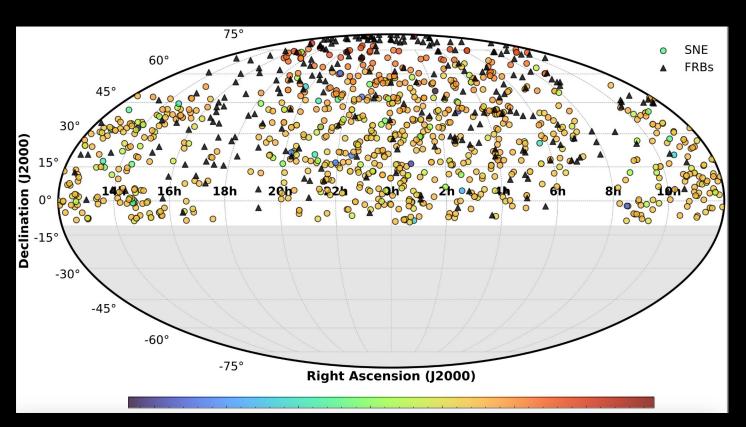

Criteria for Data Sampling

SNe:

- Redshift existence in SAI catalog
- Type II and Type I core-collapse SNe
- Visibility to CHIME
- Host Galaxy properties detectability by HECATE Catalog
- Redshift ≤ 0.043 (200 Mpc)


FRB:


- Repeater vs. Non-repeater
- Excess DM ≤ 500 pc cm⁻³
- Baseband Localization
- Sidelobes FRBs Localization (2)
- Header Localization


DM Estimation

CHIME Catalog-1: $DM_{excess} = DM_{host} + DM_{IGM} + DM(MW,CGM)$ A distance of \leq 200 Mpc corresponds to an $DM_{excess} \leq$ 500 pc cm⁻³

Sky distribution Map

886 supernovae with host galaxy properties from HECATE

241 FRBs with DM excess less than 500 pc cm⁻³

Result

FRB 20190204A & SN 2003la

FRB 20190218B & SN 2014ay

FRB 20190412B & SN 2009gi

FRB 20190414B & SN 2001ab

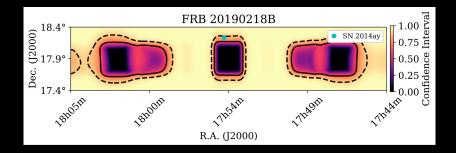
only plausible pair: based on host DM estimated using scattering timescale

Scattering Time → DM_{excess}

Using scattering time τ to place an upper limit on the host-galaxy DM (DM_{host, τ}) [6] \rightarrow combine with the Milky-Way halo DM (50 pc cm⁻³) and the IGM contribution at the supernova redshift

$$\mathrm{DM}_{\mathrm{excess}} \lesssim \mathrm{DM}_{\mathrm{MW,halo}} + \mathrm{DM}_{\mathrm{IGM}} + \mathrm{DM}_{\mathrm{host},\tau,\mathrm{max}}$$

Only FRB 20190412B satisfies this inequality

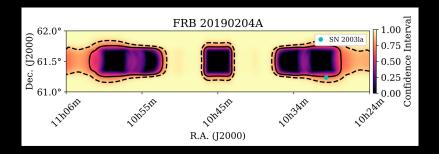

(if SN 2009gi is assumed to be associated with the FRB)

FRB20190204A

DM: 449.639 pc cm⁻³
 Excess DM: 423.3

• Scattering Timescale: 0.0008(2) s

redshift: 0.031

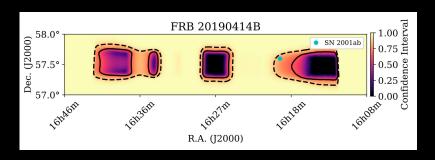

FRB20190414B

• DM: 506.489 pc cm⁻³

• Excess DM: 475.8

• Scattering Timescale: <0.0058 s

redshift: 0.017


FRB20190218B

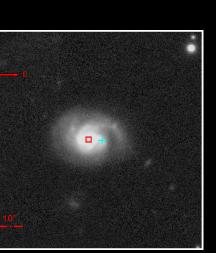
DM: 547.9 pc cm⁻³

Excess DM: 466

Scattering Timescale: 0.014(2) s

redshift: 0.011

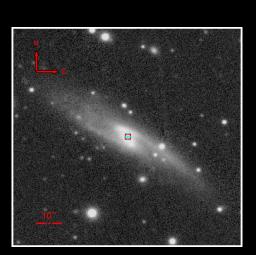
SN 2003la


SN 2014ay

SN 2001ab

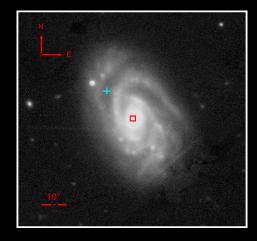
• SN_redshift: 0.031

Type: II

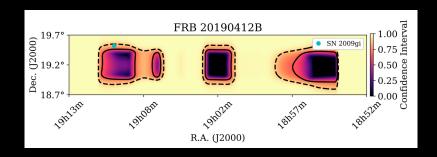

Exposure: 21.5 h

SN_redshift: 0.011

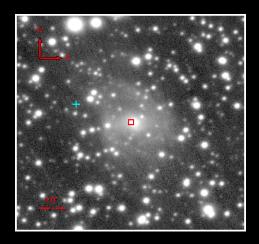
Type: II


• Exposure: 15.6 h

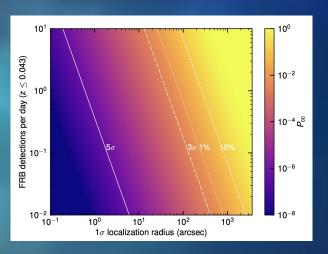
SN redshift: 0.017


Type: II

• Exposure: 29.6 h


FRB20190412B

- DM: 375.75 pc cm⁻³
- **Excess DM: 110.1** pc cm⁻³
- Scattering Timescale: 0.015(3) s
- redshift: 0.013

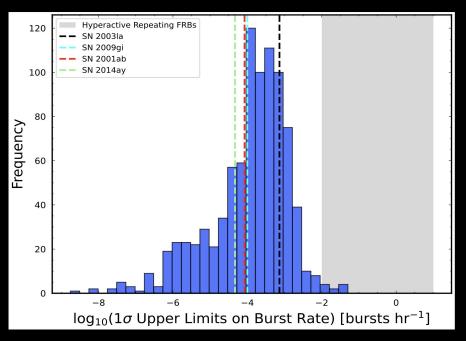

SN 2009gi

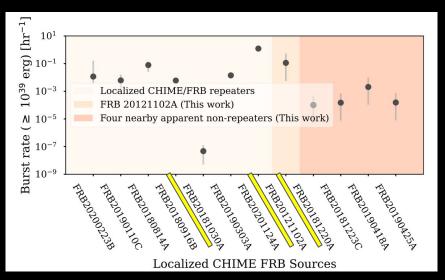
- Host Galaxy offset: 6.3 kpc
- SN_redshift: 0.013
- Type: IIb
- Exposure: 14.4 h
- Stellar mass: 10.62 log 10 (M/M ☉)
- Inclination angle: 62.8

Chance Association

- 886 pseudo-supernovae (RA and DEC) visible to CHIME
- Randomly sampled & Uniformly distributed
- Cross-matching 10,000 times
 - Baseband Localization
 - two Sidelobes FRBs
 - Healpix Map (Header Localization)

Pcc $(k \ge 4) = 0.966$ (at least four coincidences happened in 96.6% of the trials)

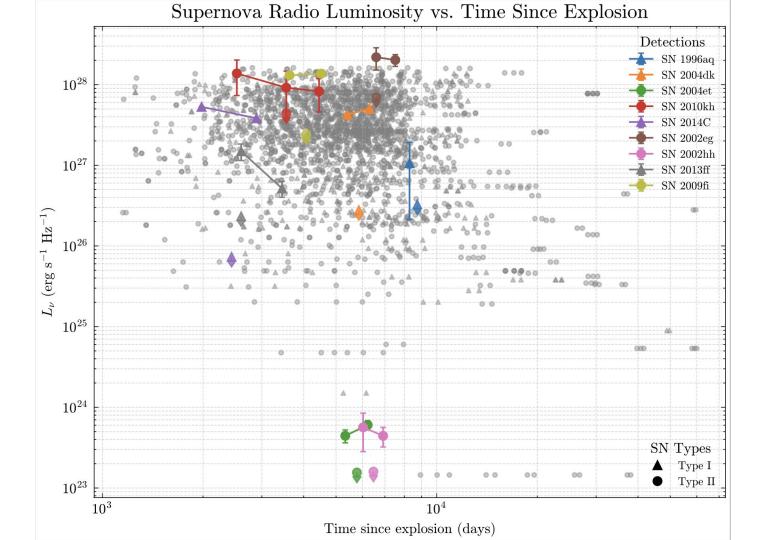

Free-free Optical Depth Constraint


- The dense SN ejecta could significantly impact the observability of FRBs
- Low-frequency radio waves (FRBs) suffer free-free absorption while escaping
- As the ejecta expands and thins, FRBs become more observable
- Define a free-free transparency timescale $t_{\rm ff}$ = time till the free-free optical depth $\tau_{\rm ff}$ = 1 (FRBs are absorbed and cannot escape)
 - Type lb/lc: ~26 years
 - Type IIP: ~91 years
- Real ejecta isn't smooth → create low-density paths → FRBs could escape earlier
- Implications of early FRB detections
 - Suggest unusual explosion conditions
 - Point to jet-like outflows, ionizing central engines, or ultra-sripped progenitors
- FRB 20190412B-SN 2009gi remain plausible

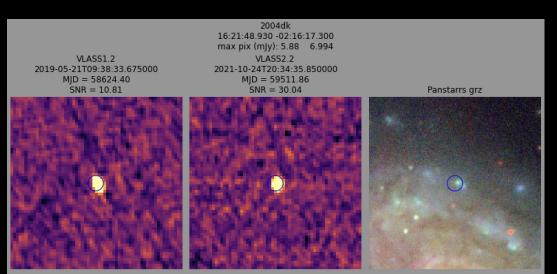
Burst Rate Estimation

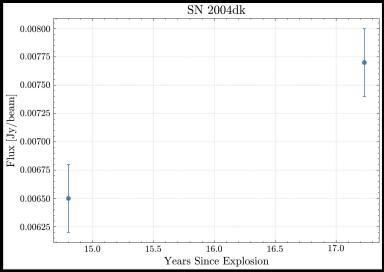
The one sigma (poisson) upper limit of burst rate estimation of 886 supernovae

Hyperactive FRB: ~1 event / h (at max) at 1039 erg



Search for Counter Radio Emission (VLASS)


- Motivation: Young magnetars are also known to have radio counterpart
- Purpose: Identify and report new discoveries of radio counterparts to further test the young neutron stars hypothesis of FRBs


- Database: CHIME-visible core-collapse supernovae in SAI catalog (886)
- None of the 4 detections are radio sources
- Found 9 detections
 - → 4 type I, 5 type II

For each source, we will analyze:

- Observed Variability
- Evidence of Persistent Emission
- Supernova Age and Relevance
- Comparison to Expected Radio SN Behavior

SN 2004dk

Type Ib

Off-centered

→ transient (monotonic rising)

Conclusions

- We found 4 detections, one indicates a plausible association.
- Pcc is very large.
- If hyperactive FRBs are located at the site the supernova, CHIME should have detected it.
- Free-free Absorption might be a factor for high chance association
- Future Work: Assuming null FRB-SNe association, we can constrain our evolution of magnetar as FRB source activity with time

Extra slide

- remove DM constraint only:
 - o 7 more detection pairs
- remove HECATE constraint only:
 - 3 more detection pairs
- DM cut-off at excess DM = 450
 - 2 detections pairs

References

1] Kshitji Aggarwal Yunpeng Men. "Non-detection of fast radio bursts from six gamma-ray burst remnants with possible magnetar engines". In: Monthly Notices of the Royal Astronomical Society 489 (3 2019), pp. 3643–3647.

https://academic.oup.com/mnras/article/489/3/3643/5556542

- [2] https://science.howstuffworks.com/supernova4.htm
- [3] HECATE Catalog. https://hecate.ia.forth.gr/catalog.php
- [4] Margalit, Ben; Metzger, Brian D. "A Concordance Picture of FRB 121102 as a Flaring Magnetar Embedded in a Magnetized Ion-Electron Wind Nebula". In: The Astrophysical Journal Letters, Volume 868, Issue 1, article id. L4, 7 pp. (2018).
- https://ui.adsabs.harvard.edu/abs/2018ApJ...868L...4M/abstract
- [5] The Canadian Hydrogen Intensity Mapping Experiment.
- "https://chime-experiment.ca/en.
- [6] Cordes, J. M., Ocker, S. K., & Chatterjee, S. 2022, ApJ, 931, 88, doi:
- 10.3847/1538-4357/ac6873