

Semiclassical kinetic theory of integrable systems ICTS Discussion Meeting, Bengaluru, India

Vir B. Bulchandani

Princeton Center for Theoretical Sciences, Princeton NJ, USA

September 8, 2021

Collaborators

Main focus will be recent work (arXiv 2107.06157) on Calogero models with

- Xiangyu Cao (ENS)
- Manas Kulkarni (ICTS)
- Joel E. Moore (Berkeley)

Other collaborators on one-dimensional hydrodynamics:

- Christoph Karrasch (TU Braunschweig)
- Romain Vasseur (UMass)
- Herbert Spohn (TUM)

Motivations

- Understand how external trapping potentials "weakly" break integrability
- ► Apply recent advances in hydrodynamics of quantum integrable systems to model *classical* integrable systems
- Resulting notion of classical quasiparticle sheds light on dynamics and transport at/near integrability

The original non-thermalizing system

▶ In 1955, Fermi-Pasta-Ulam-Tsingou looked at dynamics in some anharmonic chains, e.g. the FPU β -model

$$\ddot{x}_n = (x_{n+1} - 2x_n + x_{n-1}) + \beta [(x_{n+1} - x_n)^3 - (x_n - x_{n-1})^3].$$

- Expected ergodicity for $\beta \neq 0$. But not observed perfect revivals at long times instead.
- ► Informally: continuum limit is KdV (integrable), close to harmonic chain (integrable), there exist integrable anharmonic chains (e.g. Toda), there is the KAM theorem.
- But hard to make any of this precise.

The quantum Newton's cradle

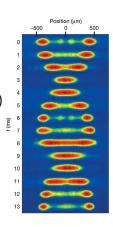
 Quantum Newton's Cradle (Kinoshita, Wenger, Weiss, '08) realized

$$H = \sum_{i=1}^{N} \frac{1}{2} \left(-\partial_{i}^{2} + \omega^{2} x_{i}^{2} \right) + c \sum_{i < j} \delta(x_{i} - x_{j})$$

with quasi-1D clouds of $^{87}\mathrm{Rb}$

- No thermalization on accessible timescale (around 30 \u03c4).
- Like FPU, integrable limits at $\omega = 0$, c = 0, $c = \infty$ so always "near integrable".

 Again difficult to quantify.



How does classical integrability break?

- Classical integrability breaking understood since 50s-60s
 (Kolmogorov-Arnold-Moser) but the result is subtle to use.
- ▶ Rough idea: let H_0 be integrable, V an integrability-breaking perturbation. Consider $H = H_0 + \epsilon V$.
- ▶ A torus $(\vec{I}, \vec{\omega})$ of H_0 survives if $\vec{\omega}$ satisfies

$$|\sum_{i=1}^{N} n_i \omega_i| > K/\|\vec{n}\|_1^{\tau},$$
 (1)

with $\tau > N-1$ and $K \gg \epsilon^{1/2}$.

► Cantor-like set ("nowhere dense") - integrability preserved in a fraction $1 - \mathcal{O}(\epsilon^{1/2})$ of phase space (in measure)

Why is KAM not "useful" for physicists?

- Only yields sufficient condition for tori to survive.
- ▶ Set of "good" frequencies Δ highly fractal impossible to tell with finite precision if $\vec{\omega} \in \Delta$.
- ▶ Underappreciated non-degeneracy condition $|\partial \vec{\omega}/\partial \vec{l}| \neq 0$ i.e. no direct application to perturbed harmonic systems (like FPU and QNC...)
- ▶ Proof does not appear to generalize to quantum systems.

How does quantum integrability break?

- Poorly understood in general. But nice physical picture for N = 3 (Lamacraft, '12, after Sutherland)
- ► In reduced 3-body problem, Yang-Baxter relations imply "geometrical optics" for scattering:

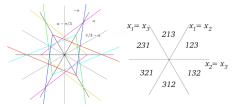
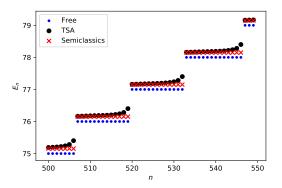


Figure: visualization of Yang-Baxter relations for reduced three-body problem, from *Lamacraft*, '12

Amplitude of diffracted wave proportional to violation of Yang-Baxter

The three-body quantum Newton's cradle

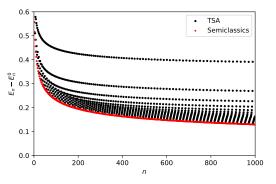
▶ Let's tackle N = 3 quantum Newton's cradle directly (VBB, PhD thesis, '20)



- Nowhere near Poisson/GOE closer to oscillator.
- Nice "diffraction" intuition difficult to apply (wavefunctions decay at infinity)

Semiclassical features of three-body quantum Newton's cradle

► The differences between energy levels of QNC and harmonic oscillator have remarkable regular features.



Semiclassical red line seems to capture infimum of quantum spectrum. Where does this come from?

Bethe's ansatz as Einstein-Brillouin-Keller quantization

One viewpoint on Bethe ansatz equations is that they represent "exact" EBK quantization e.g. Lieb-Liniger on a ring:

$$p_a L = 2\pi n_a + \sum_{a \neq b} \varphi(p_a - p_b), \quad a = 1, 2, \dots, N$$

with $\varphi(p) = -2 \arctan p/c$ the Lieb-Liniger phase shift.

► Write this as

$$rac{1}{2\pi}\oint p_adq_a=n_a'+rac{1}{2}\sum_{a
eq b}b(p_a-p_b),$$

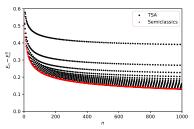
where $n_a' = n_a - N + 1 \in \mathbb{Z}$, and to each collision plane $\{x_a = x_b\}$, we assign a fractional Maslov index

$$b(p) = 1 + \frac{1}{\pi}\varphi(p),$$

depending on the momentum incident on that plane.

Semiclassical quantization of quantum Newton's cradle

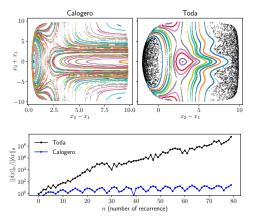
- Let's now add harmonic trap. Substituting interactions for collision planes in semiclassics no longer exact.
- For $0 < c < \infty$, classical orbits are no longer obvious (cf. Gutzwiller). One tractable case is circular orbits; treating phase-shift like Maslov index yields non-linear quantization condition $E = 2n + 3l + 1 + 3b(\sqrt{E})$, $l, n = 0, 1, \ldots$



Current kinetic theories of quantum Newton's cradle in similar regime of approximation.

Related classical physics

▶ It appears that classical integrable systems in integrability-breaking traps can also behave non-ergodically (Cao, VBB, Moore, '18, Lebowitz, Scaramazza, '18, Di Cintio, Iubini, Lepri, Livi, '18, Dhar, Kundu, Lebowitz, Scaramazza, '19, VBB, Kulkarni, Moore, Cao, '21)



...back to hydrodynamics

- "Weak integrability breaking" by trap leads to rich physics whose particulars continue to pose a theoretical challenge.
- Advent of generalized hydrodynamics yields testable predictions for large-scale dynamics in trap (...see Bastianello, De Luca, Vasseur, '21 for up-to-date review.)
- Concurrent resurgence of interest in "quantum Newton's cradle" experiments (see Bouchoule, Dubail, '21 for up-to-date review.)
- To probe theoretical questions of chaos and equilibration, classical systems easier for now.

Introduction: integrability breaking

Kinetic theory of Calogero particles
Background

The Bethe-Boltzmann equation

 Basic ingredient in applying "generalized hydrodynamics" formalism is kinetic equation for the single-(quasi)particle distribution function

$$\partial_t \rho_k + \partial_x (v_k[\rho]\rho_k) = 0.$$

with velocity dressed by semiclassical time delays (Wigner, '53):

$$v_{k}[\rho] = v_{k}^{0} + \int dk' \, \rho_{k'} \left(v_{k}[\rho] - v_{k'}[\rho] \right) \underbrace{\left(\hbar \frac{d\varphi_{k,k'}}{dE_{k}} v_{k}^{0} \right)}_{\Delta x_{k,k'}}$$

As noted above, Bethe ansatz can be viewed as "exact semiclassical quantization"; one way to understand validity of this expression (rigorous justification increasingly available, e.g. Spohn, Yoshimura, '20, Pozsgay, '20)

Quasiparticles in external trapping potentials

▶ One puts Boltzmann in a trap by adding a force term $-V'(x)\partial_k\rho_k$. Same reasoning here yields

$$\partial_t \rho_k + \partial_x (v_k[\rho]\rho_k) - V'(x)\partial_k \rho_k = 0.$$

- We saw above that traps interfere with simple underlying kinematic model even for N=3. So this is a conjecture to be tested.
- Seems to work well vs experiments/numerics at short times.

 Deeper questions around time to chaos remain.

Traps that preserve integrability

- The Calogero model has the remarkable property of remaining integrable in certain traps.
- e.g. the Hamiltonian (quantum or classical)

$$H = \sum_{i=1}^{N} \frac{1}{2} p_i^2 + \sum_{i < j} \frac{g}{(x_i - x_j)^2} + \sum_{i} \frac{1}{2} \omega^2 x_i^2$$

is integrable with perfect revivals (isochronous).

- ► Non-trivial test case for naïve ansatz {quasiparticle kinetics + Boltzmann force term}
- First we need quantum and classical hydrodynamics.

Introduction: integrability breaking

Kinetic theory of Calogero particles Background

Derivation

What goes into quasiparticle kinetic theory?

- ► Ingredients:
 - **▶** Differential phase-shift:

$$K_{k,k'} = \frac{1}{2\pi} \varphi'(k-k')$$

▶ Quasiparticle energies (Yang-Yang equation):

$$\epsilon_{k} = rac{\hbar^{2}k^{2}}{2m} - \mu + rac{1}{eta} \int_{-\infty}^{\infty} dk' \, K_{k,k'} \log \left(1 + e^{-eta \epsilon_{k'}}
ight)$$

which defines Fermi factor

$$\theta_k = (1 + e^{\beta \epsilon_k})^{-1}$$

Kinetic equation for density of states:

$$\partial_t \rho_k + \partial_x (\rho_k v_k[\rho]) = 0, \quad v_k[\rho] = \frac{\epsilon'_k}{\rho^{\mathrm{dr}'_k}}$$

Kinetic theory of quantum Calogero I

▶ Write quantum Hamiltonian as $(m = 1, \text{keep } \hbar)$

$$H = \sum_{i=1}^{N} -\frac{1}{2} (\hbar \partial_i)^2 + \sum_{i < j} \frac{\hbar^2 \alpha (\alpha - 1)}{(x_i - x_j)^2}.$$

▶ Differential phase shift just a delta function

$$K_{k,k'} = (\alpha - 1)\delta(k - k')$$

so Bethe integral equations become algebraic equations.

► In particular, dressing of energy/momentum is just a prefactor...

$$(1 + (\alpha - 1)\theta_k)\epsilon'_k = \hbar^2 k,$$

$$(1 + (\alpha - 1)\theta_k)p^{dr'}_k = \hbar.$$

...and so "quasiparticle group velocity" equals the bare velocity:

$$v_k = \epsilon_k'/p^{\mathrm{dr}'}_k = \hbar k.$$

Kinetic theory of quantum Calogero II

 Thus kinetic equation of quantum Calogero plus naïve force term

$$\partial_t \rho_k + (\hbar k) \partial_x \rho_k - (V'(x)/\hbar) \partial_k \rho_k = 0$$

is the "freely streaming Boltzmann equation".

- In harmonic trap, has non-trivial property of microscopic quantum dynamics - perfect revivals!
- Extension of earlier "superfluid" hydrodynamics (*Abanov*, *Wiegmann*, '05, *Abanov*, *Bettelheim*, *Wiegmann*, '08, *Abanov*, *Gromov*, *Kulkarni*, '11) to non-zero temperatures, minus dispersion.

Kinetic theory of classical Calogero

- ► For microscopic tests, we need classical equation. Follow the prescription we developed for Toda (*VBB*, *Cao*, *Moore*, '19, after *Theodorakopoulus*, '84, *Gruner-Bauer*, *Mertens*, '88).
- ▶ Set $p = \hbar k$ before taking $\hbar \to 0$ with $\ell = \hbar \alpha$. Semiclassical phase shift is:

$$K_{p,p'}^{cl} = \lim_{\hbar o 0} K_{p/\hbar,p'/\hbar} = \ell \delta(p-p').$$

▶ Need to cancel entropic factors in free energy as $\hbar \to 0$:

$$\epsilon_{p}^{\rm cl} = \epsilon_{k=p/\hbar} + \frac{1}{\beta} \ln \hbar/\ell, \quad \mu^{\rm cl} = \mu - \frac{1}{\beta} \ln \hbar/\ell \,. \label{eq:epsilon}$$

► For experts: effective semiclassical "Fermi factor", "backflow function", "density of states" given by

$$\widetilde{\theta}_{p} = \theta_{k}/\hbar, \quad \partial_{p'}\widetilde{F}(p, p') = \hbar \partial_{k'}F(k, k'), \quad \widetilde{\rho}_{p} = \rho_{k}/\hbar.$$

▶ Once dust settles, get classical free Boltzmann equation:

$$v_p = \epsilon^{cl'}_p/p^{dr'}_p = p.$$

Does semiclassical kinetic theory work?

Yes - test vs microscopic "two reservoir" initial condition:

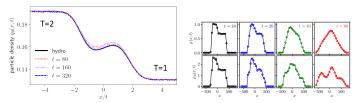


Figure: Left: dynamics of particle density in Toda, right: same for confined Calogero with temperatures reversed.

(related: semiclassical hydro of sinh-Gordon, *Bastianello, Doyon, Watts, Yoshimura, '18*, Toda hydro from classical arguments, *Spohn, '19, Doyon, '19,...*, see arXiv 2101.06528 (Spohn) for extensive review.)

Which degrees of freedom are streaming?

Conjectured classical/quantum kinetic equations have same "streaming" form, e.g. in harmonic trap:

$$\partial_t \widetilde{\rho}_p + p \partial_x \widetilde{\rho}_p - \omega x \partial_p \widetilde{\rho}_p = 0.$$

- ► Looks like free particles but bare particles have nontrivial dynamics! What is doing the streaming?
- Clue from Toda: classical quasiparticles defined via "Bethe-Lax correspondence" (VBB, Cao, Moore, '19)

A Bethe-Lax correspondence

▶ Letting $X = \operatorname{diag}(x_1, x_2, \dots, x_N)$, can write Calogero dynamics with matrices $L(x, \dot{x})$, A(x) such that

$$\dot{X} + i[X, A] = L,$$

$$\dot{L} + i[L, A] = -V'(X).$$

- Idea: eigenvalue of L = "classical quasiparticle", spectral density of L = semiclassical DoS.
- ▶ With no trap, *L* has isospectral flow; thus

$$\langle \lambda_j | \dot{X} | \lambda_j \rangle = \lambda_j, \quad L | \lambda_j \rangle = \lambda_j | \lambda_j \rangle.$$

► So once we identify

$$\widetilde{\rho}_p = \lim_{\substack{N,L \to \infty, \\ N/L = \mathrm{const}}} \overline{\frac{1}{L} \sum_{j=1}^N \delta(p - \lambda_j)},$$

get fully microscopic derivation of non-interacting Boltzmann form $\widetilde{\rho}_p^J = p\widetilde{\rho}_p$.

Extension to traps

Let's reconsider Lax equations:

$$\dot{X} + i[X, A] = L,$$

$$\dot{L} + i[L, A] = -V'(X).$$

- Nown to be integrable for $V(x) = ax^4 + bx^3 + cx^2 + d$. But higher order V are less tractable.
- Leanest way to generalize to arbitrary traps is take "wavefunction" interpretation of $|\lambda_j\rangle$ literally:

$$\rho_p^{\text{emp}}(x) := \sum_{a=1}^{N} \sum_{i=1}^{N} |\langle x_a | \lambda_j \rangle|^2 \delta(x - x_a) \delta(p - \lambda_j)$$
 (2)

► Intuition: weight of "classical quasiparticle" *j* distributed over all positions.

Anderson localization of quasiparticles

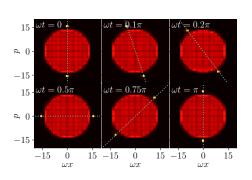
- At non-zero temperature, L is a random matrix with particular structure. Eigenvectors $|\lambda_j\rangle$ subject to "Anderson localization" in site index j.
- e.g. for Toda, Lax matrix is nearest neighbour, for Calogero it is long-ranged:

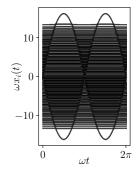
$$L_{ij}^{\mathrm{Calogero}} = \delta_{ij} p_i + (1 - \delta_{ij}) i \ell x_{ij}^{-1}.$$

- ▶ In both cases, see localization at T > 0 (resp. exponential and power law)
- Corrections to Boltzmann equation for $\rho_p^{\text{emp}}(x)$ scale as $\mathcal{O}([X,L])$ valid insofar as quasiparticles localized!

Application 1: solitons in a harmonic trap

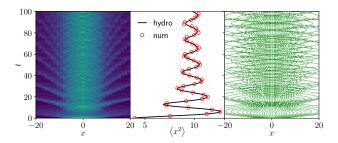
- Known that classical Calogero in a harmonic trap has soliton solutions (Abanov, Gromov, Kulkarni, '11). Consider two-soliton initial condition.
- ▶ Using proposed hydro variable $\rho_p^{\text{emp}}(x)$, solitons appear as stable peaks in x p space:





Application 2: dynamics in a (presumably) non-integrable trap

- Next consider preparing a T=0 cloud in a harmonic potential $V(x)=x^2/2$, before quenching to an anharmonic potential, $V(x)=2\sqrt{1+x^2}$.
- No breakdown of hydro of $\rho_p^{\text{emp}}(x)$ on accessible timescales (unlike for hard rods see *Cao*, *VBB*, *Moore*, '18).
- When/how does hydro break down? Apparently no diffusion in Navier-Stokes limit!



Some open questions

- ► What is mechanism of thermalization here? Clearer in compact Calogero models?
- Microscopic expression for $\rho_p^{\rm emp}$ allows study of corrections to all orders, in principle. Do these match collective field theory at T=0? (Abanov, Wiegmann, '05)
- Striking analytical derivation of thermodynamic Bethe ansatz for classical Toda (*Spohn*, '19). Analogue for Calogero?

Thanks for listening!