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Motivation



A “data assimilation problem”

• Consider a simple problem where we consider the
temperature at some point at some instants of
time (say in days)

• Let the temperature at the nth instant be Tn

• Suppose we think the temperature evolves in the
following way

Tn+1 = Tn + In.

• This is a model which we use to think about the
temperature, maybe to even predict the
temperature

• We could think of In = I a constant parameter

• What is I in Bangalore?

• Where do we get I from?

  



A “data assimilation problem”

• Temperature model

Tn+1 = Tn + I.

• We have temperature measurements

• Do you think it would like?

Mn = Tn

• Or

Mn = Tn +Nn
  



A “data assimilation problem”

• How do we think about or model Nn?

• How do we find out I from data?

• We need the framework of probability and inference for this!



Introduction to probability



Sample Space

Definition

• The set of all possible outcomes

• Mutually exclusive

• Exhaustive with as much granularity as required

• The sample space is usually denoted by Ω

• Individual outcomes are represented by ω

Examples

• For a coin toss: {Head,Tail}
• For a die roll: {1, 2, 3, 4, 5, 6}
• Position of a sensor: [0, 1]× [0, 1]
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Events

Definition

• A subset of the sample space

• The set of all such subsets is denoted as F

Examples

• The number on the rolled dice is even

• The sensor lies within a distance of 0.25 meters from a relay
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Probability

Definition

• Is a function that maps events to real numbers

• The function value can be interpreted as the long term fraction of time an event occurs

• The function value can also be interpreted as an amount of belief in the occurrence in the event

• The probability of an event E is denoted as Pr(E)

• Pr(Ω) = 1

• 0 ≤ Pr(E) ≤ 1

• (A1, A2, . . . , An, . . . ) are disjoint;
∑∞

i=1 Pr(Ai) = Pr(
⋃∞

i=1 Ai)

Examples

• Die roll: Pr({f}) = 1
6

• Probability of sensor in an area A inside [0, 1]× [0, 1] is Pr(A) = A
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Conditional probability

Definition

• A and B are two events

• Probability of A given that B has occurred; denoted by Pr(A|B)

• Universe is now B

• If Pr(B) > 0, then Pr {A|B} = Pr{A∩B}
Pr{B}

• If Pr(B) = 0, then Pr {A|B} is undefined

Example

• Suppose you roll a fair six sided die

• What is the probability that the face is two given that the face is even?
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Total probability theorem

Definition

• Suppose B ⊆ Ω

• Suppose (A1, A2, . . . , An) are disjoint and
⋃n

i=1 Ai = Ω

• The total probability theorem states that

Pr {B} =
n∑

i=1

Pr {Ai}Pr {B|Ai}

Question

How to derive the above theorem?



Total probability theorem

Definition

• Suppose B ⊆ Ω

• Suppose (A1, A2, . . . , An) are disjoint and
⋃n

i=1 Ai = Ω

• The total probability theorem states that

Pr {B} =
n∑

i=1

Pr {Ai}Pr {B|Ai}

Question

How to derive the above theorem?



Independent events

Definition

• Events A and B are independent if

Pr {A ∩B} = Pr {A} × Pr {B}
Pr {A|B} = Pr {A}

Question

• Assume A and B are independent

• Now suppose an event C has occurred

• Are A and B independent given that C has occurred?
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Discrete Random Variable

Definition

• X : Ω → R
• X could be discrete or continuous valued

• We consider the case where X is discrete first

Examples

• X is the number of heads in 10 tosses of a coin with bias p

• X is the number of tosses until the first head



Discrete Random Variable

Definition

• X : Ω → R
• X could be discrete or continuous valued

• We consider the case where X is discrete first

Examples

• X is the number of heads in 10 tosses of a coin with bias p

• X is the number of tosses until the first head



Probability Mass Function

Definition

• The probability mass function pX(x) = Pr {X = x}
• pX(x) = Pr {ω : X(ω) = x}
• pX(x) ≥ 0 and

∑
x pX(x) = 1

Examples

• X is the number of heads in N tosses of a coin with bias p. Then X is Binomial(N, p)

• X is the number of tosses until the first head. Then X is a Geometric(p) random variable
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Probability Distributions

• The cumulative distribution function FX(x) = Pr {X ≤ x}
• The complementary cumulative distribution function F c

X(x) = Pr {X > x}

• FX(−∞) = 0, FX(∞) = 1

• FX(x) = 1− F c
X(x)



Probability Distributions

• The cumulative distribution function FX(x) = Pr {X ≤ x}
• The complementary cumulative distribution function F c
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Some standard distributions

• Binomial random variable

• Geometric random variable

• Poisson random variable

  

Binomial

Geometric

Poisson



Expectation of a discrete random variable

Definition

• X is a non-negative discrete random variable

• The expectation of X is defined as
∑

x pX(x)x

• The expectation is denoted as EX

Question

• Suppose X is Uniform on {1, 2, 3, . . . , 10}. What is EX?

• If X is not restricted to be non-negative, how do you think EX will be defined?
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Expectation of a discrete random variable

Properties

• The expectation is linear. Suppose X and Y are two random variables,g then E [αX + βY ] = αEX + βEY
• Suppose Y = g(X), then EY =

∑
x g(x)pX(x)



Higher moments and Variance

Definition

• The nth moment of a random variable X is EXn

• The variance of a random variable X is E (X − EX)2

A question

• Find an expression for variance of X in terms of the mean and second moment of X
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• The nth moment of a random variable X is EXn
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A question
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Conditional expectation

• Conditional probability: pX|A(x)

• Conditional expectation: E [X|A]

• Total expectation theorem: Suppose (A1, A2, . . . , An) are disjoint. Then
X = Pr {A1}E [X|A1] + · · ·+ Pr {An}E [X|An]



Multiple discrete random variables

• X and Y are two discrete random variables

• The joint probability mass function Pr {X = x, Y = y} is denoted as pX,Y (x, y)

• The marginal probability mass function pX(x) =
∑

y pX,Y (x, y)

• The conditional probability mass function pX|Y =y(x) =
pX,Y (x,y)

pY (y)



Independent random variables

• Suppose X and Y are discrete random variables with probability mass functions pX(x) and pY (y)

• X and Y are independent if pX,Y (x, y) = pX(x)pY (y) for all x and y

• X and Y are independent if pX|Y =y(x) = pX(x) for all x and y

• E [XY ] = EXEY



Continuous Random Variable

Definition

• X : Ω → R
• X is described by a probability density function fX

• Pr {a ≤ X < b} =
∫ b

a
fX(x)dx

• ∫∞
−∞ fX(x)dx = 1

• EX =
∫∞
0

xfX(x)dx for non-negative X

• Similar definitions for CDF and CCDF

Example

• X is Uniform[a, b]. fX(x) = 1
b−a

for a ≤ x ≤ b

• X is Normal with mean µ and variance σ2. fX(x) = 1√
2πσ2

e
− (x−µ)2

2σ2
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Multiple continuous random variables

Definitions

• X and Y are two continuous random variables

• The joint distribution is fX,Y (x, y)

• Marginal distribution of X is fX(x)

• Conditional distribution is fX|Y =y(x) defined as
fX,Y (x,y)

fY (y)

• X and Y are independent if fX,Y (x, y) = fX(x)fY (y) for all x and y

Question

• Suppose you have a stick of length l

• You break it once at a position uniformly distributed in [0, l] and then again break the left portion at a
uniformly distributed position

• What is the joint distribution of the two “left” portions?
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Bayes’ rule

Definition

• X and Y are two random variables

• pX|Y =y(x) =
pX (x)pY |X=x(y)

pY (y)

• pX|Y =y(x) =
pX (x)fY |X=x(y)

fY (y)

• fX|Y =y(x) =
fX (x)pY |X=x(y)

pY (y)

• fX|Y =y(x) =
fX (x)fY |X=x(y)

fY (y)

A question

• Suppose X takes values −1 and 1 with probability p and 1− p

• Y is normally distributed with mean X and variance of 1

• Suppose you have observed Y = −0.5

• What is pX|Y =−0.5(1)?
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Bayesian Inference



Our example problem

• Temperature model

Tn+1 = Tn + I.

• We have temperature measurements

Mn = Tn +Nn

• Nn is measurement noise - modelled as a
Normal(0, σ2) random variable - independent
across n.

• How do we find I?
  



Another example

No. Vr(V) Ir(A)

0 0.909091 0.909091
1 1.000091 0.999092
2 1.182033 1.179673
3 1.363636 1.363636
4 1.818182 1.818182
5 2.455656 2.443439
6 2.728752
7 1.455465
8 1.092377
9 4.555556
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An example

No. Vr(V) Ir(A) T(C)

0 0.909091 0.909091 25
1 1.000091 0.999092 26
2 1.182033 1.179673 27
3 1.363636 1.363636 25
4 1.818182 1.818182 25
5 2.455656 2.443439 30
6 2.728752 31
7 1.455465 32
8 1.092377 40
9 4.555556 50

Ir = Vr/(1 + 0.01 ∗ (T − 25))
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Problem ingredients

• Data

with features

• A model with parameters

• A method of choosing parameters for the model from the data (Inference)

• A method to predict using the model (Prediction)

• Iterate, evaluate and select models (Model selection)
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Example - Regression problem
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• Data (with two features or 2 dimensions) is given.

• One feature y is designated as a target variable

• A model - a linear model for y in x is assumed.
Parameters are slope and intercept.

• We use a squared error minimization technique to
find out the parameters.

• We can use the model for prediction for new values
of x.

• Model comparisons can be done, other polynomials
in x.
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A framework for doing Inference, Prediction, Model Selection
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• We need a framework for doing the three basic
problems that arise.

• It seems that we need to find “best” parameters
for the model that we have assumed

• An approach which is widely used is to form a loss
function or objective function that measures how
good the model predicts on training data and use
optimization techniques

• In other problems, similar optimization approaches
can be used.

• Another approach is the Bayesian approach.
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for the model that we have assumed

• An approach which is widely used is to form a loss
function or objective function that measures how
good the model predicts on training data and use
optimization techniques

• In other problems, similar optimization approaches
can be used.

• Another approach is the Bayesian approach.



A question - interpretation of results
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Measuring a voltage source

• We measure the value of a DC voltage source.

No. Vm(V)

1 5.5377
2 6.8339
3 2.7412
4 5.8622
5 5.3188

• We report the average 5.2587.

• When we report the average we are fitting a constant to the
data using minimum squared error.

• We again measure!

No. Vm(V)

1 3.6923
2 4.5664
3 5.3426
4 8.5784
5 7.7694

• The new average is 5.9898.
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Measuring a voltage source

• We measure the value of a DC voltage source.

• For each measurement there is variation from a constant DC
value because of some noise or some source of randomness

• So we will say that the ith measurement is 5 +Xi; Xi is
Gaussian(0, 1).

• What interval shall we report?
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Example: Coin bias

• You have a coin, which you use for deciding who gets to bat first

• You want to know(infer) whether the coin is fair or not

• We observe the following sequence as the result of coin tosses

1 2 3 4 5 6 7 8 9 10
Y H H L L L H H H H H

Table: 10 coin tosses

• So is the coin biased? What is the bias?

• What if you know that the coin is not from a government mint?
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What have we seen?

• A plethora of seemingly unconnected procedures for doing inference

• A not so easily understood way of reporting results

• An inability to incorporate prior information or domain information



Bayesian approach

• Bayesian belief: A quantification of how much we believe a particular statement is true.

• The value of the dc source is 5 volts (100 % belief)
• The value of the dc source is between 4.5 and 5.3 volts.

• We start with a prior belief about the statement

• Then we observe data which depends on the statement

• We update our belief on the basis of our data (inference)

• We use the updated belief to make predictions and model selection.
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Connections to probability

• Do we need to develop a new system of thinking based on belief quantities, a new arithmetic for beliefs?

• Probability comes to the rescue
• Any coherent belief quantification system should satisfy the rules of probability
• Cox’s axiomatic approach
• Dutch book theorem

• A statement can have a set of possible values; each value has an associated belief

• A random variable can have a set of possible values; the belief is given by the probability distribution
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Priors beliefs or prior probabilities
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Digression: Bayes’ Rule

• X and Y are two discrete random variables

• Pr {X = x|Y = y} = Pr{X=x,Y =y}
Pr{Y =y}

• Bayes’ rule: Pr {X = x|Y = y} = Pr{X=x}Pr{Y =y|X=x}
Pr{Y =y}

• Another form: Pr {X = x|Y = y} = Pr{X=x}Pr{Y =y|X=x}∑
x′ Pr{X=x′}Pr{Y |X=x′}



Digression: An example for Bayes rule

Y
X 1 2 3
1 0.05 0.10 0.05
2 0.10 0.02 0.20
3 0.10 0.28 0.10

Table: Joint probability distribution Pr {X = x, Y = y}

• What is Pr {X = 1|Y = 3}?
• Pr {X = 1, Y = 3} = 0.05

• Pr {Y = 3} = 0.05 + 0.20 + 0.10

• Pr {X = 1|Y = 3} = Pr{X=1,Y =3}
Pr{Y =3} = 1

7
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Digression: An example for Bayes rule
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• Pr {X = 1} × Pr {Y = 3|x = 1} = 0.20× 0.25 = 0.05

• Pr {X = 1} × Pr {Y = 3|x = 1}+ Pr {X = 2} × Pr {Y = 3|x = 2}+ Pr {X = 3} × Pr {Y = 3|x = 3} =
0.05 + 0.2 + 0.1 = 0.35
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Example: Bayesian inference of bias of a coin

• We observe the following sequence as the result of coin tosses

1 2 3 4 5 6 7 8 9 10
Y H H L L L H H H H H

Table: 10 coin tosses

• Pr {Y = y|Θ} = Θ7(1−Θ)3

• Pr {Θ = 0.4} = 0.2,Pr {Θ = 0.5} = 0.6,Pr {Θ = 0.6} = 0.2

• Pr {Y = y} = 0.2× (0.4)7(0.6)3 + 0.6× (0.5)10 + 0.2× (0.6)7(0.4)3 = 0.001

• Pr {Θ = 0.4|Y = y} = 0.2×(0.4)7(0.6)3

0.001
= 0.07

• Pr {Θ = 0.5|Y = y} = 0.6×(0.5)10

0.001
= 0.58

• Pr {Θ = 0.6|Y = y} = 0.2×(0.6)7(0.4)3

0.001
= 0.35
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The Bayesian Procedure

Pr {Θ|Y = y} =

Pr {Θ} × Pr {Y = y|Θ}

Pr {Y = y}

Posterior Prior Likelihood

Evidence
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Bayesian voltage measurement
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• Let Θ be the unknown voltage

• We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)
• We measure a value 6.5532. Using Bayes rule we obtain a posterior distribution from the prior
• Suppose new measurements are obtained. Then the current posterior is our current belief and plays the

role of the prior for the next set of Bayesian updates
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• Let Θ be the unknown voltage
• We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)

• We measure a value 6.5532. Using Bayes rule we obtain a posterior distribution from the prior
• Suppose new measurements are obtained. Then the current posterior is our current belief and plays the

role of the prior for the next set of Bayesian updates
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• Let Θ be the unknown voltage
• We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)
• We measure a value 6.5532. Using Bayes rule we obtain a posterior distribution from the prior

• Suppose new measurements are obtained. Then the current posterior is our current belief and plays the
role of the prior for the next set of Bayesian updates
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• Let Θ be the unknown voltage
• We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)
• We measure a value 6.5532. Using Bayes rule we obtain a posterior distribution from the prior
• Suppose new measurements are obtained. Then the current posterior is our current belief and plays the

role of the prior for the next set of Bayesian updates
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• Let Θ be the unknown voltage
• We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)
• We measure a value 6.5532. Using Bayes rule we obtain a posterior distribution from the prior
• Suppose new measurements are obtained. Then the current posterior is our current belief and plays the

role of the prior for the next set of Bayesian updates



Bayesian coin bias
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• Let Θ be the unknown bias of the coin

• We believe that the coin is unfair - the prior represents our belief

• We count 70 heads happening in 100 tosses of the coin

• Our posterior belief is as shown.
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• Let Θ be the unknown bias of the coin

• We believe that the coin is unfair - the prior represents our belief

• We count 70 heads happening in 100 tosses of the coin

• Our posterior belief is as shown.
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• Let Θ be the unknown bias of the coin

• We believe that the coin is unfair - the prior represents our belief

• We count 70 heads happening in 100 tosses of the coin

• Our posterior belief is as shown.
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• Let Θ be the unknown bias of the coin

• We believe that the coin is unfair - the prior represents our belief

• We count 70 heads happening in 100 tosses of the coin

• Our posterior belief is as shown.



Bayesian regression
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• Suppose we observe data as shown.

• We believe that the data can be explained as y = ax+ b+ ϵ, where ϵ ∼ N (0, τ).

• We believe that a ∼ N (0, 100), b ∼ N (0, 100), τ ∼ Gamma(0.1, 0.1).

• Suppose we use the data to obtain the posteriors on a, b, and τ . These posteriors are shown.
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• Suppose we observe data as shown.

• We believe that the data can be explained as y = ax+ b+ ϵ, where ϵ ∼ N (0, τ).

• We believe that a ∼ N (0, 100), b ∼ N (0, 100), τ ∼ Gamma(0.1, 0.1).

• Suppose we use the data to obtain the posteriors on a, b, and τ . These posteriors are shown.
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• Suppose we observe data as shown.

• We believe that the data can be explained as y = ax+ b+ ϵ, where ϵ ∼ N (0, τ).

• We believe that a ∼ N (0, 100), b ∼ N (0, 100), τ ∼ Gamma(0.1, 0.1).

• Suppose we use the data to obtain the posteriors on a, b, and τ . These posteriors are shown.
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• Suppose we observe data as shown.

• We believe that the data can be explained as y = ax+ b+ ϵ, where ϵ ∼ N (0, τ).

• We believe that a ∼ N (0, 100), b ∼ N (0, 100), τ ∼ Gamma(0.1, 0.1).

• Suppose we use the data to obtain the posteriors on a, b, and τ . These posteriors are shown.
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• Suppose we observe data as shown.

• We believe that the data can be explained as y = ax+ b+ ϵ, where ϵ ∼ N (0, τ).

• We believe that a ∼ N (0, 100), b ∼ N (0, 100), τ ∼ Gamma(0.1, 0.1).

• Suppose we use the data to obtain the posteriors on a, b, and τ . These posteriors are shown.



What have we seen?

• Introduction to Bayesian approach

• Probability for Bayesian inference - Bayes rule

• Examples of Bayesian inference



Computing the posterior

Pr {Θ|Y = y} =
Pr {Θ}Pr {Y = y|Θ}

Pr {Y = y}

• Computing the term in the denominator is hard!



Approximating the prior and likelihood

• The prior and likelihood functions are chosen such that the posterior distribution is known in closed form.

• Furthermore, the posterior distribution is “similar” to the prior distribution

• This is useful for updating the posterior for a sequence of observations

• For example, earlier we had the prior Pr {Θ = 0.4} = 0.2,Pr {Θ = 0.5} = 0.6,Pr {Θ = 0.6} = 0.2

• The likelihood Pr {Y = y|Θ} = Θy(1−Θ)10−y

• Suppose the posterior Pr {Θ|Y = y} needs to have the same mathematical form as the likelihood

• Choose Pr {Θ} ∝ Θa(1−Θ)b

• In fact, choose Pr {Θ} = Θa−1(1−Θ)b−1

B(a,b)
(actually, this is the PDF fΘ(.) of a Beta distribution)

• Pr {Θ|Y = y} ∝ Θa−1+y(1−Θ)b+9−y

• Then Pr {Θ|Y = y} = Θa−1+y(1−Θ)b+9−y

B(a−1+y,b+9−y)
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Samples from the posterior distribution

Pr {Θ|Y = y} =
Pr {Θ}Pr {Y = y|Θ}

Pr {Y = y}
Pr {Θ|Y = y} ∝ Pr {Θ}Pr {Y = y|Θ}

• We do not know what the normalized posterior distribution is!

• Suppose we have a mechanism for generating samples using the unnormalized posterior distribution

• The empirical distribution of the samples closely approximates the normalized posterior distribution.

• Markov chain Monte Carlo is a technique for obtaining samples from the unnormalized posterior
distribution.



Sampling from a distribution

• You want to generate samples from the given distribution

x 0 1 2 3 4 5
PMF 0 0.1 0.2 0.2 0.1 0.4
CDF 0 0.1 0.3 0.5 0.6 1

• rand() gives you a number uniformly distributed between 0 and 1

import numpy as np

CDF = [ 0 , 0 . 1 , 0 . 3 , 0 . 5 , 0 . 6 , 1 ]

def sampleFromCDF ( ) :
un i fSamp le = np . random . rand ( )
f o r i i n [ 0 , 1 , 2 , 3 , 4 ] :

i f ( un i fSamp le > CDF[ i ] and
un i fSamp le <= CDF[ i + 1 ] ) :
r e t u rn i + 1
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Acceptance-Rejection sampling

0 1 2 3 4 5

You want to generate samples from the given distribution

x 0 1 2 3 4 5
PMF 0 0.1 0.2 0.2 0.1 0.4
CDF 0 0.1 0.3 0.5 0.6 1

• Let the number of accepted points be N(x) and total points be N

• Then N(x) ≈ 1
6
N × Pr {X = x} for every large N

• Empirical probability or N(x)
N

is Pr {X = x}
• Note that even if Pr {X = x} is not normalized, this would work! How?



Acceptance-Rejection sampling

• Suppose there is a distribution PX(x) that you want to draw samples from

• Assume that PX(x) is known only upto a normalizing constant

• Suppose there is a distribution QX(x) such that there is a M > 0 for which

PX(x) ≤ MQX(x)

• Sample x ∼ QX(.) and u ∼ Uniform[0, 1]

• If u < PX (x)
MQX (x)

accept x, else reject x

• Acceptance rate is 1
M

• Low acceptance rate, inefficient especially in high dimensions
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Metropolis-Hastings sampler

• Suppose there is a distribution PX(x) that you want to draw samples from

• But PX(x) is known only upto a normalizing constant

• Suppose we pick an initial point x0 in the domain of PX

• We sample a x1 according to a proposal distribution QX|X′(x|x′)

• We accept x1 with the probability min
(
1,

PX (x1)QX|X′ (x0|x1)

PX (x0)QX|X′ (x1|x0)

)
.

• We sample a x2 according to a proposal distribution QX|X′(x|x′)

• We accept x2 with the probability min
(
1,

PX (x2)QX|X′ (x1|x0)

PX (x1)QX|X′ (x2|x1)

)
.

• · · ·
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How to do Bayesian voltage measurement?



How to find the bias of a coin?



How to do Bayesian regression?



Revisiting conditional independence

• Conditional independence for events
• A,B,C are three events, which are subsets of Ω and elements of F
• The events A and B are said to be independent if

Pr (AB) = Pr(A) Pr(B)

• The events A and B are said to be conditionally independent given the event C if

Pr (AB|C) = Pr(A|C) Pr(B|C)

• Conditional independence for discrete random variables
• Let us consider discrete random variables X,Y , and Z.
• X and Y are conditionally independent given Z if

Pr (X = x, Y = y|Z = z) = Pr(X = x|Z = z) Pr(Y = y|Z = z)

for every x, y, z
• The joint conditional probability distribution factors into the product of the individual conditional probability

distributions



Discrete time Markov Chains

• We are modelling a system evolution in discrete time

• The state space is assumed to be discrete: S = {0, 1, 2, 3, . . . , s}
• The system evolution

(X0, X1, X2, X3, . . . , Xn, . . . )

is a discrete time Markov chain (DTMC) iff

Pr {Xn+1 = j|Xn = i,Xn−1 = in−1, . . .} = Pr {Xn+1 = j|Xn = i}

• Note that the LHS contains three parameters - n, i, j and is denoted by pi,j(n)

• The probability pi,j(n) is the transition probability of the Markov chain from state i to state j at time n.

• The above conditional independence property is called the Markov property.

• The Markov property says that given the present the future probabilistic evolution of the random process is
independent of the past



Exercise - I

• Suppose I take a coin and toss it continuously. Each toss is independent of any other toss.

• Whenever I see a heads on a coin toss I get Re. 1

• Let the probability of getting a heads be p. Suppose p does not change with the tosses.

• Let the amount that I earn on the nth coin toss be Xn

• Then Pr {Xn = 1} = p and Pr {Xn = 1} = 1− p

• Consider
(X1, X2, X3, . . . , Xn, . . . )

• Is the above random process a Markov chain?

• Yes!

• Pr {Xn = 1|Xn−1 = i,Xn−2 = in−2, . . .} = p.

• Any IID process is Markov!



Exercise - I

• Suppose I take a coin and toss it continuously. Each toss is independent of any other toss.

• Whenever I see a heads on a coin toss I get Re. 1

• Let the probability of getting a heads be p. Suppose p does not change with the tosses.

• Let the amount that I earn on the nth coin toss be Xn

• Then Pr {Xn = 1} = p and Pr {Xn = 1} = 1− p

• Consider
(X1, X2, X3, . . . , Xn, . . . )

• Is the above random process a Markov chain?

• Yes!

• Pr {Xn = 1|Xn−1 = i,Xn−2 = in−2, . . .} = p.

• Any IID process is Markov!



Exercise - II

• Let us continue with the coin tossing experiment in the previous slide

• Consider
(X1, X2, X3, . . . , Xn, . . . )

as before

• Now let Yn =
∑n

k=1 Xk.

• Consider
(Y1, Y2, Y3, . . . , Yn, . . . )

• Is the above process Markov?

• Yes!

• What all values can Yn take?

• Pr {Yn = j|Yn−1 = i, Yn−2 = in−2, . . .} = Pr {Xn = j − i|Yn−1 = i}
• The probability on the RHS is non-zero only for j = i or j = i+ 1
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Simulating DTMCs

t r a n s i t i o n p r o b a b i l i t y m a t r i x = [ 0 . 1 , 0 . 1 , 0 . 8 ;
0 . 5 , 0 . 3 , 0 . 2 ;
0 . 4 , 0 . 1 , 0 . 5 ] ;

i n i t i a l s t a t e = 1 ;
c u r r e n t s t a t e = i n i t i a l s t a t e ;
f o r i = 1 : n umbe r o f s imu l a t e d s t e p s

t r a n s i t i o n p r o b a b i l i t y = t r a n s i t i o n p r o b a b i l i t y m a t r i x ( c u r r e n t s t a t e , : ) ;
n e x t s t a t e = sample f rom pmf ( t r a n s i t i o n p r o b a b i l i t y ) ;
c u r r e n t s t a t e = n e x t s t a t e ;

end



Specification of a DTMC model

• Specification of the state space S
• Specification of the transistion probability pi,j(n)

• Starting state∗

p1,1(n) p1,2(n) p1,S(n)

p2,1(n)

p3,1(n)

ps,s(n)

. . .

P(n)

1

6

2

3

5

4

p1,1(n)

p1,2(n)



Homogeneous DTMCs

• A DTMC is said to be (time) homogeneous iff the transition probabilities pi,j(n) do not depend on time,
i.e.,

pi,j(n) = pi,j

• A homogeneous DTMC is then fully represented by its transition probability matrix P , where [P ]i,j = pi,j

• For a homogeneous DTMC we can talk about n step transition probabilities

p
(n)
i,j = Pr {Xn = j|X0 = i}

i.e., the probability that the Markov chain will move from i to j in n ≥ 1 steps.

• We can also talk about an n step transition probability matrix P (n), where [P (n)]i,j = p
(n)
i,j .



State after n steps

• Suppose X0 = i

• We let the DTMC evolve and we are interested in the state after n steps

• Is this a random variable?

This is the random variable Xn

• What is the distribution of Xn? This is the n-step probabilities p
(n)
i,j
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Stationary distribution
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0.4 0.1 0.5


• limn→∞ p

(n)
i,j = πj

• A solution to π = πP is π = [0.3173, 0.1250, 0.5577]



Markov Chain Monte Carlo Samplers

• A Markov Chain Monte Carlo (MCMC) sampler is basically a Markov chain with the stationary distribution
being the posterior that we want to sample from.
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