Introduction to Probability and Bayesian Inference

Vineeth B. S.
Department of Avionics, Indian Institute of Space Science and Technology,
Thiruvananthapuram.
\title{ Workshop on Data Assimilation in Weather and Climate Models }

6th May 2024

Motivation

A "data assimilation problem"

- Consider a simple problem where we consider the temperature at some point at some instants of time (say in days)
- Let the temperature at the $n^{\text {th }}$ instant be T_{n}
- Suppose we think the temperature evolves in the following way

$$
T_{n+1}=T_{n}+I_{n} .
$$

- This is a model which we use to think about the temperature, maybe to even predict the temperature

- We could think of $I_{n}=I$ a constant parameter
- What is I in Bangalore?
- Where do we get I from?

A "data assimilation problem"

- Temperature model

$$
T_{n+1}=T_{n}+I
$$

- We have temperature measurements
- Do you think it would like?

$$
M_{n}=T_{n}
$$

- Or

$$
M_{n}=T_{n}+N_{n}
$$

A "data assimilation problem"

- How do we think about or model N_{n} ?
- How do we find out I from data?
- We need the framework of probability and inference for this!

Introduction to probability

Sample Space

Definition

- The set of all possible outcomes
- Mutually exclusive
- Exhaustive with as much granularity as required
- The sample space is usually denoted by Ω
- Individual outcomes are represented by ω

Sample Space

Definition

- The set of all possible outcomes
- Mutually exclusive
- Exhaustive with as much granularity as required
- The sample space is usually denoted by Ω
- Individual outcomes are represented by ω

Examples

- For a coin toss: $\{$ Head, Tail\}
- For a die roll: $\{1,2,3,4,5,6\}$
- Position of a sensor: $[0,1] \times[0,1]$

Events

Definition

- A subset of the sample space
- The set of all such subsets is denoted as \mathcal{F}

Events

Definition

- A subset of the sample space
- The set of all such subsets is denoted as \mathcal{F}

Examples

- The number on the rolled dice is even
- The sensor lies within a distance of 0.25 meters from a relay

Probability

Definition

- Is a function that maps events to real numbers
- The function value can be interpreted as the long term fraction of time an event occurs
- The function value can also be interpreted as an amount of belief in the occurrence in the event
- The probability of an event E is denoted as $\operatorname{Pr}(E)$

Probability

Definition

- Is a function that maps events to real numbers
- The function value can be interpreted as the long term fraction of time an event occurs
- The function value can also be interpreted as an amount of belief in the occurrence in the event
- The probability of an event E is denoted as $\operatorname{Pr}(E)$
- $\operatorname{Pr}(\Omega)=1$
- $0 \leq \operatorname{Pr}(E) \leq 1$
- $\left(A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)$ are disjoint; $\sum_{i=1}^{\infty} \operatorname{Pr}\left(A_{i}\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{\infty} A_{i}\right)$

Probability

Definition

- Is a function that maps events to real numbers
- The function value can be interpreted as the long term fraction of time an event occurs
- The function value can also be interpreted as an amount of belief in the occurrence in the event
- The probability of an event E is denoted as $\operatorname{Pr}(E)$
- $\operatorname{Pr}(\Omega)=1$
- $0 \leq \operatorname{Pr}(E) \leq 1$
- $\left(A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)$ are disjoint; $\sum_{i=1}^{\infty} \operatorname{Pr}\left(A_{i}\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{\infty} A_{i}\right)$

Examples

- Die roll: $\operatorname{Pr}(\{f\})=\frac{1}{6}$
- Probability of sensor in an area A inside $[0,1] \times[0,1]$ is $\operatorname{Pr}(A)=A$

Conditional probability

Definition

- A and B are two events
- Probability of A given that B has occurred; denoted by $\operatorname{Pr}(A \mid B)$
- Universe is now B
- If $\operatorname{Pr}(B)>0$, then $\operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{A \cap B\}}{\operatorname{Pr}\{B\}}$
- If $\operatorname{Pr}(B)=0$, then $\operatorname{Pr}\{A \mid B\}$ is undefined

Conditional probability

Definition

- A and B are two events
- Probability of A given that B has occurred; denoted by $\operatorname{Pr}(A \mid B)$
- Universe is now B
- If $\operatorname{Pr}(B)>0$, then $\operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{A \cap B\}}{\operatorname{Pr}\{B\}}$
- If $\operatorname{Pr}(B)=0$, then $\operatorname{Pr}\{A \mid B\}$ is undefined

Example

- Suppose you roll a fair six sided die
- What is the probability that the face is two given that the face is even?

Total probability theorem

Definition

- Suppose $B \subseteq \Omega$
- Suppose $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ are disjoint and $\bigcup_{i=1}^{n} A_{i}=\Omega$
- The total probability theorem states that

$$
\operatorname{Pr}\{B\}=\sum_{i=1}^{n} \operatorname{Pr}\left\{A_{i}\right\} \operatorname{Pr}\left\{B \mid A_{i}\right\}
$$

Total probability theorem

Definition

- Suppose $B \subseteq \Omega$
- Suppose $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ are disjoint and $\bigcup_{i=1}^{n} A_{i}=\Omega$
- The total probability theorem states that

$$
\operatorname{Pr}\{B\}=\sum_{i=1}^{n} \operatorname{Pr}\left\{A_{i}\right\} \operatorname{Pr}\left\{B \mid A_{i}\right\}
$$

Question

How to derive the above theorem?

Independent events

Definition

- Events A and B are independent if

$$
\begin{aligned}
\operatorname{Pr}\{A \cap B\} & =\operatorname{Pr}\{A\} \times \operatorname{Pr}\{B\} \\
\operatorname{Pr}\{A \mid B\} & =\operatorname{Pr}\{A\}
\end{aligned}
$$

Independent events

Definition

- Events A and B are independent if

$$
\begin{aligned}
\operatorname{Pr}\{A \cap B\} & =\operatorname{Pr}\{A\} \times \operatorname{Pr}\{B\} \\
\operatorname{Pr}\{A \mid B\} & =\operatorname{Pr}\{A\}
\end{aligned}
$$

Question

- Assume A and B are independent
- Now suppose an event C has occurred
- Are A and B independent given that C has occurred?

Discrete Random Variable

Definition

- $X: \Omega \rightarrow \mathbb{R}$
- X could be discrete or continuous valued
- We consider the case where X is discrete first

Discrete Random Variable

Definition

- $X: \Omega \rightarrow \mathbb{R}$
- X could be discrete or continuous valued
- We consider the case where X is discrete first

Examples

- X is the number of heads in 10 tosses of a coin with bias p
- X is the number of tosses until the first head

Probability Mass Function

Definition

- The probability mass function $p_{X}(x)=\operatorname{Pr}\{X=x\}$
- $p_{X}(x)=\operatorname{Pr}\{\omega: X(\omega)=x\}$
- $p_{X}(x) \geq 0$ and $\sum_{x} p_{X}(x)=1$

Probability Mass Function

Definition

- The probability mass function $p_{X}(x)=\operatorname{Pr}\{X=x\}$
- $p_{X}(x)=\operatorname{Pr}\{\omega: X(\omega)=x\}$
- $p_{X}(x) \geq 0$ and $\sum_{x} p_{X}(x)=1$

Examples

- X is the number of heads in N tosses of a coin with bias p. Then X is $\operatorname{Binomial}(N, p)$
- X is the number of tosses until the first head. Then X is a $\operatorname{Geometric}(p)$ random variable

Probability Distributions

- The cumulative distribution function $F_{X}(x)=\operatorname{Pr}\{X \leq x\}$
- The complementary cumulative distribution function $F_{X}^{c}(x)=\operatorname{Pr}\{X>x\}$

Probability Distributions

- The cumulative distribution function $F_{X}(x)=\operatorname{Pr}\{X \leq x\}$
- The complementary cumulative distribution function $F_{X}^{c}(x)=\operatorname{Pr}\{X>x\}$
- $F_{X}(-\infty)=0, F_{X}(\infty)=1$
- $F_{X}(x)=1-F_{X}^{c}(x)$

Some standard distributions

- Binomial random variable
- Geometric random variable
- Poisson random variable

Binomial

- $p=0.2$
- $p=0.5$
- $p=0.8$

Expectation of a discrete random variable

Definition

- X is a non-negative discrete random variable
- The expectation of X is defined as $\sum_{x} p_{X}(x) x$
- The expectation is denoted as $\mathbb{E} X$

Expectation of a discrete random variable

Definition

- X is a non-negative discrete random variable
- The expectation of X is defined as $\sum_{x} p_{X}(x) x$
- The expectation is denoted as $\mathbb{E} X$

Question

- Suppose X is Uniform on $\{1,2,3, \ldots, 10\}$. What is $\mathbb{E} X$?
- If X is not restricted to be non-negative, how do you think $\mathbb{E} X$ will be defined?

Expectation of a discrete random variable

Properties

- The expectation is linear. Suppose X and Y are two random variables,g then $\mathbb{E}[\alpha X+\beta Y]=\alpha \mathbb{E} X+\beta \mathbb{E} Y$
- Suppose $Y=g(X)$, then $\mathbb{E} Y=\sum_{x} g(x) p_{X}(x)$

Higher moments and Variance

Definition

- The $n^{\text {th }}$ moment of a random variable X is $\mathbb{E} X^{n}$
- The variance of a random variable X is $\mathbb{E}(X-\mathbb{E} X)^{2}$

Higher moments and Variance

Definition

- The $n^{\text {th }}$ moment of a random variable X is $\mathbb{E} X^{n}$
- The variance of a random variable X is $\mathbb{E}(X-\mathbb{E} X)^{2}$

A question

- Find an expression for variance of X in terms of the mean and second moment of X

Conditional expectation

- Conditional probability: $p_{X \mid A}(x)$
- Conditional expectation: $\mathbb{E}[X \mid A]$
- Total expectation theorem: Suppose $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ are disjoint. Then $\mathbb{X}=\operatorname{Pr}\left\{A_{1}\right\} \mathbb{E}\left[X \mid A_{1}\right]+\cdots+\operatorname{Pr}\left\{A_{n}\right\} \mathbb{E}\left[X \mid A_{n}\right]$

Multiple discrete random variables

- X and Y are two discrete random variables
- The joint probability mass function $\operatorname{Pr}\{X=x, Y=y\}$ is denoted as $p_{X, Y}(x, y)$
- The marginal probability mass function $p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$
- The conditional probability mass function $p_{X \mid Y=y}(x)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$
- Suppose X and Y are discrete random variables with probability mass functions $p_{X}(x)$ and $p_{Y}(y)$
- X and Y are independent if $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for all x and y
- X and Y are independent if $p_{X \mid Y=y}(x)=p_{X}(x)$ for all x and y
- $\mathbb{E}[X Y]=\mathbb{E} X \mathbb{E} Y$

Continuous Random Variable

Definition

- $X: \Omega \rightarrow \mathbb{R}$
- X is described by a probability density function f_{X}
- $\operatorname{Pr}\{a \leq X<b\}=\int_{a}^{b} f_{X}(x) d x$
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $\mathbb{E} X=\int_{0}^{\infty} x f_{X}(x) d x$ for non-negative X
- Similar definitions for CDF and CCDF

Continuous Random Variable

Definition

- $X: \Omega \rightarrow \mathbb{R}$
- X is described by a probability density function f_{X}
- $\operatorname{Pr}\{a \leq X<b\}=\int_{a}^{b} f_{X}(x) d x$
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $\mathbb{E} X=\int_{0}^{\infty} x f_{X}(x) d x$ for non-negative X
- Similar definitions for CDF and CCDF

Example

- X is Uniform $[a, b] . f_{X}(x)=\frac{1}{b-a}$ for $a \leq x \leq b$
- X is Normal with mean μ and variance $\sigma^{2} . f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Multiple continuous random variables

Definitions

- X and Y are two continuous random variables
- The joint distribution is $f_{X, Y}(x, y)$
- Marginal distribution of X is $f_{X}(x)$
- Conditional distribution is $f_{X \mid Y=y}(x)$ defined as $\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
- X and Y are independent if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all x and y

Multiple continuous random variables

Definitions

- X and Y are two continuous random variables
- The joint distribution is $f_{X, Y}(x, y)$
- Marginal distribution of X is $f_{X}(x)$
- Conditional distribution is $f_{X \mid Y=y}(x)$ defined as $\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
- X and Y are independent if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all x and y

Question

- Suppose you have a stick of length l
- You break it once at a position uniformly distributed in $[0, l]$ and then again break the left portion at a uniformly distributed position
- What is the joint distribution of the two "left" portions?

Bayes' rule

Definition

- X and Y are two random variables
- $p_{X \mid Y=y}(x)=\frac{p_{X}(x) p_{Y \mid X=x}(y)}{p_{Y}(y)}$
- $p_{X \mid Y=y}(x)=\frac{p_{X}(x) f_{Y \mid X=x}(y)}{f_{Y}(y)}$
- $f_{X \mid Y=y}(x)=\frac{f_{X}(x) p_{Y \mid X=x}(y)}{p_{Y}(y)}$
- $f_{X \mid Y=y}(x)=\frac{f_{X}(x) f_{Y \mid X=x}(y)}{f_{Y}(y)}$

Bayes' rule

Definition

- X and Y are two random variables
- $p_{X \mid Y=y}(x)=\frac{p_{X}(x) p_{Y \mid X=x}(y)}{p_{Y}(y)}$
- $p_{X \mid Y=y}(x)=\frac{p_{X}(x) f_{Y \mid X=x}(y)}{f_{Y}(y)}$
- $f_{X \mid Y=y}(x)=\frac{f_{X}(x) p_{Y \mid X=x}(y)}{p_{Y}(y)}$
- $f_{X \mid Y=y}(x)=\frac{f_{X}(x) f_{Y \mid X=x}(y)}{f_{Y}(y)}$

A question

- Suppose X takes values -1 and 1 with probability p and $1-p$
- Y is normally distributed with mean X and variance of 1
- Suppose you have observed $Y=-0.5$
- What is $p_{X \mid Y=-0.5}(1)$?

Bayesian Inference

Our example problem

- Temperature model

$$
T_{n+1}=T_{n}+I
$$

- We have temperature measurements

$$
M_{n}=T_{n}+N_{n}
$$

- N_{n} is measurement noise - modelled as a Normal ($0, \sigma^{2}$) random variable - independent
 across n.
- How do we find I ?

Another example

No.	$\operatorname{Vr}(\mathrm{V})$	$\operatorname{Ir}(\mathrm{A})$
0	0.909091	0.909091
1	1.000091	0.999092
2	1.182033	1.179673
3	1.363636	1.363636
4	1.818182	1.818182
5	2.455656	2.443439
6	2.728752	
7	1.455465	
8	1.092377	
9	4.555556	

Another example

No.	$\mathrm{Vr}(\mathrm{V})$	$\operatorname{lr}(\mathrm{A})$
0	0.909091	0.909091
1	1.000091	0.999092
2	1.182033	1.179673
3	1.363636	1.363636
4	1.818182	1.818182
5	2.455656	2.443439
6	2.728752	
7	1.455465	
8	1.092377	
9	4.555556	

Another example

No.	$\operatorname{Vr}(\mathrm{V})$	$\operatorname{Ir}(\mathrm{A})$
0	0.909091	0.909091
1	1.000091	0.999092
2	1.182033	1.179673
3	1.363636	1.363636
4	1.818182	1.818182
5	2.455656	2.443439
6	2.728752	2.728752
7	1.455465	1.455465
8	1.092377	1.092377
9	4.555556	4.555556

Another example

No.	$\mathrm{Vr}(\mathrm{V})$	$\operatorname{Ir}(\mathrm{A})$
0	0.909091	0.909091
1	1.000091	0.999092
2	1.182033	1.179673
3	1.363636	1.363636
4	1.818182	1.818182
5	2.455656	2.443439
6	2.728752	2.712477
7	1.455465	1.445348
8	1.092377	1.076233
9	4.555556	4.444444

An example

No.	$\mathrm{Vr}(\mathrm{V})$	$\operatorname{Ir}(\mathrm{A})$	$\mathrm{T}(\mathrm{C})$
0	0.909091	0.909091	25
1	1.000091	0.999092	26
2	1.182033	1.179673	27
3	1.363636	1.363636	25
4	1.818182	1.818182	25
5	2.455656	2.443439	30
6	2.728752		31
7	1.455465		32
8	1.092377		40
9	4.555556		50

An example

No.	$\mathrm{Vr}(\mathrm{V})$	$\operatorname{Ir}(\mathrm{A})$	$\mathrm{T}(\mathrm{C})$
0	0.909091	0.909091	25
1	1.000091	0.999092	26
2	1.182033	1.179673	27
3	1.363636	1.363636	25
4	1.818182	1.818182	25
5	2.455656	2.443439	30
6	2.728752		31
7	1.455465		32
8	1.092377		40
9	4.555556		50
$\mathrm{Ir}=\mathrm{Vr} /(1+0.01 *(T-25))$			

An example

No.	$\mathrm{Vr}(\mathrm{V})$	$\operatorname{Ir}(\mathrm{A})$	$\mathrm{T}(\mathrm{C})$
0	0.909091	0.909091	25
1	1.000091	0.999092	26
2	1.182033	1.179673	27
3	1.363636	1.363636	25
4	1.818182	1.818182	25
5	2.455656	2.443439	30
6	2.728752	2.712477	31
7	1.455465	1.445348	32
8	1.092377	1.076233	40
9	4.555556	4.444444	50
$\mathrm{Ir}=\mathrm{Vr} /(1+0.01 *(T-25))$			

Problem ingredients

- Data

Problem ingredients

- Data with features

Problem ingredients

- Data with features
- A model

Problem ingredients

- Data with features
- A model with parameters

Problem ingredients

- Data with features
- A model with parameters
- A method of choosing parameters for the model

Problem ingredients

- Data with features
- A model with parameters
- A method of choosing parameters for the model from the data

Problem ingredients

- Data with features
- A model with parameters
- A method of choosing parameters for the model from the data (Inference)

Problem ingredients

- Data with features
- A model with parameters
- A method of choosing parameters for the model from the data (Inference)
- A method to predict using the model

Problem ingredients

- Data with features
- A model with parameters
- A method of choosing parameters for the model from the data (Inference)
- A method to predict using the model (Prediction)

Problem ingredients

- Data with features
- A model with parameters
- A method of choosing parameters for the model from the data (Inference)
- A method to predict using the model (Prediction)
- Iterate, evaluate and select models (Model selection)

Example - Regression problem

- Data (with two features or 2 dimensions) is given.
- One feature y is designated as a target variable

Example - Regression problem

- Data (with two features or 2 dimensions) is given.
- One feature y is designated as a target variable
- A model - a linear model for y in x is assumed. Parameters are slope and intercept.

Example - Regression problem

- Data (with two features or 2 dimensions) is given.
- One feature y is designated as a target variable
- A model - a linear model for y in x is assumed. Parameters are slope and intercept.
- We use a squared error minimization technique to find out the parameters.

Example - Regression problem

- Data (with two features or 2 dimensions) is given.
- One feature y is designated as a target variable
- A model - a linear model for y in x is assumed. Parameters are slope and intercept.
- We use a squared error minimization technique to find out the parameters.
- We can use the model for prediction for new values of x.

Example - Regression problem

- Data (with two features or 2 dimensions) is given.
- One feature y is designated as a target variable
- A model - a linear model for y in x is assumed. Parameters are slope and intercept.
- We use a squared error minimization technique to find out the parameters.
- We can use the model for prediction for new values of x.
- Model comparisons can be done, other polynomials in x .

Example - Regression problem

- Data (with two features or 2 dimensions) is given.
- One feature y is designated as a target variable
- A model - a linear model for y in x is assumed. Parameters are slope and intercept.
- We use a squared error minimization technique to find out the parameters.
- We can use the model for prediction for new values of x.
- Model comparisons can be done, other polynomials in x .

A framework for doing Inference, Prediction, Model Selection

- We need a framework for doing the three basic problems that arise.

A framework for doing Inference, Prediction, Model Selection

- We need a framework for doing the three basic problems that arise.
- It seems that we need to find "best" parameters for the model that we have assumed
- An approach which is widely used is to form a loss function or objective function that measures how good the model predicts on training data and use optimization techniques

A framework for doing Inference, Prediction, Model Selection

- We need a framework for doing the three basic problems that arise.
- It seems that we need to find "best" parameters for the model that we have assumed
- An approach which is widely used is to form a loss function or objective function that measures how good the model predicts on training data and use optimization techniques
- In other problems, similar optimization approaches can be used.

A framework for doing Inference, Prediction, Model Selection

- We need a framework for doing the three basic problems that arise.
- It seems that we need to find "best" parameters for the model that we have assumed
- An approach which is widely used is to form a loss function or objective function that measures how good the model predicts on training data and use optimization techniques
- In other problems, similar optimization approaches can be used.
- Another approach is the Bayesian approach.

A question - interpretation of results

$$
y=22.6232 x+4.1200
$$

A question - interpretation of results

$y=22.6232 x+4.1200$

$$
y=18.0137 x+2.9210
$$

Measuring a voltage source

- We measure the value of a DC voltage source.

Measuring a voltage source

- We measure the value of a DC voltage source.

No.	$\mathrm{Vm}(\mathrm{V})$
1	5.5377
2	6.8339
3	2.412
4	5.8622
5	5.3188

Measuring a voltage source

- We measure the value of a DC voltage source.

No.	$\mathrm{Vm}(\mathrm{V})$
1	5.5377
2	6.8339
3	2.7412
4	5.8622
5	5.3188

- We report the average 5.2587.

Measuring a voltage source

- We measure the value of a DC voltage source.

No.	$\mathrm{Vm}(\mathrm{V})$
1	5.5377
2	6.8339
3	2.412
4	5.8622
5	5.3188

- We report the average 5.2587.
- When we report the average we are fitting a constant to the data using minimum squared error.

Measuring a voltage source

- We measure the value of a DC voltage source.

No.	$\mathrm{Vm}(\mathrm{V})$
1	5.5377
2	6.8339
3	2.412
4	5.8622
5	5.3188

- We report the average 5.2587.
- When we report the average we are fitting a constant to the data using minimum squared error.
- We again measure!

Measuring a voltage source

- We measure the value of a DC voltage source.

No.	$\mathrm{Vm}(\mathrm{V})$
1	5.5377
2	6.8339
3	2.7412
4	5.8622
5	5.3188

- We report the average 5.2587.
- When we report the average we are fitting a constant to the data using minimum squared error.
- We again measure!

No.	$\mathrm{Vm}(\mathrm{V})$
1	3.6923
2	4.5664
3	5.3426
4	8.5784
5	7.7694

Measuring a voltage source

- We measure the value of a DC voltage source.

No.	$\mathrm{Vm}(\mathrm{V})$
1	5.5377
2	6.8339
3	2.7412
4	5.8622
5	5.3188

- We report the average 5.2587.
- When we report the average we are fitting a constant to the data using minimum squared error.
- We again measure!

No.	$\mathrm{Vm}(\mathrm{V})$
1	3.6923
2	4.5664
3	5.3426
4	8.5784
5	7.7694

- The new average is 5.9898 .

Measuring a voltage source

- We measure the value of a DC voltage source.

Measuring a voltage source

- We measure the value of a DC voltage source.
- For each measurement there is variation from a constant DC value because of some noise or some source of randomness
- So we will say that the $i^{t h}$ measurement is $5+X_{i} ; X_{i}$ is Gaussian (0, 1).
- What interval shall we report?

Example: Coin bias

- You have a coin, which you use for deciding who gets to bat first
- You want to know(infer) whether the coin is fair or not
- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

Table: 10 coin tosses

Example: Coin bias

- You have a coin, which you use for deciding who gets to bat first
- You want to know(infer) whether the coin is fair or not
- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

Table: 10 coin tosses

- So is the coin biased? What is the bias?

Example: Coin bias

- You have a coin, which you use for deciding who gets to bat first
- You want to know(infer) whether the coin is fair or not
- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

- So is the coin biased? What is the bias?
- What if you know that the coin is not from a government mint?

What have we seen?

- A plethora of seemingly unconnected procedures for doing inference
- A not so easily understood way of reporting results
- An inability to incorporate prior information or domain information

Bayesian approach

- Bayesian belief: A quantification of how much we believe a particular statement is true.

Bayesian approach

- Bayesian belief: A quantification of how much we believe a particular statement is true.
- The value of the dc source is 5 volts (100% belief)
- The value of the dc source is between 4.5 and 5.3 volts.
- We start with a prior belief about the statement

Bayesian approach

- Bayesian belief: A quantification of how much we believe a particular statement is true.
- The value of the dc source is 5 volts (100% belief)
- The value of the dc source is between 4.5 and 5.3 volts.
- We start with a prior belief about the statement
- Then we observe data which depends on the statement

Bayesian approach

- Bayesian belief: A quantification of how much we believe a particular statement is true.
- The value of the dc source is 5 volts (100% belief)
- The value of the dc source is between 4.5 and 5.3 volts.
- We start with a prior belief about the statement
- Then we observe data which depends on the statement
- We update our belief on the basis of our data (inference)

Bayesian approach

- Bayesian belief: A quantification of how much we believe a particular statement is true.
- The value of the dc source is 5 volts (100% belief)
- The value of the dc source is between 4.5 and 5.3 volts.
- We start with a prior belief about the statement
- Then we observe data which depends on the statement
- We update our belief on the basis of our data (inference)
- We use the updated belief to make predictions and model selection.

Connections to probability

- Do we need to develop a new system of thinking based on belief quantities, a new arithmetic for beliefs?

Connections to probability

- Do we need to develop a new system of thinking based on belief quantities, a new arithmetic for beliefs?
- Probability comes to the rescue
- Any coherent belief quantification system should satisfy the rules of probability
- Cox's axiomatic approach
- Dutch book theorem

Connections to probability

- Do we need to develop a new system of thinking based on belief quantities, a new arithmetic for beliefs?
- Probability comes to the rescue
- Any coherent belief quantification system should satisfy the rules of probability
- Cox's axiomatic approach
- Dutch book theorem
- A statement can have a set of possible values; each value has an associated belief
- A random variable can have a set of possible values; the belief is given by the probability distribution

Priors beliefs or prior probabilities

Priors beliefs or prior probabilities

Priors beliefs or prior probabilities

Digression: Bayes' Rule

- X and Y are two discrete random variables
- $\operatorname{Pr}\{X=x \mid Y=y\}=\frac{\operatorname{Pr}\{X=x, Y=y\}}{\operatorname{Pr}\{Y=y\}}$
- Bayes' rule: $\operatorname{Pr}\{X=x \mid Y=y\}=\frac{\operatorname{Pr}\{X=x\} \operatorname{Pr}\{Y=y \mid X=x\}}{\operatorname{Pr}\{Y=y\}}$
- Another form: $\operatorname{Pr}\{X=x \mid Y=y\}=\frac{\operatorname{Pr}\{X=x\} \operatorname{Pr}\{Y=y \mid X=x\}}{\sum_{x^{\prime}} \operatorname{Pr}\left\{X=x^{\prime}\right\} \operatorname{Pr}\left\{Y \mid X=x^{\prime}\right\}}$

Digression: An example for Bayes rule

	Y		
X	1	2	3
1	0.05	0.10	0.05
2	0.10	0.02	0.20
3	0.10	0.28	0.10

Table: Joint probability distribution $\operatorname{Pr}\{X=x, Y=y\}$

Digression: An example for Bayes rule

	Y		
X	1	2	3
1	0.05	0.10	0.05
2	0.10	0.02	0.20
3	0.10	0.28	0.10

Table: Joint probability distribution $\operatorname{Pr}\{X=x, Y=y\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?

Digression: An example for Bayes rule

	Y		
X	1	2	3
1	0.05	0.10	0.05
2	0.10	0.02	0.20
3	0.10	0.28	0.10

Table: Joint probability distribution $\operatorname{Pr}\{X=x, Y=y\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?
- $\operatorname{Pr}\{X=1, Y=3\}=0.05$

Digression: An example for Bayes rule

	Y		
X	1	2	3
1	0.05	0.10	0.05
2	0.10	0.02	0.20
3	0.10	0.28	0.10

Table: Joint probability distribution $\operatorname{Pr}\{X=x, Y=y\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?
- $\operatorname{Pr}\{X=1, Y=3\}=0.05$
- $\operatorname{Pr}\{Y=3\}=0.05+0.20+0.10$

Digression: An example for Bayes rule

	Y		
X	1	2	3
1	0.05	0.10	0.05
2	0.10	0.02	0.20
3	0.10	0.28	0.10

Table: Joint probability distribution $\operatorname{Pr}\{X=x, Y=y\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?
- $\operatorname{Pr}\{X=1, Y=3\}=0.05$
- $\operatorname{Pr}\{Y=3\}=0.05+0.20+0.10$
- $\operatorname{Pr}\{X=1 \mid Y=3\}=\frac{\operatorname{Pr}\{X=1, Y=3\}}{\operatorname{Pr}\{Y=3\}}=\frac{1}{7}$

Digression: An example for Bayes rule

X	1	2	3
1	0.20	0.32	0.48

Table: Marginal probability distribution $\operatorname{Pr}\{X=x\}$

	Y		
X	1	2	3
1	0.2500	0.5000	0.2500
2	0.3125	0.0625	0.6250
3	0.2083	0.5833	0.2083

Table: Conditional probability distribution $\operatorname{Pr}\{Y=y \mid X=x\}$

Digression: An example for Bayes rule

X	1	2	3
1	0.20	0.32	0.48

Table: Marginal probability distribution $\operatorname{Pr}\{X=x\}$

	Y		
X	1	2	3
1	0.2500	0.5000	0.2500
2	0.3125	0.0625	0.6250
3	0.2083	0.5833	0.2083

Table: Conditional probability distribution $\operatorname{Pr}\{Y=y \mid X=x\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?

Digression: An example for Bayes rule

X	1	2	3
1	0.20	0.32	0.48

Table: Marginal probability distribution $\operatorname{Pr}\{X=x\}$

	Y		
X	1	2	3
1	0.2500	0.5000	0.2500
2	0.3125	0.0625	0.6250
3	0.2083	0.5833	0.2083

Table: Conditional probability distribution $\operatorname{Pr}\{Y=y \mid X=x\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?
- $\operatorname{Pr}\{X=1\} \times \operatorname{Pr}\{Y=3 \mid x=1\}=0.20 \times 0.25=0.05$

Digression: An example for Bayes rule

X	1	2	3
1	0.20	0.32	0.48

Table: Marginal probability distribution $\operatorname{Pr}\{X=x\}$

	Y		
X	1	2	3
1	0.2500	0.5000	0.2500
2	0.3125	0.0625	0.6250
3	0.2083	0.5833	0.2083

Table: Conditional probability distribution $\operatorname{Pr}\{Y=y \mid X=x\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?
- $\operatorname{Pr}\{X=1\} \times \operatorname{Pr}\{Y=3 \mid x=1\}=0.20 \times 0.25=0.05$
- $\operatorname{Pr}\{X=1\} \times \operatorname{Pr}\{Y=3 \mid x=1\}+\operatorname{Pr}\{X=2\} \times \operatorname{Pr}\{Y=3 \mid x=2\}+\operatorname{Pr}\{X=3\} \times \operatorname{Pr}\{Y=3 \mid x=3\}=$ $0.05+0.2+0.1=0.35$

Digression: An example for Bayes rule

X	1	2	3
1	0.20	0.32	0.48

Table: Marginal probability distribution $\operatorname{Pr}\{X=x\}$

	Y		
X	1	2	3
1	0.2500	0.5000	0.2500
2	0.3125	0.0625	0.6250
3	0.2083	0.5833	0.2083

Table: Conditional probability distribution $\operatorname{Pr}\{Y=y \mid X=x\}$

- What is $\operatorname{Pr}\{X=1 \mid Y=3\}$?
- $\operatorname{Pr}\{X=1\} \times \operatorname{Pr}\{Y=3 \mid x=1\}=0.20 \times 0.25=0.05$
- $\operatorname{Pr}\{X=1\} \times \operatorname{Pr}\{Y=3 \mid x=1\}+\operatorname{Pr}\{X=2\} \times \operatorname{Pr}\{Y=3 \mid x=2\}+\operatorname{Pr}\{X=3\} \times \operatorname{Pr}\{Y=3 \mid x=3\}=$ $0.05+0.2+0.1=0.35$
- $\operatorname{Pr}\{Y=3 \mid X=1\}=\frac{\operatorname{Pr}\{X=1\} \times \operatorname{Pr}\{Y=3 \mid x=1\}}{\operatorname{Pr}\{X=1\} \times \operatorname{Pr}\{Y=3 \mid x=1\}+\operatorname{Pr}\{X=2\} \times \operatorname{Pr}\{Y=3 \mid x=2\}+\operatorname{Pr}\{X=3\} \times \operatorname{Pr}\{Y=3 \mid x=3\}}=\frac{1}{7}$

Example: Bayesian inference of bias of a coin

- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

Table: 10 coin tosses

Example: Bayesian inference of bias of a coin

- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

Table: 10 coin tosses

- $\operatorname{Pr}\{Y=y \mid \Theta\}=\Theta^{7}(1-\Theta)^{3}$

Example: Bayesian inference of bias of a coin

- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

Table: 10 coin tosses

- $\operatorname{Pr}\{Y=y \mid \Theta\}=\Theta^{7}(1-\Theta)^{3}$
- $\operatorname{Pr}\{\Theta=0.4\}=0.2, \operatorname{Pr}\{\Theta=0.5\}=0.6, \operatorname{Pr}\{\Theta=0.6\}=0.2$

Example: Bayesian inference of bias of a coin

- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

Table: 10 coin tosses

- $\operatorname{Pr}\{Y=y \mid \Theta\}=\Theta^{7}(1-\Theta)^{3}$
- $\operatorname{Pr}\{\Theta=0.4\}=0.2, \operatorname{Pr}\{\Theta=0.5\}=0.6, \operatorname{Pr}\{\Theta=0.6\}=0.2$
- $\operatorname{Pr}\{Y=y\}=0.2 \times(0.4)^{7}(0.6)^{3}+0.6 \times(0.5)^{10}+0.2 \times(0.6)^{7}(0.4)^{3}=0.001$

Example: Bayesian inference of bias of a coin

- We observe the following sequence as the result of coin tosses

	1	2	3	4	5	6	7	8	9	10
Y	H	H	L	L	L	H	H	H	H	H

Table: 10 coin tosses

- $\operatorname{Pr}\{Y=y \mid \Theta\}=\Theta^{7}(1-\Theta)^{3}$
- $\operatorname{Pr}\{\Theta=0.4\}=0.2, \operatorname{Pr}\{\Theta=0.5\}=0.6, \operatorname{Pr}\{\Theta=0.6\}=0.2$
- $\operatorname{Pr}\{Y=y\}=0.2 \times(0.4)^{7}(0.6)^{3}+0.6 \times(0.5)^{10}+0.2 \times(0.6)^{7}(0.4)^{3}=0.001$
- $\operatorname{Pr}\{\Theta=0.4 \mid Y=y\}=\frac{0.2 \times(0.4)^{7}(0.6)^{3}}{0.001}=0.07$
- $\operatorname{Pr}\{\Theta=0.5 \mid Y=y\}=\frac{0.6 \times(0.5)^{10}}{0.001}=0.58$
- $\operatorname{Pr}\{\Theta=0.6 \mid Y=y\}=\frac{0.2 \times(0.6)^{7}(0.4)^{3}}{0.001}=0.35$

The Bayesian Procedure

$$
\operatorname{Pr}\{\Theta \mid Y=y\}=
$$

The Bayesian Procedure

Bayesian voltage measurement

- Let Θ be the unknown voltage

Bayesian voltage measurement

- Let Θ be the unknown voltage
- We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)

Bayesian voltage measurement

- Let Θ be the unknown voltage
- We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)
- We measure a value 6.5532 . Using Bayes rule we obtain a posterior distribution from the prior

Bayesian voltage measurement

- Let Θ be the unknown voltage
- We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)
- We measure a value 6.5532. Using Bayes rule we obtain a posterior distribution from the prior
- Suppose new measurements are obtained. Then the current posterior is our current belief and plays the role of the prior for the next set of Bayesian updates

Bayesian voltage measurement

- Let Θ be the unknown voltage
- We believe that Θ could take values equally likely between 4.5 and 5.5 (the prior)
- We measure a value 6.5532 . Using Bayes rule we obtain a posterior distribution from the prior
- Suppose new measurements are obtained. Then the current posterior is our current belief and plays the role of the prior for the next set of Bayesian updates

Bayesian coin bias

- Let Θ be the unknown bias of the coin

Bayesian coin bias

- Let Θ be the unknown bias of the coin
- We believe that the coin is unfair - the prior represents our belief

Bayesian coin bias

- Let Θ be the unknown bias of the coin
- We believe that the coin is unfair - the prior represents our belief
- We count 70 heads happening in 100 tosses of the coin

Bayesian coin bias

- Let Θ be the unknown bias of the coin
- We believe that the coin is unfair - the prior represents our belief
- We count 70 heads happening in 100 tosses of the coin
- Our posterior belief is as shown.

Bayesian regression

- Suppose we observe data as shown.

Bayesian regression

- Suppose we observe data as shown.
- We believe that the data can be explained as $y=a x+b+\epsilon$, where $\epsilon \sim \mathcal{N}(0, \tau)$.

Bayesian regression

- Suppose we observe data as shown.
- We believe that the data can be explained as $y=a x+b+\epsilon$, where $\epsilon \sim \mathcal{N}(0, \tau)$.
- We believe that $a \sim \mathcal{N}(0,100), b \sim \mathcal{N}(0,100), \tau \sim \operatorname{Gamma}(0.1,0.1)$.

Bayesian regression

- Suppose we observe data as shown.
- We believe that the data can be explained as $y=a x+b+\epsilon$, where $\epsilon \sim \mathcal{N}(0, \tau)$.
- We believe that $a \sim \mathcal{N}(0,100), b \sim \mathcal{N}(0,100), \tau \sim \operatorname{Gamma}(0.1,0.1)$.
- Suppose we use the data to obtain the posteriors on a, b, and τ. These posteriors are shown.

Bayesian regression

- Suppose we observe data as shown.
- We believe that the data can be explained as $y=a x+b+\epsilon$, where $\epsilon \sim \mathcal{N}(0, \tau)$.
- We believe that $a \sim \mathcal{N}(0,100), b \sim \mathcal{N}(0,100), \tau \sim \operatorname{Gamma}(0.1,0.1)$.
- Suppose we use the data to obtain the posteriors on a, b, and τ. These posteriors are shown.
- Introduction to Bayesian approach
- Probability for Bayesian inference - Bayes rule
- Examples of Bayesian inference

Computing the posterior

$$
\operatorname{Pr}\{\Theta \mid Y=y\}=\frac{\operatorname{Pr}\{\Theta\} \operatorname{Pr}\{Y=y \mid \Theta\}}{\operatorname{Pr}\{Y=y\}}
$$

- Computing the term in the denominator is hard!

Approximating the prior and likelihood

- The prior and likelihood functions are chosen such that the posterior distribution is known in closed form.
- Furthermore, the posterior distribution is "similar" to the prior distribution
- This is useful for updating the posterior for a sequence of observations

Approximating the prior and likelihood

- The prior and likelihood functions are chosen such that the posterior distribution is known in closed form.
- Furthermore, the posterior distribution is "similar" to the prior distribution
- This is useful for updating the posterior for a sequence of observations
- For example, earlier we had the prior $\operatorname{Pr}\{\Theta=0.4\}=0.2, \operatorname{Pr}\{\Theta=0.5\}=0.6, \operatorname{Pr}\{\Theta=0.6\}=0.2$
- The likelihood $\operatorname{Pr}\{Y=y \mid \Theta\}=\Theta^{y}(1-\Theta)^{10-y}$
- Suppose the posterior $\operatorname{Pr}\{\Theta \mid Y=y\}$ needs to have the same mathematical form as the likelihood
- Choose $\operatorname{Pr}\{\Theta\} \propto \Theta^{a}(1-\Theta)^{b}$
- In fact, choose $\operatorname{Pr}\{\Theta\}=\frac{\Theta^{a-1}(1-\Theta)^{b-1}}{B(a, b)}$ (actually, this is the PDF $f_{\Theta}($.$) of a Beta distribution)$

Approximating the prior and likelihood

- The prior and likelihood functions are chosen such that the posterior distribution is known in closed form.
- Furthermore, the posterior distribution is "similar" to the prior distribution
- This is useful for updating the posterior for a sequence of observations
- For example, earlier we had the prior $\operatorname{Pr}\{\Theta=0.4\}=0.2, \operatorname{Pr}\{\Theta=0.5\}=0.6, \operatorname{Pr}\{\Theta=0.6\}=0.2$
- The likelihood $\operatorname{Pr}\{Y=y \mid \Theta\}=\Theta^{y}(1-\Theta)^{10-y}$
- Suppose the posterior $\operatorname{Pr}\{\Theta \mid Y=y\}$ needs to have the same mathematical form as the likelihood
- Choose $\operatorname{Pr}\{\Theta\} \propto \Theta^{a}(1-\Theta)^{b}$
- In fact, choose $\operatorname{Pr}\{\Theta\}=\frac{\Theta^{a-1}(1-\Theta)^{b-1}}{B(a, b)}$ (actually, this is the PDF $f_{\Theta}($.) of a Beta distribution)
- $\operatorname{Pr}\{\Theta \mid Y=y\} \propto \Theta^{a-1+y}(1-\Theta)^{b+9-y}$

Approximating the prior and likelihood

- The prior and likelihood functions are chosen such that the posterior distribution is known in closed form.
- Furthermore, the posterior distribution is "similar" to the prior distribution
- This is useful for updating the posterior for a sequence of observations
- For example, earlier we had the prior $\operatorname{Pr}\{\Theta=0.4\}=0.2, \operatorname{Pr}\{\Theta=0.5\}=0.6, \operatorname{Pr}\{\Theta=0.6\}=0.2$
- The likelihood $\operatorname{Pr}\{Y=y \mid \Theta\}=\Theta^{y}(1-\Theta)^{10-y}$
- Suppose the posterior $\operatorname{Pr}\{\Theta \mid Y=y\}$ needs to have the same mathematical form as the likelihood
- Choose $\operatorname{Pr}\{\Theta\} \propto \Theta^{a}(1-\Theta)^{b}$
- In fact, choose $\operatorname{Pr}\{\Theta\}=\frac{\Theta^{a-1}(1-\Theta)^{b-1}}{B(a, b)}$ (actually, this is the PDF $f_{\Theta}($.) of a Beta distribution)
- $\operatorname{Pr}\{\Theta \mid Y=y\} \propto \Theta^{a-1+y}(1-\Theta)^{b+9-y}$
- Then $\operatorname{Pr}\{\Theta \mid Y=y\}=\frac{\Theta^{a-1+y}(1-\Theta)^{b+9-y}}{B(a-1+y, b+9-y)}$

Samples from the posterior distribution

$$
\begin{aligned}
\operatorname{Pr}\{\Theta \mid Y=y\} & =\frac{\operatorname{Pr}\{\Theta\} \operatorname{Pr}\{Y=y \mid \Theta\}}{\operatorname{Pr}\{Y=y\}} \\
\operatorname{Pr}\{\Theta \mid Y=y\} \quad & \propto \operatorname{Pr}\{\Theta\} \operatorname{Pr}\{Y=y \mid \Theta\}
\end{aligned}
$$

- We do not know what the normalized posterior distribution is!
- Suppose we have a mechanism for generating samples using the unnormalized posterior distribution
- The empirical distribution of the samples closely approximates the normalized posterior distribution.
- Markov chain Monte Carlo is a technique for obtaining samples from the unnormalized posterior distribution.

Sampling from a distribution

- You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Sampling from a distribution

- You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

- rand() gives you a number uniformly distributed between 0 and 1

Sampling from a distribution

- You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

- rand() gives you a number uniformly distributed between 0 and 1

```
import numpy as np
CDF = [0,0.1,0.3,0.5,0.6,1]
def sampleFromCDF():
    unifSample = np.random.rand()
    for i in [0,1,2,3,4]:
        if (unifSample > CDF[i] and
            unifSample <= CDF[i + 1]):
            return i + 1
```


Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

Acceptance-Rejection sampling

You want to generate samples from the given distribution

x	0	1	2	3	4	5
PMF	0	0.1	0.2	0.2	0.1	0.4
CDF	0	0.1	0.3	0.5	0.6	1

- Let the number of accepted points be $N(x)$ and total points be N
- Then $N(x) \approx \frac{1}{6} N \times \operatorname{Pr}\{X=x\}$ for every large N
- Empirical probability or $\frac{N(x)}{N}$ is $\operatorname{Pr}\{X=x\}$
- Note that even if $\operatorname{Pr}\{X=x\}$ is not normalized, this would work! How?

Acceptance-Rejection sampling

- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- Assume that $P_{X}(x)$ is known only upto a normalizing constant

Acceptance-Rejection sampling

- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- Assume that $P_{X}(x)$ is known only upto a normalizing constant
- Suppose there is a distribution $Q_{X}(x)$ such that there is a $M>0$ for which

$$
P_{X}(x) \leq M Q_{X}(x)
$$

Acceptance-Rejection sampling

- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- Assume that $P_{X}(x)$ is known only upto a normalizing constant
- Suppose there is a distribution $Q_{X}(x)$ such that there is a $M>0$ for which

$$
P_{X}(x) \leq M Q_{X}(x)
$$

- Sample $x \sim Q_{X}($.$) and u \sim$ Uniform[0, 1$]$
- If $u<\frac{P_{X}(x)}{M Q_{X}(x)}$ accept x , else reject x

Acceptance-Rejection sampling

- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- Assume that $P_{X}(x)$ is known only upto a normalizing constant
- Suppose there is a distribution $Q_{X}(x)$ such that there is a $M>0$ for which

$$
P_{X}(x) \leq M Q_{X}(x)
$$

- Sample $x \sim Q_{X}($.$) and u \sim$ Uniform[0, 1$]$
- If $u<\frac{P_{X}(x)}{M Q_{X}(x)}$ accept x , else reject x
- Acceptance rate is $\frac{1}{M}$
- Low acceptance rate, inefficient especially in high dimensions
- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- But $P_{X}(x)$ is known only upto a normalizing constant

Metropolis-Hastings sampler

- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- But $P_{X}(x)$ is known only upto a normalizing constant
- Suppose we pick an initial point x_{0} in the domain of P_{X}
- We sample a x_{1} according to a proposal distribution $Q_{X \mid X^{\prime}}\left(x \mid x^{\prime}\right)$
- We accept x_{1} with the probability $\min \left(1, \frac{P_{X}\left(x_{1}\right) Q_{X \mid X^{\prime}}\left(x_{0} \mid x_{1}\right)}{P_{X}\left(x_{0}\right) Q_{X \mid X^{\prime}}\left(x_{1} \mid x_{0}\right)}\right)$.

Metropolis-Hastings sampler

- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- But $P_{X}(x)$ is known only upto a normalizing constant
- Suppose we pick an initial point x_{0} in the domain of P_{X}
- We sample a x_{1} according to a proposal distribution $Q_{X \mid X^{\prime}}\left(x \mid x^{\prime}\right)$
- We accept x_{1} with the probability $\min \left(1, \frac{P_{X}\left(x_{1}\right) Q_{X \mid X^{\prime}}\left(x_{0} \mid x_{1}\right)}{P_{X}\left(x_{0}\right) Q_{X \mid X^{\prime}}\left(x_{1} \mid x_{0}\right)}\right)$.
- We sample a x_{2} according to a proposal distribution $Q_{X \mid X^{\prime}}\left(x \mid x^{\prime}\right)$
- We accept x_{2} with the probability $\min \left(1, \frac{P_{X}\left(x_{2}\right) Q_{X \mid X^{\prime}}\left(x_{1} \mid x_{0}\right)}{P_{X}\left(x_{1}\right) Q_{X \mid X^{\prime}}\left(x_{2} \mid x_{1}\right)}\right)$.

Metropolis-Hastings sampler

- Suppose there is a distribution $P_{X}(x)$ that you want to draw samples from
- But $P_{X}(x)$ is known only upto a normalizing constant
- Suppose we pick an initial point x_{0} in the domain of P_{X}
- We sample a x_{1} according to a proposal distribution $Q_{X \mid X^{\prime}}\left(x \mid x^{\prime}\right)$
- We accept x_{1} with the probability $\min \left(1, \frac{P_{X}\left(x_{1}\right) Q_{X \mid X^{\prime}}\left(x_{0} \mid x_{1}\right)}{P_{X}\left(x_{0}\right) Q_{X \mid X^{\prime}}\left(x_{1} \mid x_{0}\right)}\right)$.
- We sample a x_{2} according to a proposal distribution $Q_{X \mid X^{\prime}}\left(x \mid x^{\prime}\right)$
- We accept x_{2} with the probability $\min \left(1, \frac{P_{X}\left(x_{2}\right) Q_{X \mid X^{\prime}}\left(x_{1} \mid x_{0}\right)}{P_{X}\left(x_{1}\right) Q_{X \mid X^{\prime}}\left(x_{2} \mid x_{1}\right)}\right)$. - ...

How to do Bayesian voltage measurement?

```
import pymc
import numpy as np
import matplotlib.pyplot as plt
number_measurements = 200;
y = np.random.normal(5, l, number_measurements)
# Prior
mu = pymc.Uniform('mu', lower = 4.5, upper = 5.5)
# Likelihood
y_obs = pymc.Normal('y_obs', mu = mu, tau = l, value = y, observed = True)
#-Inference
m = pymc.Model([mu, y])
mc = pymc.MCMC(m)
mc.sample(iter=15000, burn=10000)
# Posterior
plt.hist(mu.trace(), 25, normed=True, label='post');
```


How to find the bias of a coin?

```
n}=10
h = 70
alpha = 1
beta = 3
p = pymc.Beta('p', alpha=alpha, beta=beta)
y = pymc.Binomial'('y', n=n, p=p, value=h, observed=True)
m = pymc.Model([p, y])
mc = pymc.MCMC(m, )
mc.sample(iter=11000, burn=10000)
plt.hist(p.trace(), 25, normed=True, label='post');
plt.xlabel('Theta')
plt.show()
```


How to do Bayesian regression?

```
# Generating sampled observed data
n = 21
a = 6
b}=
sigma = 2
x = np.linspace(0, l, n)
y_obs = a*x + b + np.random.normal(0, sigma, n)
data = pd.DataFrame(np.array([x, y_obs]).T, columns=['x', 'y'])
data.plot(x = 'x', y = ' y', kind ='scatter', s = 50);
plt.grid()
# Define priors
a = pymc.Normal('slope', mu=0, tau=1.0/10**2)
b = pymc.Normal('intercept', mu=0, tau=1.0/10**2)
tau = pymc.Gamma("tau", alpha=0.1, beta=0.1)
# Define likelihood
@pymc.deterministic
def mu(a=a, b=b, x=x):
    return a*x + b
y = pymc.Normal('y', mu=mu, tau=tau, value=y_obs, observed=True)
# Inference
m = pymc.Model([a, b, tau, x, y])
mc = pymc.MCMC(m)
mc.sample(iter=11000, burn=10000)
# Posterior
abar = a.stats()['mean']
bbar = b.stats()['mean']
data.plot( }\textrm{x}=\mp@subsup{'}{}{\prime}\mp@subsup{x}{}{\prime},\textrm{y}=\mp@subsup{'}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ , kind='scatter', s=50);
xp = np.array([x.min(),' x.max()])
plt.plot(a.trace()*xp[!, None] + b.trace(), c='red', alpha=0.01)
plt.plot(xp, abar*xp + bbar, linewidth=2, c='red');
plt.show()
```


Revisiting conditional independence

- Conditional independence for events
- A, B, C are three events, which are subsets of Ω and elements of \mathcal{F}
- The events A and B are said to be independent if

$$
\operatorname{Pr}(A B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

- The events A and B are said to be conditionally independent given the event C if

$$
\operatorname{Pr}(A B \mid C)=\operatorname{Pr}(A \mid C) \operatorname{Pr}(B \mid C)
$$

- Conditional independence for discrete random variables
- Let us consider discrete random variables X, Y, and Z.
- X and Y are conditionally independent given Z if

$$
\operatorname{Pr}(X=x, Y=y \mid Z=z)=\operatorname{Pr}(X=x \mid Z=z) \operatorname{Pr}(Y=y \mid Z=z)
$$

for every x, y, z

- The joint conditional probability distribution factors into the product of the individual conditional probability distributions

Discrete time Markov Chains

- We are modelling a system evolution in discrete time
- The state space is assumed to be discrete: $\mathcal{S}=\{0,1,2,3, \ldots, s\}$
- The system evolution

$$
\left(X_{0}, X_{1}, X_{2}, X_{3}, \ldots, X_{n}, \ldots\right)
$$

is a discrete time Markov chain (DTMC) iff

$$
\operatorname{Pr}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots\right\}=\operatorname{Pr}\left\{X_{n+1}=j \mid X_{n}=i\right\}
$$

- Note that the LHS contains three parameters $-n, i, j$ and is denoted by $p_{i, j}(n)$
- The probability $p_{i, j}(n)$ is the transition probability of the Markov chain from state i to state j at time n.
- The above conditional independence property is called the Markov property.
- The Markov property says that given the present the future probabilistic evolution of the random process is independent of the past

Exercise - I

- Suppose I take a coin and toss it continuously. Each toss is independent of any other toss.
- Whenever I see a heads on a coin toss I get Re. 1
- Let the probability of getting a heads be p. Suppose p does not change with the tosses.
- Let the amount that I earn on the $n^{\text {th }}$ coin toss be X_{n}
- Then $\operatorname{Pr}\left\{X_{n}=1\right\}=p$ and $\operatorname{Pr}\left\{X_{n}=1\right\}=1-p$
- Consider

$$
\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}, \ldots\right)
$$

- Is the above random process a Markov chain?

Exercise - I

- Suppose I take a coin and toss it continuously. Each toss is independent of any other toss.
- Whenever I see a heads on a coin toss I get Re. 1
- Let the probability of getting a heads be p. Suppose p does not change with the tosses.
- Let the amount that I earn on the $n^{\text {th }}$ coin toss be X_{n}
- Then $\operatorname{Pr}\left\{X_{n}=1\right\}=p$ and $\operatorname{Pr}\left\{X_{n}=1\right\}=1-p$
- Consider

$$
\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}, \ldots\right)
$$

- Is the above random process a Markov chain?
- Yes!
- $\operatorname{Pr}\left\{X_{n}=1 \mid X_{n-1}=i, X_{n-2}=i_{n-2}, \ldots\right\}=p$.
- Any IID process is Markov!

Exercise - II

- Let us continue with the coin tossing experiment in the previous slide
- Consider

$$
\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}, \ldots\right)
$$

as before

- Now let $Y_{n}=\sum_{k=1}^{n} X_{k}$.
- Consider

$$
\left(Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}, \ldots\right)
$$

- Is the above process Markov?

Exercise - II

- Let us continue with the coin tossing experiment in the previous slide
- Consider

$$
\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}, \ldots\right)
$$

as before

- Now let $Y_{n}=\sum_{k=1}^{n} X_{k}$.
- Consider

$$
\left(Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}, \ldots\right)
$$

- Is the above process Markov?
- Yes!
- What all values can Y_{n} take?
- $\operatorname{Pr}\left\{Y_{n}=j \mid Y_{n-1}=i, Y_{n-2}=i_{n-2}, \ldots\right\}=\operatorname{Pr}\left\{X_{n}=j-i \mid Y_{n-1}=i\right\}$
- The probability on the RHS is non-zero only for $j=i$ or $j=i+1$

Simulating DTMCs

```
transition_probability_matrix = [0.1, 0.1, 0.8;
    0.5, 0.3, 0.2;
    0.4, 0.1, 0.5];
initial_state = 1;
current_state = initial_state;
for i = 1: number_of_simulated_steps
    transition_probability = transition_probability_matrix( current_state , : ) ;
    next_state = sample_from_pmf (transition_probability);
    current_state = next_state;
end
```


Specification of a DTMC model

- Specification of the state space \mathcal{S}
- Specification of the transistion probability $p_{i, j}(n)$
- Starting state*

Homogeneous DTMCs

- A DTMC is said to be (time) homogeneous iff the transition probabilities $p_{i, j}(n)$ do not depend on time, i.e.,

$$
p_{i, j}(n)=p_{i, j}
$$

- A homogeneous DTMC is then fully represented by its transition probability matrix P, where $[P]_{i, j}=p_{i, j}$
- For a homogeneous DTMC we can talk about n step transition probabilities

$$
p_{i, j}^{(n)}=\operatorname{Pr}\left\{X_{n}=j \mid X_{0}=i\right\}
$$

i.e., the probability that the Markov chain will move from i to j in $n \geq 1$ steps.

- We can also talk about an n step transition probability matrix $P^{(n)}$, where $\left[P^{(n)}\right]_{i, j}=p_{i, j}^{(n)}$.

State after n steps

- Suppose $X_{0}=i$
- We let the DTMC evolve and we are interested in the state after n steps
- Is this a random variable?

State after n steps

- Suppose $X_{0}=i$
- We let the DTMC evolve and we are interested in the state after n steps
- Is this a random variable? This is the random variable X_{n}

State after n steps

- Suppose $X_{0}=i$
- We let the DTMC evolve and we are interested in the state after n steps
- Is this a random variable? This is the random variable X_{n}
- What is the distribution of X_{n} ?

State after n steps

- Suppose $X_{0}=i$
- We let the DTMC evolve and we are interested in the state after n steps
- Is this a random variable? This is the random variable X_{n}
- What is the distribution of X_{n} ? This is the n-step probabilities $p_{i, j}^{(n)}$

Stationary distribution

$$
P=\left[\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.5 & 0.3 & 0.2 \\
0.4 & 0.1 & 0.5
\end{array}\right]
$$

Stationary distribution

$$
P=\left[\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.5 & 0.3 & 0.2 \\
0.4 & 0.1 & 0.5
\end{array}\right]
$$

- $\lim _{n \rightarrow \infty} p_{i, j}^{(n)}=\pi_{j}$
- A solution to $\pi=\pi P$ is $\pi=[0.3173,0.1250,0.5577]$

Markov Chain Monte Carlo Samplers

- A Markov Chain Monte Carlo (MCMC) sampler is basically a Markov chain with the stationary distribution being the posterior that we want to sample from.

References

- MIT Opencourseware - 6.041 (notes, exercises, video lectures)
- Introduction to Probability 2nd Ed. (Athena Scientific) - Bertsekas and Tsitsiklis
- An exploration of random processes for scientists and engineers - Bruce Hajek
- John K. Kruschke - Doing Bayesian Data Analysis - Academic Press (2010)
- Andrieu et al. - An Introduction to MCMC for Machine Learning, Machine Learning (50), 2003

Thank you!
Contact: vineethbs@gmail.com

