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The bottom line

The vortex ansatz produces vector bundles with many
symmetries.

It can be used to dimensionally reduce several PDE to simpler
PDE.

Since systems of PDE might be an important future direction
the vortex ansatz is a fertile testing ground.

Has been applied to Hermitian-Einstein metrics (GP), the
KYM equations (GP-GF-AC-P-Y), the vector bundle MA
equation (P), Gieseker stability (Ghosh), CYM equations (P,
Ghosh), the Demailly systems (Mandal), and the vector
bundle J-equation (Takahashi) to prove
Kobayashi-Hitchin-Donaldson-Uhlenbeck-Yau-type
correspondences.
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The vortex ansatz

Take (S = Σ× CP1, ω = π∗1ωΣ + 4
τ π
∗
2ωFS) where Σ is a

compact Riemann surface and ωΣ is the curvature of an
ample bundle (L, h0). SU(2) acts on S .

Let V be an extension

0→ L1 → V → L2 → 0

L1 = π∗1((r1 + 1)L)⊗ π∗2(r2O(2))

L2 = π∗1(r1L)⊗ π∗2((r2 + 1)O(2))

If φ ∈ H0(Σ, L), V has second fundamental form π∗1φ⊗ π∗2ζ
where ζ =

√
8πdz

τ(1+|z|2)
⊗ dz̄ .

Consider a smooth metric h on L and a smooth function f2 on
Σ. Put h1 = π∗1(hf2

8π
τ hr1

0 )⊗ π∗2(h2r2
FS ) on L1 and

h2 = π∗1(f2h
r1
0 )⊗ π∗2(h2r2+2

FS ) on L2.

Can be extended to higher ranks and higher-dimensional Σ.
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Hermitian-Einstein (HE) metrics

The Hermitian-Einstein equation
√
−1Θ ∧ ω = λω2 on a

vortex bundle boils down to the vortex equation√
−1Θh =

τ−|φ|2h
2 ωΣ.

This equation can be solved using the Kazdan-Warner theory
(Garcia-Prada) iff c1(L) < τ(Vol(Σ)

4π , which is precisely the
Mumford stability condition for invariant subsheaves.

Solving using the method of continuity:
√
−1Θ0 +

√
−1∂∂̄ft = u1−t τ−|φ|

2
h0
e−ft

2 ωΣ where f0 = 0,√
−1Θ0 = cωΣ > 0, |φ|2h0

< τ
2 , and u = 2c

τ−|φ|2h0

.
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Hermitian-Einstein (HE) metrics

Linearisation:
√
−1∂∂̄v − u1−t |φ|

2
h0
e−ft

2 vωΣ whose kernel is
trivial and is hence an isomorphism. By the inf.dim. IFT, the
set of 0 ≤ t ≤ 1 solving the equation is open.

Closedness: Since√
−1∂∂̄|φ|2ht = −

√
−1Θt |φ|2ht +∇1,0φ ∧∇0,1φ†, by max.

princ. |φ|2ht ≤ τ . By max prin, ‖ft‖ ≤ C (when
0 < δ ≤ t ≤ 1) and hence by elliptic theory we have a priori
estimates. By Arzela-Ascoli we are done.

Uniqueness is by max prin.
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princ. |φ|2ht ≤ τ . By max prin, ‖ft‖ ≤ C (when
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Uniqueness is by max prin.
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Kähler-Yang-Mills (KYM) and offshoots

Motivated by the moduli problem for triples (M, L,E ), and
physical considerations AC, GF, and GP came up with (and
studied) the KYM system of PDE:

√
−1Θ ∧ ωn−1 = λωnId ,

Sωω
n + αtr((

√
−1Θ)2)ωn−2 = cωn.

Likewise, we came up with a toy model: The CYM equations:√
−1Θ ∧ ωn−1 = λωnId , ωn + αtr((

√
−1Θ)2)ωn−2 = η.

Ghosh came up with a KE version of the KYM equations:√
−1Θ ∧ ωn−1 = λωnId ,

ωn − Ce−φ + αtr((
√
−1Θ)2)ωn−2 = cωn.

Further generalisations due to Schlitzer-Stoppa and
Scarpa-Stoppa.

The vortex ansatz provides examples of solutions by reducing
the PDE to a system on a Riemann surface. AC,GF, GP, P,
and Yao studied the resulting gravitating vortex equations. (A
special case is EB equations studied extensively by Yang.)
Ghosh proved existence for the CYM equations, and almost
HE equations (Gieseker stability) with this ansatz.
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Likewise, we came up with a toy model: The CYM equations:√
−1Θ ∧ ωn−1 = λωnId , ωn + αtr((

√
−1Θ)2)ωn−2 = η.

Ghosh came up with a KE version of the KYM equations:√
−1Θ ∧ ωn−1 = λωnId ,

ωn − Ce−φ + αtr((
√
−1Θ)2)ωn−2 = cωn.

Further generalisations due to Schlitzer-Stoppa and
Scarpa-Stoppa.

The vortex ansatz provides examples of solutions by reducing
the PDE to a system on a Riemann surface. AC,GF, GP, P,
and Yao studied the resulting gravitating vortex equations. (A
special case is EB equations studied extensively by Yang.)
Ghosh proved existence for the CYM equations, and almost
HE equations (Gieseker stability) with this ansatz.
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Vector bundle Monge-Ampére equation

Mumford stability involves the first Chern class and
corresponds to HE metrics. As a consequence of solvability,
the Kobayashi-Lübke-Bogomolov-Miyaoka-Yau inequality is
met.
Natural questions: Is there a (non-asymptotic) stability
condition involving higher Chern classes that corresponds to a
PDE? If so, does its solvability imply inequalities between
classes other than c1, c2?
For the second question, a line bundle version of it (higher
Chern character classes) is the deformed Hermitian-Yang-Mills
(dHYM) equation (Jacob, Yau, Collins, Xie, Han, Jin, G.
Chen, Chu, Lee, Takahashi, Ballal, P, etc).
The dHYM equation in the case of surfaces boils down to the
usual Monge-Ampère equation ωn

φ = η.
Motivated by this observation, we came up with the vector
bundle Monge-Ampère equation:

(
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Mumford stability involves

the first Chern class and
corresponds to HE metrics. As a consequence of solvability,
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the Kobayashi-Lübke-Bogomolov-Miyaoka-Yau inequality is
met.
Natural questions: Is there a (

non-asymptotic) stability
condition involving higher Chern classes that corresponds to a
PDE? If so, does its solvability imply inequalities between
classes other than c1, c2?
For the second question, a line bundle version of it (higher
Chern character classes) is the deformed Hermitian-Yang-Mills
(dHYM) equation (Jacob, Yau, Collins, Xie, Han, Jin, G.
Chen, Chu, Lee, Takahashi, Ballal, P, etc).
The dHYM equation in the case of surfaces boils down to the
usual Monge-Ampère equation ωn

φ = η.
Motivated by this observation, we came up with the vector
bundle Monge-Ampère equation:

(
√
−1Θh)n = ηId .

Vamsi Pritham Pingali The vortex ansatz 7/12



Vector bundle Monge-Ampére equation
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Mumford stability involves the first Chern class and
corresponds to HE metrics. As a consequence of solvability,
the Kobayashi-Lübke-Bogomolov-Miyaoka-Yau inequality is
met.
Natural questions: Is there a (non-asymptotic) stability
condition involving higher Chern classes that corresponds to a
PDE? If so, does its solvability imply inequalities between
classes other than c1, c2?
For the second question,

a line bundle version of it (higher
Chern character classes) is the deformed Hermitian-Yang-Mills
(dHYM) equation (Jacob, Yau, Collins, Xie, Han, Jin, G.
Chen, Chu, Lee, Takahashi, Ballal, P, etc).
The dHYM equation in the case of surfaces boils down to the
usual Monge-Ampère equation ωn

φ = η.
Motivated by this observation, we came up with the vector
bundle Monge-Ampère equation:

(
√
−1Θh)n = ηId .

Vamsi Pritham Pingali The vortex ansatz 7/12



Vector bundle Monge-Ampére equation

Mumford stability involves the first Chern class and
corresponds to HE metrics. As a consequence of solvability,
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Mumford stability involves the first Chern class and
corresponds to HE metrics. As a consequence of solvability,
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the Kobayashi-Lübke-Bogomolov-Miyaoka-Yau inequality is
met.
Natural questions: Is there a (non-asymptotic) stability
condition involving higher Chern classes that corresponds to a
PDE? If so, does its solvability imply inequalities between
classes other than c1, c2?
For the second question, a line bundle version of it (higher
Chern character classes) is the deformed Hermitian-Yang-Mills
(dHYM) equation (Jacob, Yau, Collins, Xie, Han, Jin, G.
Chen, Chu, Lee, Takahashi, Ballal, P, etc).
The dHYM equation in the case of surfaces boils down to the
usual Monge-Ampère equation ωn

φ = η.
Motivated by this observation, we came up with the vector
bundle Monge-Ampère equation:

(
√
−1Θh)n = ηId .

Vamsi Pritham Pingali The vortex ansatz 7/12



Vector bundle Monge-Ampére equation

For n = 1: HE equation. For r = 1: MA equation. Thus we
expect stability and positivity to be necessary.

MA-stability: If S is saturated coherent subsheaf, then
chn(S)
rk(S) < chn(E)

rk(E) . P: If (E , h) is an indecomposable Hermitian
holomorphic rank-2 bundle on a smooth projective surface M,
such that (iΘh)2 = ηId where η > 0 and tr(iΘh) is positive,
then E is MA-stable.

MA-positivity:

∫
M

n−1∑
k=0

tr

(
a
( iΘA

2π

)k
a†
( iΘA

2π

)n−1−k
)
> 0.

We came up with a moment map interpretation (and a
pre-quantum line bundle).

Chern class inequality for rank-2 bundles on surfaces with
MA-positively curved solutionsof vbMA: c2

1 (E )− 4c2(E ) ≤ 0.
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Vector bundle Monge-Ampére equation

Rank-2 on surfaces: Nakano and dual-Nakano positivity imply
MA-positivity which implies Griffiths positivity.

Griffiths conjecture: An ample bundle admits a
Griffiths-positively curved metric. (Still open beyond Riemann
surfaces.)

P: If E is Mumford stable w.r.t L, then E ⊗ Lk admits an
MA-positive solution to the vbMA for a right-hand-side.

Provides an approach to the Griffiths conjecture for rank-2
stable bundles on surfaces: Ballal proved that MA-positivity is
preserved along this continuity path. So “only” a priori
estimates are left.
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Vortex Monge-Ampére equation

With the vortex ansatz, vbMA reduces to the following

equation:
√
−1Θh = (1− |φ|2h)µe

f ωΣ+
√
−1∇1,0φ∧∇0,1φ†

(2r2+|φ|2h)(2+2r2−|φ|2h)
where f

is given and µ is a constant.

We proved existence and uniqueness using the method of
continuity

√
−1Θht = (1− |φ|2t )

µu1−tωΣ +
√
−1t∇1,0φ ∧∇0,1φ†

(2r2 + |φ|2t )(2 + 2r2 − |φ|2t )

where u = 2r2(2r2+2)
µ(1−|φ|20)

. Surprisingly enough, uniqueness and

openness proved to be hardest.

Ghosh generalised the estimates to general equations that also
include the CYM equations with the vortex ansatz.

Currently we (with Ballal) are studying a higher-dimensional
vortex MA equation. Leads to a fully nonlinear system.
Openness is done. Closedness appears nastily difficult!
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An advertisement for systems of PDE and the vortex
ansatz

KE is dead! Long live cscK !

The subject is branching out into CY manifolds (Tosatti et
al), the symplectic side (Minimal surfaces (Székelyhidi),
Lagrangian submanifolds and mirror symmetry (Rubinstein,
Collins, Yau, etc), and into systems of PDE (Dervan, Stoppa,
GF, etc).

Systems of fully nonlinear PDE have not been studied much
and are resistant to techniques like the maximum principle,
Evans-Krylov theory, etc. A wide gap in technology available.

Rewards exist! Demailly proposed several PDE-based
approaches towards the Griffiths conjecture in its full
generality. All are fully nonlinear systems.

The vortex ansatz is a fertile testing ground. For instance,
Mandal recently proved the feasibility of some of Demailly’s
methods for the vortex bundle.
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and are resistant to techniques like the maximum principle,
Evans-Krylov theory, etc. A wide gap in technology available.

Rewards exist! Demailly proposed several PDE-based
approaches towards the Griffiths conjecture in its full
generality. All are fully nonlinear systems.

The vortex ansatz is a fertile testing ground. For instance,
Mandal recently proved the feasibility of some of Demailly’s
methods for the vortex bundle.
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Lagrangian submanifolds and mirror symmetry (Rubinstein,
Collins, Yau, etc), and into systems of PDE (Dervan, Stoppa,
GF, etc).

Systems of fully nonlinear PDE have not been studied much
and are resistant to techniques like the maximum principle,

Evans-Krylov theory, etc. A wide gap in technology available.

Rewards exist! Demailly proposed several PDE-based
approaches towards the Griffiths conjecture in its full
generality. All are fully nonlinear systems.

The vortex ansatz is a fertile testing ground. For instance,
Mandal recently proved the feasibility of some of Demailly’s
methods for the vortex bundle.

Vamsi Pritham Pingali The vortex ansatz 11/12



An advertisement for systems of PDE and the vortex
ansatz

KE is dead! Long live cscK !

The subject is branching out into CY manifolds (Tosatti et
al), the symplectic side (Minimal surfaces (Székelyhidi),
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