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Ergodic Theory

Let X be a set, and let T : X → X be a map. If x ∈ X is a point,
the basic question that ergodic theory seeks to study is to what
extent the orbit of x under iterates of T

x ,Tx ,T 2x , . . . ,T nx , . . .

“equidistribute” in X . We will shortly impose enough structure on
(X ,T ) for this question to be meaningfully posed, but first let’s
discuss some examples.



Example One

Let X := T ∼= [0, 1], and let T : X → X be the point
transformation given by x 7→ x − α mod 1 for 0 ≤ α ≤ 1. When
α is irrational, one can integrate continuous f ∈ C (T) by
approximating

sup
0≤x≤1

∣∣∣∣∣ 1N
N∑

n=1

f (T nx)−
∫
T
f (t) dt

∣∣∣∣∣→ 0

i.e.

sup
0≤x≤1

∣∣∣∣∣ 1N
N∑

n=1

f (x − nα mod 1)−
∫
T
f (t) dt

∣∣∣∣∣→ 0

as N → ∞.



Example Two

Let X := [0, 1], and let T : X → X be the map,

Tx = 2x mod 1;

then for almost every x ∈ X∣∣∣ 1
N

∑
n≤N

1[0,1/2)(T
nx)− 1/2

∣∣∣→ 0 as N → ∞.



Example Two Continued

If we represent x in its binary expansion,

x =
ϵ1(x)

2
+

ϵ2(x)

22
+ · · ·+ ϵn(x)

2n
+ . . . ,

then
T nx ∈ [0, 1/2) ⇐⇒ ϵn+1(x) = 0,

and the conclusion is that for almost every x

|{j ≤ N : ϵj(x) = 1}|
N

,
|{j ≤ N : ϵj(x) = 0}|

N
→ 1

2
,

i.e. almost every x is normal.



The Set-Up

To make our discussion of equidistribution rigorous, we impose
measure-theoretic structure on our sets and transformations:

Throughout (X , µ,T ) will be a measure preserving system: (X , µ)
is a probability space, and T : X → X is an invertible
measure-preserving transformation.

For functions f : X → C, we define

T nf (x) := f (T nx), n ∈ Z.

Our previous two examples fit into this frame work.



Ergodic Theory, Take Two

Broadly, ergodic theory is the study of the dynamics of functions
defined on X under the action of measure-preserving
transformations.

The classical objects of study are the Cesàro averages,

CN f :=
1

N

∑
n≤N

T nf ;

the question is to what extent if any CN f converge. For instance,
our first example involved the phenomenon of uniform
convergence, while the second example concerned almost
everywhere convergence.

The Hilbert-space setting is most familiar, so we will focus on the
case where f ∈ L2(X ) is square integrable.



Two Types of Convergence

There are two types of convergence that we consider

▶ Norm convergence, in which one views CN f ∈ L2(X ) as a
sequence of vectors, and seeks to understand convergence
from this vectorial standpoint;

▶ Pointwise convergence, in which one seeks to evaluate the
limit of the CN f pointwise.



Classical Ergodic Theorems

The two classical ergodic theorems, due to Von Neumann and
Birkhoff, dictate that CN f converge both in norm and pointwise
for f ∈ L2(X ). The bulk of this talk will concern the pointwise
regime; norm convergence is better understood.



Polynomial Averages, Norm Convergence I

Classical Hilbert space techniques can be used to address the issue
of norm convergence of the {CN f }. These methods actually
generalize to the study of ergodic averages along polynomial orbits:

1

N

∑
n≤N

TP(n)f , P ∈ Z[·].

On the other hand, once the setting switches from the study of
averages of a single function to the multi-linear setting, the
difficulty of the problems increases dramatically.



Multiple Ergodic Theorems

The departure point for the modern theory of multiple ergodic
averages is Furstenberg’s ergodic-theoretic proof of Szemerédi’s
theorem.

Szemerédi’s Theorem
Suppose that E ⊂ Z satisfies

d∗(E ) := lim sup
|I |→∞

|E ∩ I |
|I |

> 0, I an interval.

Then for any k ≥ 2, there exist infinitely many progressions,

{x , x − n, x − 2n, . . . , x − kn} ⊂ E .

The k = 2 case is due to Roth.



Szemerédi via Ergodic Theory

Using his Furstenberg Correspondence Principle, Furstenberg
deduced Szemerédi’s theorem from a dynamical systems result,
slightly weaker than the below formulation due to Host-Kra and
Leibman.

Szemerédi’s Theorem, Ergodic Theoretic Formulation

For any non-trivial f ∈ L∞(X ), and any k ≥ 1, the bounded
vectors

1

N

∑
n≤N

T nf · · · · · T knf ∈ L∞(X ) ⊂ L2(X )

converge in norm to a non-trivial function, when viewed as vectors
in L2(X ).



Non-Linear Multiple Ergodic Averages

Almost twenty years after Furstenberg’s ergodic theoretic proof of
Szemerédi’s theorem, Furstenberg-Weiss established the following
norm convergence result for the non-linear ergodic averages below.

Theorem (Furstenberg-Weiss, 1996)

Suppose f , g ∈ L∞(X ) are bounded. Then the sequence of vectors

BN(f , g) :=
1

N

∑
n≤N

T nf · T n2g ∈ L∞(X ) ⊂ L2(X )

converges in the L2 norm.



Ergodic Theory meets Additive Combinatorics

Analogous to the situation of Szemerédi’s theorem, the Furstenberg
Correspondence Principle leads to the following Corollary.

Non-Linear-Roth-Type Corollary

Suppose that E ⊂ Z satisfies

d∗(E ) := lim sup
|I |→∞

|E ∩ I |
|I |

> 0, I an interval.

Then there exist infinitely many progressions,

{x , x − n, x − n2} ⊂ E .



The Bigger Picture

The result of Furstenberg-Weiss admits dramatic extensions, all
the way to M. Walsh’s celebrated norm convergence result
concerning the multiple ergodic averages:

A
N,P⃗

(f1, . . . , fm) :=
1

N

∑
n≤N

T
P1(n)
1 f1 · . . .TPm(n)

m fm,

where Pi ∈ Z[·], and Ti : X → X generate a nilpotent group of
transformations.



Pointwise Convergence, Pre-COVID

It took breakthrough work of Bourgain in late 80s and early 90s to
resolve the issue of pointwise convergence of ergodic averages
along polynomial orbits. The state of the art result for pointwise
convergence of bilinear ergodic averages was due to Bourgain and
Michael Lacey.

Pointwise Convergence, Bilinear Setting

Suppose that k ∈ Z. Then whenever f ∈ Lp(X ) and g ∈ Lq(X ) for
1 < p, q ≤ ∞ so that

f · g ∈ Lr (X ), r > 2/3

the bilinear ergodic averages

1

N

∑
n≤N

T nf · T kng

converge almost everywhere.



The Program

The long-term goal is to establish the analogue of Walsh’s theorem
in the pointwise setting. Suppose that {T1, . . . ,Tm} are
commuting measure-preserving transformations on X .

Goal
Prove that for every P1, . . . ,Pm ∈ Z[·], and each
f1, . . . , fm ∈ L∞(X ),

1

N

∑
n≤N

T
P1(n)
1 f1 · · · · · TPm(n)

m fm

converge pointwise almost everywhere.



Pointwise Convergence, Bilinear Setting

Joint with M. Mirek and T. Tao, we established the following
special case in the bilinear setting.

Theorem
Suppose P ∈ Z[·] has degree at least 2, and that
f ∈ Lp(X ), g ∈ Lq(X ) where p, q > 1 and

f · g ∈ Lr (X ), r > 1− cd , cd > 0.

Then the following bilinear ergodic averages converge pointwise
almost everywhere

BN(f , g) :=
1

N

∑
n≤N

T nf · TP(n)g .

In what follows, we will restrict to f , g ∈ L2(X ), and P(n) = n2.



A Combinatorial Consequence

To put this result in perspective, it is helpful to present the
following combinatorial consequence.

Generic Behavior
Let us suppose that E ⊂ {1, . . . ,N} were a “random” set, with
density δ, |E | = δN. Then from the “vantage point” of any x ∈ E ,
we expect E to behave randomly with respect to sampling along
the parabola:

P(x − n, x − n2 ∈ E ) = P(x − n ∈ E ) · P(x − n2 ∈ E ) = δ2,

which sums to

|{n ≤ P : x − n, x − n2 ∈ E}|
P

= δ2

for each P2 ≪ N.



Arithmetic Obstruction

There is no reason for a general set of density δ to be “random:”
for instance one might take

E := ⌈δ−1⌉ · Z.

On the other hand, once we rule out this arithmetic obstruction,
we will see that from certain vantage points, E does indeed behave
randomly with respect to sampling along the parabola
{(n, n2) : n ≥ 1}.



NLR-Behavior is Local

Suppose that E ⊂ Z has positive upper density, d∗(E ) = δ > 0.
The non-Linear-Roth Corollary of Furstenberg-Weiss says that
there exist infinitely many progressions,

{x , x − n, x − n2} ⊂ E .

Our “visibilty result” localizes this phenomenon.

NLR-Type Corollary, Refined Formulation

For any 0 < ϵ < δ, there exists some Q = Q(δ, ϵ) so that for each
R ≥ Λ sufficiently large there exists some vantage point xR ∈ E so
that

inf
Λ≤N≤R

|{n ≤ N : xR − Qn, xR − Q2n2 ∈ E}|
N

≥ δ2 − ϵ.



Special Cases

Before discussing our theorem, there are two special cases that we
need to understand first: the cases where one of the two functions
is identically constant.

BN(f , 1X ) := CN f :=
1

N

∑
n≤N

T nf ,

and

BN(1X , g) := DNg :=
1

N

∑
n≤N

T n2g .

The study of the {CN f } gives rise to the pointwise ergodic
theorem; the {DNg} were the subject of Bourgain’s work in the
late 80s-early 90s.



Pointwise Convergence, One Function

Theorem (Birkhoff’s Pointwise Ergodic Theorem 1931)

For any MPS (X , µ,T ), and any f ∈ L2(X ), {CN f } converge
pointwise, µ a.e.

Theorem (Bourgain, 1988-1990)

For any MPS (X , µ,T ) and any f ∈ L2(X ), {DN f } converge
pointwise, µ a.e.



On Pointwise Convergence

Pointwise convergence of a sequence of numbers is a qualitative
phenomenon: a sequence {an} converges if for every t > 0, there
are finitely many “times,” n0 < n1 < · · · < nK , so that the
sequence an “jumps by t:”

|ani − ani−1 | > t (1)

for each 1 ≤ i ≤ K , but there are no subsequences of length K + 2
so that (1) holds for each 1 ≤ i ≤ K + 1.

We define Nt({an}) to be this largest K .



The Strategy

The statement that fn(x) converges almost everywhere is
equivalent to the almost-everywhere convergence of

x 7→ Nt(fn(x))

for each t > 0.

Bourgain’s Approach

Prove a norm estimate on

f 7→ Nt(CN f (x)), f 7→ Nt(DN f (x)).



Quantifying Convergence

This technique appears in martingale theory. In particular, the
natural estimate is the following:

Goal
Establish the quantitative estimate

∥t · Nt(CN f (x) : N)1/r∥L2(X ) ≤ Ar · ∥f ∥L2(X ), Ar < ∞

for some r < ∞, and similarly for DN .

This says that for each ∥f ∥L2(X ) = 1,

Nt(CN f (x)) “ ≤ ” Ar
r · t−r

on average.



Effective Estimates

Theorem (Bourgain, 1990)

For each r > 2, and each t > 0, there exists an absolute constant
Ar , so that

∥t · Nt(CN f (x) : N)1/r∥L2(X ) ≤ Ar · ∥f ∥L2(X ).

Theorem (K. 2014)

For each r > 2, and each t > 0, there exists an absolute constant
Ar , so that

∥t · Nt(DN f (x) : N)1/r∥L2(X ) ≤ Ar · ∥f ∥L2(X ).

Below, all estimates involving t · N 1/r
t will be uniform in t > 0.



Transference and Discrete Harmonic Analysis

We want to prove the estimate

∥t · Nt(CN f : N)1/r∥L2(X ) ≤ Ar · ∥f ∥L2(X ),

but we have no information about X .

Calderón: “Study Z-actions on Z”
By considering sequences of the form,

n 7→ T nf (x), x ∈ X fixed,

matters reduce to a single concrete setting: it suffices to prove the
sequence-space estimate

∥∥∥t · Nt

( 1

N

∑
n≤N

f (x − n) : N
)1/r∥∥∥

ℓ2(Z)
≤ Ar · ∥f ∥ℓ2(Z),

And similarly for the squares.



Recap

Our problem in pointwise convergence reduces to proving a discrete
harmonic-analytic estimate, i.e. a harmonic analytic estimate on Z.
▶ We began by trying to prove a convergence statement in the

dynamical systems setting;

▶ We recast convergence, and reduced matters to showing that
Nt(CN f ) < ∞ almost everywhere for each t > 0;

▶ We planned to prove convergence of Nt by proving it satisfied
a norm estimate on L2(X );

▶ We transferred the norm estimate to the sequence-space
setting of ℓ2(Z).



The Linear Averages
In our goal to estimate

∥t · Nt

( 1

N

∑
n≤N

f (x − n) : N
)1/r

∥ℓ2(Z) ≤ Ar · ∥f ∥ℓ2(Z),

we can borrow heavily from the Euclidean theory, which combines
martingale methods and Fourier analysis to establish the equivalent
estimate:

∥t · Nt

( 1

N

∫ N

0
f (x − t) dt : N

)1/r
∥L2(R) ≤ Ar · ∥f ∥L2(R).

Linearity is Key

This analogy relies crucially on the fact that the orbits over which
we average have similar traces (below, we use the Minkowski sum):

{n ≥ 1}+ [0, 1) = {t ≥ 1} ⊂ R.



The Quadratic Averages, Geometric Issues

Regarding the averages along the squares, our goal is to estimate∥∥∥t · Nt

( 1

N

∑
n≤N

f (x − n2) : N
)1/r∥∥∥

ℓ2(Z)
≤ Ar · ∥f ∥ℓ2(Z).

A geometric issue presents: namely, the sequence
O := {n2 : n ≥ 1} ⊂ Z satisfies

|O ∩ I | ≤ |I |1/2, I ⊂ Z an interval

|
(
O + [0, 1)

)
∩ J| ≤ 100 · |J|1/2, |J| ≥ 1, J ⊂ R an interval,

and thus acts like a “1/2-dimensional” set, from the perspective of
density. Compare this to the continuous situation, where the trace
is full dimensional:

{t2 : t ≥ 1} = [1,∞) ⊂ R.



A Non-Example

Suppose that we were interested in proving∥∥∥∥t · Nt

( 1

N

∫ N

0
F (x − y2) dy : N

)1/r∥∥∥∥
L2(R)

≤ Ar · ∥F∥L2(R).

By changing variables, s = y2, and using convexity, matters reduce
to the linear situation∥∥∥∥t · Nt

( 1

N

∫ N

0
F (x − y) dy : N

)1/r∥∥∥∥
L2(R)

≤ Ar · ∥F∥L2(R).

This argument fails in the integers, due to the presence of a
smallest scale.



The Quadratic Averages, Fourier Analytic Issues

Geometric issues that we have seen necessitate a different type of
analysis. Accordingly, we try a Fourier-analytic approach, where
the Fourier transform is given by

f̂ (β) =
∑
n

f (n)e−2πiβn.

In particular, we may express

1

N

∑
n≤N

f (x − n2) = KN ∗ f (x) =
∫

f̂ (β) · K̂N(β) · e2πiβx dβ

where

KN(x) :=
1

N

∑
n≤N

δn2(x) ⇒ K̂N(β) =
1

N

∑
n≤N

e−2πiβn2 .



Fourier Analysis Meets Number Theory

First, let’s note that the relevant multipliers in the linear case,

1

N

∑
n≤N

e−2πiβn

could be completely understood in terms of ∥β∥, the distance from
β to 0 ∈ T.

On the other hand,

K̂N(β) =
1

N

∑
n≤N

e−2πiβn2

is a Gauss sum, and requires ideas from analytic number theory to
analyze: the circle method of Hardy and Littlewood, developed in
the study of Waring’s problem.



The Circle Method

Probabilistic Intuition
Each multiplier K̂N(β) is an average of N mean-zero pairwise
independent random variables; from probability theory, we might
expect a “generic” power savings,

|K̂N(β)| = | 1
N

∑
n≤N

e−2πiβn2 | “ ≲ ” N−ϵ

for some ϵ > 0.

There is an obstruction to this type of argument: potential
correlation of the phases

β 7→ βn2 mod 1.

For instance:

K̂N(1/3) =
1

N

∑
n≤N

e−2πin2/3 =
1

3
(1 + 2 · e−2πi/3) + O(1/N).



Number-Theoretic Consequences

After elementary analytic number theoretic methods, we are able
to make the following distinction:

▶ K̂N(β) is large and interesting whenever β is “N-close” to a
rational number with an “N-small” denominator, i.e. β lives in
a so-called “N-major arc;” and

▶ K̂N(β) and is “N-negligible” otherwise, when β lives in the
complementary “N-minor arc,” and the probabilistic intuition
applies.



Back in Physical Space

By translating the information from the circle method back to
physical space, matters reduce to understanding the behavior of
KN when testing against functions like

χQ(n) = CQ(n) ·
1

Q100
1[1,Q100](n),

where
CQ(n) :=

∑
(A,Q)=1

e−2πiA/Q·n.

The relevant scaling is Q ≤ N0.001.



Multi-Frequency Harmonic Analysis

Roughly speaking, Bourgain’s challenge was to estimate

f 7→ t · Nt

(
KN ∗

Q∑
i=1

fQi
: N ≥ Q1000

)1/r

as efficiently as possible, where we define

fQi
(x) :=

∑
n

f (x − n)χQi
(n) =

1

Q100
i

∑
n≤Q100

i

f (x − n)CQi
(n),

and each Qi ≈ Q; the triangle inequality is the enemy.



Single Scale Estimate

With

fQ(x) =
1

Q100

∑
n≤Q100

f (x − n)CQ(n)

CQ(n) :=
∑

(A,Q)=1

e−2πiA/Q·n

elementary number theory yields the following estimate.

For each N ≥ Q1000 the following estimate holds for Qi ≈ Q:

∥KN ∗
Q∑
i=1

fQi
∥2 ≤ 100 · Q−1/2 · ∥f ∥2.



The Key Estimate

With

fQ(x) =
1

Q100

∑
n≤Q100

f (x − n)CQ(n)

CQ(n) :=
∑

(A,Q)=1

e−2πiA/Q·n

as above, the following estimate holds.

Quantifying Destructive Interference

For each r > 2, the following estimate holds for Qi ≈ Q:

∥t · Nt

(
KN ∗

Q∑
i=1

fQi
: N ≥ Q1000

)1/r
∥2

≤ Ar · logQ · Q−1/2 · ∥f ∥2.



Summarizing the Linear Theory

In seeking to prove pointwise convergence of the linear averages,
we have a rough scheme:

▶ Transfer the problem to a quantitative estimate involving
convolution (averaging) operators on the integers;

▶ Use the Fourier transform to extract the analytic heart of the
averaging operators;

▶ Estimate Nt .

This scheme is most straightforward on ℓ2, where Plancherel’s
theorem allows us to quantify heuristics like “ = .”



Back to the Bilinear Setting

Our approach to proving pointwise convergence of the averages

BN(f , g) :=
1

N

∑
n≤N

T nf · T n2g

goes through a similar mechanism.
If we let

MN(f , g)(x) :=
1

N

∑
n≤N

f (x − n) · g(x − n2)

denote the pertaining discrete bilinear operators, then we are after
estimates of the form∥∥∥t · Nt(MN(f , g) : N)1/r

∥∥∥
ℓ1
≤ Ar · ∥f ∥ℓ2 · ∥g∥ℓ2 .



Harmonic Analysis Meets Additive Combinatorics

We aren’t able to appeal directly to Plancherel’s theorem to
approximate MN . Our departure part was recent quantitative
refinements of the Non-Linear-Roth-Type Corollary due to S.
Peluse and S. Prendiville:

Key Inverse Theorem

Suppose that |f |, |g | ≤ 1I for some interval, I , with |I | ≈ N2. If

∥MN(f , g)∥ℓ1 ≥ log−O(1)N · N2,

then there exists some q ≤ logO(1)N so that

∥ 1

M

∑
n≤M

f (x − qn)∥ℓ1 ≥ log−O(1)N · N2

for some M with N · log−O(1)N ≤ M ≤ N.



Harmonic Analysis Meets Additive Combinatorics, II

The Peluse-Prendiville Inverse Theorem can be re-formulated as
follows, after a little work:

Key Inverse Theorem, Fourier Formulation

Suppose that |f |, |g | ≤ 1I for some interval, I , with |I | ≈ N2. If

∥MN(f , g)∥ℓ1 ≥ log−O(1)N · N2,

then there exists some q ≤ logO(1)N so that f̂ is generically large
on

Z/qZ+ O(logO(1)N · N−1)

and ĝ is generically large on

Z/qZ+ O(logO(1)N · N−2).



Techniques Needed

Using the above inverse theorem as our departure point, our
approximation argument lived at the interface of additive
combinatorics and Fourier analysis. The principle tools used were

▶ Ionescu-Wainger Multiplier Theory (”Discrete
Littlewood-Paley Theory”);

▶ Hahn Banach separation theorem;

▶ Vinogradov Mean Value Theorem.



The Upshot

After making these approximations, we needed to understand
super-positions of

MN(fQ1 , gQ2),

where
lcm(Q1,Q2) ≤ N0.001,

and we recall

fQ(x) =
1

Q100

∑
n≤Q100

f (x − n) · CQ(n).

Contrast to Bourgain’s situation, where the issue was
understanding

KN ∗
∑

fQ .



Single Scale Estimate

With

fQ(x) =
1

Q100

∑
n≤Q100

f (x − n)CQ(n)

CQ(n) :=
∑

(A,Q)=1

e−2πiA/Q·n

the Peluse-Prendiville theory (eventually) leads to the following
estimate.

For each N ≥ Q1000 there exists some C , c > 0 so that following
estimate holds for lcm(Q1

i ,Q
2
i ) ≈ Q:

∥
Q∑
i=1

MN(fQ1
i
, gQ2

i
)∥ℓ1 ≤ C · Q−c · ∥f ∥ℓ2 · ∥g∥ℓ2 .



Multi-Frequency Bilinear Harmonic Analysis

Roughly speaking, our challenge became to efficiently estimate

Nt

( Q∑
i=1

MN(fQ1
i
, gQ2

i
) : N ≥ Q1000

)
,

where lcm(Q1
i ,Q

2
i ) ≈ Q.

Quantifying Destructive Interference, Bilinear Setting

For each r > 2, there exists some c0 > 0 so that the following
estimate holds for lcm(Q1

i ,Q
2
i ) ≈ Q as above:

∥t · Nt

( Q∑
i=1

MN(fQ1
i
, gQ2

i
) : N ≥ Q1000

)1/r
∥ℓ1

≤ Ar · Q−c0 · ∥f ∥ℓ2 · ∥g∥ℓ2 .



Techniques Required

The key additive combinatorial input used was a Non-linear Roth
theorem in the cyclic subgroup setting.

NLR Theorem, Cyclic Subgroup Setting

Suppose that δ > 0, and that p ≥ δ−O(1) is a prime that is
sufficiently large depending on δ. Then for any Q = pj , j ≥ 1, if
A ⊂ Z/QZ has |A| ≥ δ ·Q, then A contains a non-linear arithmetic
progression, x , x − n, x − n2.

Further Ideas
▶ Martingale methods;

▶ Banach space geometry;

▶ Oscillatory integral techniques over the p-adics.

Our argument by necessity combines physical-space techniques
from additive combinatorics with Fourier-space techniques from
harmonic analysis.



Moving Forwards

I’m working on upgrading our convergence result to higher degrees
of multi-linearity in progress with M. Mirek, S. Peluse, and J.
Wright. Using more refined work of Peluse, the following result is
expected.

For every P1, . . . ,Pm ∈ Z[·] with distinct degrees and each
f1, . . . , fm ∈ L∞(X ),

1

N

∑
n≤N

T
P1(n)
1 f1 · · · · · TPm(n)

m fm

converge pointwise almost everywhere. As of mid 2023, we have
the result when Ti = T and Pi are polynomials of distinct degrees.



Same Degrees

Regarding polynomials with the same degrees, the model problem
is as follows.

Problem
Prove that for f1, f2 ∈ L∞(X )

1

N

∑
n≤N

T n2f1 · T 2n2f2

converge pointwise almost everywhere.

Solving this problem will require additional input from time
frequency analysis.



Same Degrees II

Another major open question in pointwise ergodic about which
Bourgain thought deeply concerns the following trilinear averages.

Problem
Prove that for f1, f2, f3 ∈ L∞(X )

1

N

∑
n≤N

T nf1 · T 2nf2 · T 3nf3

converge pointwise almost everywhere.

This problem will require higher-order Fourier analysis, and is
closely linked to the trilinear Hilbert transform from time-frequency
analysis.



Thank you!


