## Twisted S-duality

Philsang Yoo

Yau Mathematical Sciences Center Tsinghua University

Quantum Fields, Geometry and Representation Theory 2021 International Centre for Theoretical Sciences July 22, 2021

#### Introduction and Plan

Any original result I will discuss today is based on a joint work (in part in progress) with *Surya Raghavendran*.

By-products of twisted S-duality include

- obtaining a purely algebraic way of describing physics for de Rham geometric Langlands correspondence;
- $\circ$  finding infinite new pairs of deformations of 4d  $\mathcal{N}=4$  super Yang–Mills theory that are S-dual to each other.

Today mainly on translation for parts of string theory aimed at mathematicians: (P) for physics and (M) for mathematics

- 1 Type IIB Superstring theory and Topological String Theory
- (2) Twisted S-duality
- (3) Applications

## Summary: What have we done?

- P mathematical understanding of S-duality of (a part of) massless sector of type IIB supergravity (no axio-dilaton);
- M recovering old conjectures and formulating new conjectures in geometric representation theory;
  - easy calculation of how S-duality acts on further deformations of twists of supersymmetric gauge theory;
- ! setting up a framework that can be useful for future works;

Disclaimer: I am a string theory newbie!

# (P) Type IIB Superstring Theory

- Type IIB superstring theory on a 10-manifold  $M^{10}$ ; need to consider the moduli spaces of Riemann surfaces;
- D-brane gauge theory for  $D_{2k-1}$ -branes wrapping on  $N^{2k} \subset M^{10}$  is a 2k-dimensional field theory; e.g.,
  - ▶ D3 branes on  $\mathbb{R}^4 \subset \mathbb{R}^{10}$  yield 4d  $\mathcal{N}=4$  SYM theory;
  - ▶ D5 branes on  $\mathbb{R}^6 \subset \mathbb{R}^{10}$  yield 6d  $\mathcal{N} = (1,1)$  SYM theory;
- Closed string field theory on  $M^{10}$  is a field theory on  $M^{10}$  describing string theory;
- Type IIB supergravity theory on a 10-manifold  $M^{10}$  is a low-energy limit of closed string field theory;
- Open-closed coupling; closed string state yields a deformation of D-brane gauge theory;
- Existence of  $SL_2(\mathbb{Z})$  symmetry or S-duality

Question: How much can we capture mathematically? Answer: Most of it, for topological string theory.



# Topological Quantum Field Theory

#### Definition

A d-dimensional TQFT is a symmetric monoidal functor

$$Z \colon (\underline{\mathrm{Bord}}_d, \coprod) \to (\mathsf{Vect}_\mathbb{C}, \otimes)$$

Here  $(\text{Vect}_{\mathbb{C}}, \otimes)$  is a symmetric monoidal category of  $\mathbb{C}$ -vector spaces and  $\underline{\operatorname{Bord}}_d$  is a category where

- ▶ an object is a closed (d-1)-manifold;
- a morphism is a cobordism up to diffeomorphism;
- the composition is a gluing of cobordisms;
- ▶ the monoidal structure is a disjoint union II.

### 2d TQFT

#### Theorem

A 2d TQFT Z is determined by a commutative Frobenius algebra  $Z(S^1)=A$ .

| morphism in $\underline{\mathrm{Bord}}_2$           | morphism in $Vect_\mathbb{C}$              |
|-----------------------------------------------------|--------------------------------------------|
| $\emptyset 	o \mathcal{S}^1$                        | $u\colon \mathbb{C}\to A$                  |
| $\mathcal{S}^1 	o \emptyset$                        | $\operatorname{Tr} \colon A 	o \mathbb{C}$ |
| $\mathcal{S}^1 malg \mathcal{S}^1 	o \mathcal{S}^1$ | $m \colon A \otimes A \to A$               |
| $S^1	o S^1 malg S^1$                                | $\Delta : A \to A \otimes A$               |

This is a (baby) (topological) string theory, where

$$Z(S^1) = A =$$
(the space of *closed* string states)

Q. Can we see an open string (interval) as well?

### Extended 2d TQFT

Roughly, an extended 2d TQFT is a symmetric monoidal functor

$$Z \colon (\mathrm{Bord}_2, \coprod) \to (\mathsf{DGCat}_\mathbb{C}, \otimes)$$

| Bord <sub>2</sub>        | $DGCat_\mathbb{C}$                |  |  |  |
|--------------------------|-----------------------------------|--|--|--|
| closed 2-manifold        | complex number                    |  |  |  |
| closed 1-manifold        | $\mathbb{C}$ -vector space        |  |  |  |
| cobordism of 1-manifolds | C-linear map                      |  |  |  |
| closed 0-manifold        | C-linear category                 |  |  |  |
| cobordism of 0-manifolds | $\mathbb{C}	ext{-linear functor}$ |  |  |  |

### Theorem (Costello, Hopkins-Lurie, Lurie)

An extended 2d TQFT Z is determined by a Calabi–Yau category  $Z(\mathsf{pt}) = \mathcal{C}$ .

$$Z(\mathsf{pt}) = \mathcal{C} = (\mathsf{the\ category\ of\ boundary\ conditions});$$
  $\mathsf{Hom}_{\mathcal{C}}(\mathcal{B}_1, \mathcal{B}_2) = (\mathsf{the\ space\ of\ open\ string\ states\ from\ } \mathcal{B}_1\ \mathsf{to\ } \mathcal{B}_2).$ 

# Topological String Theory as 2d Extended TQFT

By topological string, we mean such a 2d extended TQFT determined by "CY 5-category".

For instance, let X be a CY 5-fold with a non-vanishing holomorphic volume form  $\Omega_X$ . Two main examples are

|                            | A-model                 | B-model |
|----------------------------|-------------------------|---------|
| $Z(pt) = \mathcal{C}$      | $\operatorname{Fuk}(X)$ | Coh(X)  |
| $Z(S^1) = HH(\mathcal{C})$ | QH(X)                   | PV(X)   |

Here  $PV(X) = \bigoplus PV^{i,j}(X)$  where  $PV^{i,j}(X) = \Omega^{0,j}(X, \wedge^i T_X)$  with a differential  $\overline{\partial}$ :  $PV^{i,j} \rightarrow PV^{i,j+1}$ 

For future reference, note that using the isomorphism  $(-) \vee \Omega_X : \mathsf{PV}^{i,j}(X) \cong \Omega^{d-i,j}(X)$ , one has  $\partial : \mathsf{PV}^{i,j} \to \mathsf{PV}^{i-1,j}$ .

Type IIB string theory on  $M^{10} \rightsquigarrow \text{Calabi-Yau 5-category } \mathcal{C}$ 

#### Example

- $C = Coh(X^5)$  for a CY 5-fold X
- $\mathcal{C} = \operatorname{Fuk}(T^*N) \otimes \operatorname{Coh}(X^3)$  for a smooth 2-manifold N

# M Classical Field Theory and BV Formalism

A d-dimensional classical field theory is described by

- ightharpoonup a spacetime manifold  $M = M^d$ ;
- ▶ a space of fields F;
- ▶ an action functional  $S: \mathcal{F} \to \mathbb{C}$ .

BV formalism encodes  $S(\phi)=\int_M \frac{1}{2}\langle\phi,Q\phi\rangle+\frac{1}{6}\langle\phi,\ell_2(\phi,\phi)\rangle$  as

- (1) (-1)-shifted "symplectic" space  $\mathcal{E}$ ;
- (2) differential Q;
- (3) a Lie bracket  $\ell_2$ .

### Example

• Free scalar theory  $S(\phi)=\int_M \frac{1}{2} \langle \phi, \Delta_g \phi \rangle$  on (M,g) is

$$\mathcal{E} = C^{\infty}(M) \oplus C^{\infty}(M)[-1], \qquad Q = \Delta_{g}, \qquad \ell_{2} = 0.$$

• CS theory  $S(A) = \int_M \frac{1}{2} \langle A, dA \rangle + \frac{1}{6} \langle A, [A, A] \rangle$  on M is

$$\mathcal{E} = \Omega^{\bullet}(M^3) \otimes \mathfrak{g}[1], \qquad Q = d, \qquad \ell_2 = \wedge \otimes [-, -].$$

We may work in a  $\mathbb{Z}/2$ -graded setting.



# D-brane Gauge Theory of String Theory ( $\mathcal C$ fixed)

- P Open strings ending on branes  $\mathcal{B}$  yield D-brane gauge theory.
- M [Brav–Dyckerhoff] The moduli  $\mathcal{M}_{\mathcal{C}}$  of objects is (2-d) shifted symplectic and  $\mathbb{T}_{\mathcal{B}}[-1]\mathcal{M}_{\mathcal{C}} \cong \mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{B})$  for  $\mathcal{B} \in \mathcal{C}$ .

D-brane gauge theory on  $N^{2k}\subset M^{10}\leadsto \mathcal{E}=\mathbb{R}\operatorname{End}_{\mathcal{C}}(\mathcal{B})[1]$ 

 $\mathcal C$  a DG category  $\leadsto$  associative and hence Lie on  $\mathbb R\operatorname{End}_{\mathcal C}(\mathcal B)$  $\mathcal C$  a CY category  $\leadsto$  a shifted symplectic structure on  $\mathbb R\operatorname{End}_{\mathcal C}(\mathcal B)[1]$ 

#### Example

| $\mathcal{C}$ | $Coh(\mathbb{C}^5)$                                                                                                                | $\operatorname{Fuk}(\mathbb{R}^4) \otimes \operatorname{Coh}(\mathbb{C}^3)$                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| branes        | D3's on $\mathbb{C}^2\subset\mathbb{C}^5$                                                                                          | D3's on $\mathbb{R}^2 	imes \mathbb{C} \subset \mathbb{R}^4 	imes \mathbb{C}^3$                                                                                        |
| $\mathcal{E}$ | $\mathcal{E}^{\mathrm{Hol}}_{\mathrm{D3}}(\mathbb{C}^2) := \Omega^{0,ullet}(\mathbb{C}^2)[arepsilon_1,arepsilon_2,arepsilon_3][1]$ | $\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^2	imes\mathbb{C}):= \ \Omega^{ullet}(\mathbb{R}^2)\otimes\Omega^{0,ullet}(\mathbb{C})[arepsilon_1,arepsilon_2][1]$ |
| name          | holomorphic twist of 4d $\mathcal{N}=$ 4 theory                                                                                    | holomorphic-topological twist of 4d ${\cal N}=$ 4 theory                                                                                                               |

# Closed String Field Theory of String Theory (C fixed)

Recall  $Z(S^1)$  is the space of closed string states, but note that

- P The worldsheet theory, being coupled with gravity theory, should be invariant under  $Diff(S^1)$ . This motivates  $Z(S^1)^{S^1}$ .
- M Here  $Z(S^1) = HH(\mathcal{C})$  admits an  $S^1$ -action which corresponds to so-called Connes' B operator, so  $Z(S^1)^{S^1} = \operatorname{Cyc}(\mathcal{C})$ .
- M [Brav–Rozenblyum]  $\mathbb{T}_{\mathcal{C}}[-1]\mathcal{M}_{\mathrm{CY}} \cong \mathrm{Cyc}^{\bullet}(\mathcal{C})[1]$  where  $\mathcal{M}_{\mathrm{CY}}$  is the moduli space of Calabi–Yau categories.

Closed string field theory on  $M^{10} \rightsquigarrow \mathcal{E} = \mathrm{Cyc}^{\bullet}(\mathcal{C})[2]$  where  $\mathcal{E}$  is understood in the framework of [Butson–Y.].

Example (Bershadsky–Cecotti–Ooguri–Vafa, Costello–Li) If  $\mathcal{C}=\mathsf{Coh}(X^5)$ , then  $Z(S^1)\cong\mathsf{PV}(X)$  and  $B=\partial$ . Hence the corresponding closed string field theory is given by  $(\ker\partial\subset\mathsf{PV}(X)[2],\overline{\partial})$  or  $\mathcal{E}_{\mathsf{BCOV}}(X)=(\mathsf{PV}(X)[t][2],\overline{\partial}+t\partial)$ .

# Supergravity (C fixed)

P Supergravity is a low-energy limit of closed SFT with neither non-perturbative effects nor non-propagating fields.

SUGRA on  $M^{10} \rightsquigarrow \text{propagating/dynamic part of } \text{Cyc}^{\bullet}(\mathcal{C})[2]$ 

The dynamic fields of BCOV theory can be identified:

#### **Definition**

Let  $(X, \Omega_X)$  be a Calabi–Yau d-fold. A minimal BCOV theory is  $\mathcal{E}_{\mathrm{m}}(X) = \mathcal{E}_{\mathrm{mBCOV}}(X) = \bigoplus_{i+k < d-1} t^k \, \mathsf{PV}^{i, \bullet}(X)$ .

#### Example

If 
$$\mathcal{C}=\mathsf{Coh}(X^3)$$
 (or  $\mathcal{C}=\mathrm{Fuk}(\mathbb{R}^4)\otimes\mathsf{Coh}(X^3)$ ), then it is  $\mathcal{E}_{\mathrm{m}}(X^3)$  (or  $\Omega^{\bullet}(\mathbb{R}^4)\otimes\mathcal{E}_{\mathrm{m}}(X^3)$ ), where  $\mathcal{E}_{\mathrm{m}}(X^3)$  is 
$$\frac{-2}{\mathsf{PV}^{0,\bullet}} \qquad \frac{-1}{\mathsf{PV}^{1,\bullet}} \to t\,\mathsf{PV}^{0,\bullet}$$
 
$$\mathsf{PV}^{1,\bullet} \to t\,\mathsf{PV}^{1,\bullet} \to t^2\,\mathsf{PV}^{0,\bullet}$$

# Coupling of Open and Closed Sectors ( $\mathcal C$ fixed)

Coupling of closed string field theory and D-brane gauge theory  $\leadsto$  closed-open map CO:  $\operatorname{Cyc}^{\bullet}(\mathcal{C})[1] \dashrightarrow \operatorname{Cyc}^{\bullet}(\mathbb{R}\operatorname{End}_{\mathcal{C}}(\mathcal{B}))[1]$ 

Physically, a closed string state  $\alpha \in \operatorname{Cyc}^{\bullet}(\mathcal{C})$  gives a deformation of D-brane gauge theory given by  $\mathbb{R}\operatorname{End}_{\mathcal{C}}(\mathcal{B})$ .

#### Example

| $\mathcal{C}$ | $Coh(\mathbb{C}^5)$                                                                                                                                                                                                                                   | $\operatorname{Fuk}(\mathbb{R}^4) \otimes \operatorname{Coh}(\mathbb{C}^3)$                                                                                                                                                                                                     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{B}$ | $\mathbb{C}^2_{z_i} \subset \mathbb{C}^5_{z_i,w_j}$                                                                                                                                                                                                   | $\mathbb{R}^2 	imes \mathbb{C}_z \subset \mathbb{R}^4 	imes \mathbb{C}^3_{z,w_j}$                                                                                                                                                                                               |
| $\mathcal{E}$ | $\mathcal{E}_{\mathrm{D3}}^{\mathrm{Hol}}(\mathbb{C}_{z_{i}}^{2}) = \Omega^{0,ullet}(\mathbb{C}_{z_{i}}^{2})[arepsilon_{1},arepsilon_{2},arepsilon_{3}][1] \ \cong \mathcal{O}(\mathbb{C}_{z_{i}}^{2})[arepsilon_{1},arepsilon_{2},arepsilon_{3}][1]$ | $\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^{2} \times \mathbb{C}_{z}) = \\ \Omega^{\bullet}(\mathbb{R}^{2}) \otimes \Omega^{0,\bullet}(\mathbb{C}_{z})[\varepsilon_{1}, \varepsilon_{2}][1] \\ \cong \mathcal{O}(\mathbb{C}_{z})[\varepsilon_{1}, \varepsilon_{2}][1]$ |
| СО            | $ \begin{array}{c} PV(\mathbb{C}^5_{z_i,w_j}) \to HH(\mathcal{O}(\mathbb{C}^2_{z_i})[\varepsilon_j]) \\ z_i,\partial_{z_i},w_j,\partial_{w_j} \mapsto z_i,\partial_{z_i},\partial_{\varepsilon_j},\varepsilon_j \end{array} $                         | $ \begin{array}{c} PV(\mathbb{C}^3_{z,w_j}) \to HH(\mathcal{O}(\mathbb{C}_z)[\varepsilon_j]) \\ z, \partial_z, w_j, \partial_{w_j} \mapsto z, \partial_z, \partial_{\varepsilon_j}, \varepsilon_j \end{array} $                                                                 |

# Modification of BCOV Theory

#### Definition

Minimal BCOV theory with potential  $\widetilde{\mathcal{E}}_{\mathrm{m}}(X)$  is a cochain complex

$$\frac{-2}{PV^{0,\bullet}} \qquad \frac{-1}{PV^{1,\bullet}} \qquad \frac{0}{PV^{0,\bullet}} \qquad \frac{1}{PV^{3,\bullet}}$$

with additional structures.

- M There is a "map"  $\Phi \colon \widetilde{\mathcal{E}}_m \to \mathcal{E}_m$  that has  $\partial \colon \mathsf{PV}^{3, \bullet} \to \mathsf{PV}^{2, \bullet}$ , respecting structures of interest.
- P The modification amounts to introducing Ramond–Ramond forms as a potential for Ramond–Ramond field strengths.

## Definition of S-duality

Recall

$$\mathsf{SL}_2(\mathbb{Z}) = \left\langle S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \ \middle| \ S^4 = 1, \ (ST)^3 = S^2 \right\rangle.$$

#### Definition/Theorem (Raghavendran-Y.)

Let  $(X, \Omega_X)$  be a CY 3-fold. There exists an action of  $SL_2(\mathbb{Z})$  on  $\widetilde{\mathcal{E}}_{\mathrm{m}}(X) = \mathsf{PV}^{0,\bullet}(X)[2] \oplus \left(\mathsf{PV}^{1,\bullet}(X)[1] \to t\,\mathsf{PV}^{0,\bullet}(X)\right) \oplus \mathsf{PV}^{3,\bullet}(X)$ .

At the level of cohomology, it is

$$S \mapsto \begin{pmatrix} & & -(-) \vee \Omega_X \\ & \operatorname{Id} & & \\ (-) \wedge \Omega_X^{-1} & & \end{pmatrix}, \quad T \mapsto \begin{pmatrix} \operatorname{Id} & & (-) \vee \Omega_X \\ & \operatorname{Id} & & \\ & & \operatorname{Id} \end{pmatrix}$$

For instance,

$$\alpha \in \mathsf{PV}^0_{\mathrm{hol}}(X) \leadsto S(\alpha) = \alpha \land \Omega_X^{-1} \in \mathsf{PV}^3_{\mathrm{hol}}(X)$$
$$\gamma \in \mathsf{PV}^3_{\mathrm{hol}}(X) \leadsto S(\gamma) = -\gamma \lor \Omega_X \in \mathsf{PV}^0_{\mathrm{hol}}(X)$$

# Where does S-duality come from?

S-duality is an action of  $S \in SL_2(\mathbb{Z})$  on type IIB string theory compatible with the following diagram

$$\begin{array}{c} \operatorname{SL}_2(\mathbb{Z}) & \operatorname{SL}_2(\mathbb{Z}) \\ & & & & \\ \bigcap \\ M[S^1_{\mathrm{M}} \times S^1_r \times M^9] \xrightarrow{\operatorname{red}_M} \operatorname{IIA}[S^1_r \times M^9] \xrightarrow{\mathsf{T}} \operatorname{IIB}[S^1_{1/r} \times M^9] \end{array}$$

- M stands for M-theory;
- ► IIA stands for type IIA string theory;
- $ightharpoonup \operatorname{red}_M$  is an equivalence from the "fact" that a circle reduction of M-theory is equivalent to type IIA theory;
- T-duality T is an equivalence between type II string theories;
- ▶  $SL_2(\mathbb{Z})$ -action on M-theory is on  $S^1_M \times S^1_r$ ;
- ▶  $SL_2(\mathbb{Z})$ -action on IIB string theory is transferred from the  $\mathsf{SL}_2(\mathbb{Z})$ -action on M-theory through equivalences.

### Theorem (Raghavendran-Y.)

There exists a corresponding diagram in the "twisted" setting. In particular, the  $SL_2(\mathbb{Z})$ -action on twisted type IIB superstring is compatible with the  $SL_2(\mathbb{Z})$ -action on  $T^2$  of twisted M-theory.

### Summary

- S-duality is a duality of type IIB string theory.
- We construct S-duality operation on a sector of supergravity theory, that is, a version of BCOV theory.
- Our interest is duality between D-brane gauge theories, or more precisely, deformations of D-brane gauge theory.
- Closed-open map  $+ \Phi \colon \widetilde{\mathcal{E}}_m \to \mathcal{E}_m$  yields S-duality of deformations of D-brane gauge theory.

From now on, we let  $\mathcal{C}=\operatorname{Fuk}(\mathbb{R}^4)\otimes\operatorname{Coh}(\mathbb{C}^3)$ . For instance, we may consider N D3 branes on  $\mathbb{R}^2\times\mathbb{C}_z\subset\mathbb{R}^4\times\mathbb{C}^3_{z,w_1,w_2}$  to get  $\mathcal{E}^{\mathrm{HT}}_{\mathrm{D3}}(\mathbb{R}^2\times\mathbb{C}_z)=\Omega^{\bullet}(\mathbb{R}^2)\otimes\Omega^{0,\bullet}(\mathbb{C})[\varepsilon_1,\varepsilon_2]\otimes\mathfrak{gl}_N[1]$ . Then for

$$\overset{\mathcal{S}}{\widetilde{\mathcal{E}}_{\mathrm{m}}}\overset{\Phi}{\longrightarrow} \mathcal{E}_{\mathrm{m}}\overset{\mathsf{CO}}{\longrightarrow} \mathsf{Cyc}(\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^{2}\times\mathbb{C}_{z}))$$

we compare deformations of HT twist by S-dual elements.



# S-duality gives Geometric Langlands: $F = w_1$

Based on [Elliott-Y.]

$$\widetilde{\mathcal{E}}_{m} \xrightarrow{\Phi} \mathcal{E}_{m} \xrightarrow{CO} Cyc(\mathcal{E}_{D3}^{HT}(\mathbb{R}^{2} \times \mathbb{C}_{z}))$$

$$w_{1} \longmapsto w_{1} \longmapsto \partial_{\varepsilon_{1}}$$

$$\forall s$$

$$w_{1} \partial_{z} \partial_{w_{1}} \partial_{w_{2}} \mapsto \partial_{w_{2}} \wedge \partial_{z} \longmapsto \varepsilon_{2} \partial_{z}$$

Recall  $\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^2 \times \mathbb{C}_z) = \Omega^{\bullet}(\mathbb{R}^2) \otimes \Omega^{0,\bullet}(\mathbb{C})[\varepsilon_1, \varepsilon_2] \otimes \mathfrak{gl}_{\mathcal{N}}[1]$ . Globalizing with replacing  $\mathbb{R}^2 \times \mathbb{C}$  by  $\Sigma \times \mathcal{C}$ , one has  $\mathrm{EOM}_{\mathrm{D3}}^{\mathrm{HT}}(\Sigma \times \mathcal{C}) = \underline{\mathrm{Map}}(\Sigma_{\mathrm{dR}}, \mathcal{T}^*[1] \, \mathrm{Higgs}_{\mathcal{G}}(\mathcal{C}))$ , aka B-model with target Hitchin moduli. Here  $\varepsilon_1$  is responsible for  $\mathcal{T}^*[1]$  and  $\varepsilon_2$  makes  $\mathcal{C}$  into  $\mathcal{C}_{\mathrm{Dol}}$ . Hence we have the following deformations

$$(B,\mathsf{Bun}_{\mathcal{G}}(C)_{\mathrm{dR}}) \underbrace{(B,\mathsf{Higgs}_{\mathcal{G}}(C))}_{\varepsilon_{2}\partial_{z}} (B,\mathsf{Flat}_{\mathcal{G}}(C))$$

S-duality would yield  $D(Bun_G(C)) \simeq QCoh(Flat_G(C))$  for  $G = GL_N$ . Moreover, one also obtains quantum geometric Langlands conjecture in a simple way.

# S-duality between Superconformal Deformations: $F = zw_2$

|             | 0 | 1 | 2 | 3 | 4 | 5   | 6 | 7           | 8 | 9          |
|-------------|---|---|---|---|---|-----|---|-------------|---|------------|
|             | и |   | V |   | 2 | z n |   | $w_1$ $w_2$ |   | <b>′</b> 2 |
| <i>K</i> D5 |   | × | × |   | × | ×   | × | ×           |   |            |
| N D3        | X | × |   |   | × | ×   |   |             |   |            |

$$\widetilde{\mathcal{E}}_{\mathrm{m}} \xrightarrow{\Phi} \mathcal{E}_{\mathrm{m}} \xrightarrow{\mathrm{CO}} \mathsf{Cyc}(\mathcal{E}_{\mathrm{D5}}^{\mathrm{HT}}(\mathbb{R}^{2} \times \mathbb{C}_{z,w_{1}}^{2}))$$

$$zw_2 \mapsto zw_2 \longmapsto z\partial_{\varepsilon_2}$$

The deformation  $z\partial_{\varepsilon_2}$  turns HT twist of 6d  $\mathcal{N}=(1,1)$  theory to 4d CS theory on  $\mathbb{R}^2\times\mathbb{C}_{w_1}$  [Costello-Yagi]: it follows from

$$\Omega^{0,ullet}(\mathbb{C}_{w_1})\otimes\left(\Omega^{0,ullet}(\mathbb{C}_z)arepsilon_2\stackrel{z\partial_{arepsilon_2}}{\longrightarrow}\Omega^{0,ullet}(\mathbb{C}_z)
ight)\cong\Omega^{0,ullet}(\mathbb{C}_{w_1})$$

The appearance of (truncated) Yangian of  $\mathfrak{gl}(K)$  on the 1d defect can be understood as its S-dual 3d  $\mathcal{N}=4$  theory configuration, deformed by  $S(zw_2)=\partial_{w_1}(w_2\partial_{w_2}-z\partial_z)$ , where the Yangian is understood as the quantized Coulomb branch algebra.

## New Examples of S-dual Theories: $F = w_1 w_2$

$$\widetilde{\mathcal{E}}_{m} \xrightarrow{\Phi} \mathcal{E}_{m} \xrightarrow{CO} \operatorname{Cyc}(\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^{2} \times \mathbb{C}_{z}))$$

$$w_{1}w_{2} \longmapsto w_{1}w_{2} \longmapsto \partial_{\varepsilon_{1}}\partial_{\varepsilon_{2}}$$

$$\psi_{5}$$

$$w_{1}w_{2}\partial_{z}\partial_{w_{1}}\partial_{w_{2}} \mapsto w_{1}\partial_{z}\partial_{w_{1}} - w_{2}\partial_{z}\partial_{w_{2}} \mapsto \pi = \partial_{\varepsilon_{1}}\partial_{z}\varepsilon_{1} - \partial_{\varepsilon_{2}}\partial_{z}\varepsilon_{2}$$

- ▶ As  $(\mathbb{C}[\varepsilon_1, \varepsilon_2], \partial_{\varepsilon_1}\partial_{\varepsilon_2})$  is Clifford algebra  $\mathrm{Cl}(\mathbb{C}^2) \cong \mathrm{End}(\mathbb{C}^{1|1})$ , the element  $\partial_{\varepsilon_1}\partial_{\varepsilon_2}$  deforms  $\Omega^{\bullet}(\mathbb{R}^2)\otimes\Omega^{0,\bullet}(\mathbb{C})[\varepsilon_1, \varepsilon_2]\otimes\mathfrak{gl}_{N}[1]$  into  $\Omega^{\bullet}(\mathbb{R}^2)\otimes\Omega^{0,\bullet}(\mathbb{C})\otimes\mathfrak{gl}_{N|N}[1]$ , 4d CS theory with  $\mathrm{GL}_{N|N}$ .
- ▶ The category of line defects of 4d CS theory is known, in terms of modules over Yangian, quantum affine algebras, and elliptic quantum groups for  $C = \mathbb{C}$ ,  $\mathbb{C}^{\times}$ , and E.
- ▶ The element  $\pi$  gives a particular deformation  $\operatorname{Coh}(\operatorname{Higgs}_G(C), \pi)$  of  $\operatorname{Coh}(\operatorname{Higgs}_G(C))$  in terms of difference modules as a category of boundary conditions.
- ► There should be an action of monoidal category of line defects on category of boundary conditions.

# Thanks for your attention!