Future Flavours, ICTS 2022
 Lepton Flavour Violation: Exercises

Date: May 03, 2022
Problem 1. Find naive dimensional analysis (NDA) predictions for the branching ratios in the Standard Model for the decay modes: $\tau \rightarrow \mu \gamma, \tau \rightarrow e \gamma, \tau \rightarrow 3 \mu, \tau \rightarrow 3 e$.
(a) First find the NDA predictions for the amplitudes for the main SM decay channels of μ and τ. Compare the predicted rates with the measured μ and τ decay times. (Measured mean lifetimes: $\tau_{\mu}=2.2 \times 10^{-6} \mathrm{~s}$ and $\tau_{\tau}=2.9 \times 10^{-13} \mathrm{~s}$.)
(b) Find the NDA predictions for loop induced $\tau \rightarrow \mu \gamma, \tau \rightarrow e \gamma, \tau \rightarrow 3 \mu, \tau \rightarrow 3 e$ amplitudes and then the corresponding branching ratios.
(c) What happens with these branching ratios in the limit of vanishing neutrino masses?

Problem 2. Imagine that there is a heavy vector boson with flavor off-diagonal couplings, such that it has the interaction Lagrangian in the charge lepton mass basis:

$$
\begin{equation*}
\mathcal{L} \supset g_{i j} \bar{l}_{i} \gamma^{\mu} l_{j} Z_{\mu}^{\prime}+\text { h.c. } \tag{1}
\end{equation*}
$$

where $l_{i}=\{e, \mu, \tau\}$.
(a) Find the branching ratios for $\tau \rightarrow 3 \mu, \tau \rightarrow 2 \mu+e, \tau \rightarrow 3 e, \mu \rightarrow 3 e$ mediated by Z^{\prime} exchange. Convert the present experimental bounds on this branching ratios to bounds on $m_{Z^{\prime}} / g_{i j}$.
(b) Use NDA to make predictions for $\mu \rightarrow e \gamma, \tau \rightarrow \mu \gamma$ and $\tau \rightarrow e \gamma$ decay widths induced by a loop exchange of a Z^{\prime}. Discuss different cases where the chirality flip comes from the external fermion legs or from internal fermions. Convert the current experimental bounds to bounds on $m_{Z^{\prime}} / g_{i j}$.

Problem 3. Perform analysis similar to Problem 2 but for an axion like particle (ALP) with flavor violating couplings:

$$
\begin{equation*}
\mathcal{L} \supset A_{i j} \frac{\partial_{\mu} a}{f} \bar{l}_{i} \gamma^{\mu} \gamma^{5} l_{j}+\text { h.c. } \tag{2}
\end{equation*}
$$

where mass of ALP, $m_{a} \ll m_{e}$.
Problem 4. Consider that the gauge interactions given in Eq. (1) arise in a $U(1)$ model in which the three generations of SM lepton doublets $L_{L i}$ have charges $q_{L i}$ and the charged lepton singlets $l_{R i}$ have charges $q_{R i}$. With the general mass term for the charged leptons,
(a) show that $g_{i j} \propto \delta_{i j}$ if $q_{L i}$ and $q_{R i}$ are universal.
(b) for what kind of structures of $q_{L i}$ and $q_{R i}$ and the mass term, only the off-diagonal couplings $g_{i j}$ can be made non-vanishing?

