Non-equilibrium and periodically driven quantum systems

Tutorial

Bhaskar Mukherjee, ICTS-TIFR
E-mail:bhaskar.mukherjee@icts.res.in

July 8, 2021

Outline

- I. Eigenvalue statistics
- II. Forward scattering approximation.

I. Eigenvalue statistics

Preliminaries : Symmetries of a Hamiltonian

Consider a 1 d spin- $1 / 2$ interacting system of N sites described by a Hamiltonian like

$$
H=\sum_{i=1}^{L-1}\left(J_{x} S_{i}^{x} S_{i+1}^{x}+J_{y} S_{i}^{y} S_{i+1}^{y}+J_{z} S_{i}^{z} S_{i+1}^{z}\right)+h \sum_{i=1}^{L} S_{i}^{z}
$$

the symmetry of such Hamiltonian includes translation, inversion, magnetization ($M_{z}=\sum_{i=1}^{L} S_{i}^{z}$) etc.

- Translation : The action of translation operator (T) is

$$
T\left|S_{0}^{z}, S_{1}^{z}, S_{2}^{z}, \cdots, S_{N-1}^{z}\right\rangle=\left|S_{N-1}^{z}, S_{1}^{z}, S_{2}^{z}, \cdots, S_{N-2}^{z}\right\rangle ; \quad T^{N}=I
$$

- The eigenstates of T can be choosen as $T|\Psi(k)\rangle=e^{i k}|\Psi(k)\rangle$ where $k=\frac{2 n \pi}{N}, n=0, \cdots, N-1$.
- If, the system has translation symmetry : $[H, T]=0$.
- H is block diagonalized in momentum basis as $\langle\Psi(k)| H\left|\Psi\left(k^{\prime}\right)\right\rangle=0$ if $k \neq k^{\prime}$.
- How to construct the $|\Psi(k)\rangle$ s ?

$$
\left|\Psi^{a}(k)\right\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} e^{-i k r} T^{r}|a\rangle
$$

- Example : for $N=6$ and $k=0$

$$
\begin{aligned}
\left|\Psi^{0}(0)\right\rangle & =|000000\rangle \\
\left|\Psi^{1}(0)\right\rangle & =\frac{1}{\sqrt{6}}(|100000\rangle+|010000\rangle+\cdots+|000001\rangle) \\
\left|\Psi^{3}(0)\right\rangle & =\frac{1}{\sqrt{6}}(|110000\rangle+|011000\rangle+\cdots+|100001\rangle) \\
\cdots & \\
\left|\Psi^{9}(0)\right\rangle & =\frac{1}{\sqrt{3}}(|100100\rangle+|010010\rangle+|001001\rangle) \\
\cdots & \\
\left|\Psi^{21}(0)\right\rangle & =\frac{1}{\sqrt{2}}(|101010\rangle+|010101\rangle)
\end{aligned}
$$

- $k=0$ sector is the largest one.

Preliminaries: Symmetries of a Hamiltonian

- Inversion : Inversion operator (P) acts as

$$
P\left|S_{0}^{z}, S_{1}^{z}, S_{2}^{z}, \cdots, S_{N-1}^{z}\right\rangle=\left|S_{N-1}^{z}, \cdots, S_{2}^{z}, S_{1}^{z}, S_{0}^{z}\right\rangle \quad P^{2}=I
$$

- The eigenstates of P can be choosen as $P|\Phi(p)\rangle=p|\Phi(p)\rangle$ where $p= \pm 1$.
- In general $[T, P] \neq 0$ but for $k=0, \pi$ they commute. So, $k=0$ and π sector can be further block diagonalized into two part using inversion symmetry.
- Example : Consider the following two states

$$
\begin{aligned}
& \left|\Psi^{11}(0)\right\rangle=\frac{1}{\sqrt{6}}(|110100\rangle+|011010\rangle+\cdots+|101001\rangle \\
& \left|\Psi^{19}(0)\right\rangle=\frac{1}{\sqrt{6}}(|001011\rangle+|100101\rangle+\cdots+|010110\rangle
\end{aligned}
$$

- We can construct

$$
\begin{aligned}
& \left|\Theta(k=0, p=+1)=\frac{1}{\sqrt{2}}\left(\left|\Psi^{11}(0)\right\rangle+\left|\Psi^{19}(0)\right\rangle\right)\right. \\
& \left|\Theta(k=0, p=-1)=\frac{1}{\sqrt{2}}\left(\left|\Psi^{11}(0)\right\rangle-\left|\Psi^{19}(0)\right\rangle\right)\right.
\end{aligned}
$$

- One can check $\langle\Theta(k=0, p=+1)| H|\Theta(k=0, p=-1)\rangle=0$. This means we can further reduce the number of states in $k=0$ sector by working in a particular inversion symmetry sector.

- Some numbers: In a 2D spin-1/2 Heisenberg model, one can deal with $6 \times 6\left(\mathrm{HSD}=2^{36}\right)$ systems by using 7 such conserved quantities $\left(M_{z}, Z, k_{x}, k_{y}, p_{x}, p_{y}, p_{d}\right)$. The size of $\left(M_{z}=0, Z=+1, k_{x}=0, k_{y}=0, p_{x}=+1, p_{y}=+1, p_{d}=+1\right)$ sector is $15804955(\approx 4348$ times reduction).
- Ref: "Computational Studies of Quantum Spin Systems", A. W. Sandvik, AIP Conf.Proc.1297:135,2010.

I. Eigenvalue Statistics : Measure of quantum chaos

- Store the eigenvalues (e) in increasing order and calculate the gaps $(\Delta): \Delta(i)=e(i+1)-e(i)$. Then, study (average, distribution etc) the following quantity

$$
r=\frac{\min (\Delta(i), \Delta(i+1))}{\max (\Delta(i), \Delta(i+1)}
$$

- For integrable systems, r shows Poissonian distribution with $P(r)=\frac{2}{(1+r)^{2}}$ and $\langle r\rangle \approx 0.386$. No, level repulsion.
- Non-integrable systems shows level repulsion, r shows GOE distribution $\left(P(r)=\frac{27}{4} \frac{r+r^{2}}{\left(1+r+r^{2}\right)^{2.5}}\right)$ and $\langle r\rangle \approx 0.536$.

one subtle issue

- One needs to resolve all the conserved quantities present in the system, otherwise you will get wrong result.

- Ref: "Quantum Signatures of Chaos ", Fritz Haake.

I. Forward scattering approximation

Introduction : Experiment

MENU $~$

Array of $51{ }^{87} R b$ atom described by

$$
\frac{\mathcal{H}}{\hbar}=\sum_{i} \frac{\Omega_{i}}{2} \sigma_{x}^{i}-\sum_{i} \Delta_{i} n_{i}+\sum_{i<j} V_{i j} n_{i} n_{j}
$$

$$
|r\rangle=\left|70 S_{1 / 2}, J=1 / 2, m_{J}=-1 / 2\right\rangle
$$

$$
|g\rangle=\left|5 S_{1 / 2}, F=2, m_{F}=-2\right\rangle
$$

Quantum many body scars

Turner et al, Nature Physics 14, 745-749 (2018).

$$
\begin{aligned}
H S D_{L} & =\#|\underbrace{r, g, \ldots \ldots}_{L-1 \text { sites }}, g\rangle+\#|\underbrace{r, g, \ldots . .}_{L-2 \text { sites }}, g, r\rangle \\
& =H S D_{L-1}+H S D_{L-2}
\end{aligned}
$$

with $H S D_{1}=2$ and $H S D_{2}=3$ we get $H S D_{L}^{O B C}=F_{L+2}$
similarly we get $H S D_{L}^{P B C}=F_{L-1}+F_{L+1} \sim \tau^{L}$ in large L limit.
τ is the golden ratio ~ 1.62

The effective Hamiltonian

$$
H=-\sum_{i}\left(\tilde{\sigma}_{i}^{x}+\lambda \sigma_{i}^{z}\right)
$$

where $\tilde{\sigma}_{i}^{x}=P_{i-1} \sigma_{i}^{x} P_{i+1}$ and $P_{i}=\frac{1-\sigma_{i}^{z}}{2}$.

$$
\begin{aligned}
& \psi(t=0)=\mathbb{Z}_{2}^{\text {sym }}=\frac{|0,1,0,1 \ldots\rangle+11,0,1,0 \ldots\rangle}{\sqrt{2}} \\
& N=30, H S D=1860498, H S D(K=0, P=+1)=31836
\end{aligned}
$$

II A. Forward scattering approximation (from $\left|\mathbb{Z}_{2}\right\rangle$)

Preliminaries 1: Gram-Schmidt orthogonalization

- Let, $Z=\left\{z_{1}, z_{2}, z_{3} \cdots, z_{n}\right\}$ is a set of linearly independent vectors (non-orthogonal in general).
- Gram-Schmidt process generates a corresponding orthogonal set of vectors $Q=\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}$ such that $s p\{Q\}=s p\{Z\}$.
- Q is given by

$$
\begin{aligned}
q_{1} & =z_{1} \\
q_{2} & =z_{2}-\operatorname{proj}_{q_{1}}\left(z_{2}\right) \\
q_{3} & =z_{3}-\operatorname{proj}_{q_{1}}\left(z_{3}\right)-\operatorname{proj}_{q_{2}}\left(z_{3}\right) \\
\vdots & \\
q_{k} & =z_{k}-\sum_{i=1}^{k-1} \operatorname{proj}_{q_{i}} z_{k}
\end{aligned}
$$

where $\operatorname{proj}_{q}(z)=\frac{\langle q \mid z\rangle}{\langle q \mid q\rangle} q$.

- You can orthonormalize Q if you wish.

Preliminaries 2: Lanczos algorithm

- Motivation: Calculation of ground and a few low lying excited states of large (Hilbert space dimension D) quantum systems described by a Hamiltonian H.
- Krylov subspace : $\mathcal{H}_{k} \equiv\left\{v_{0}, H v_{0}, H^{2} v_{0}, H^{3} v_{0}, \cdots, H^{k-1} v_{0}\right\}$ where v_{0} is a initial choice which should have nonzero overlap with the ground state. In many cases ($k \ll D$).
- orthonormalize the Krylov subspace by the following iteration

$$
\begin{aligned}
\beta_{1} v_{1} & =w_{0}=H v_{0}-\alpha_{0} v_{0} \\
\beta_{2} v_{2} & =w_{1}=H v_{1}-\alpha_{1} v_{1}-\beta_{1} v_{0} \\
\vdots & \\
\beta_{i+1} v_{i+1} & =w_{i}=H v_{i}-\alpha_{i} v_{i}-\beta_{i} v_{i-1}
\end{aligned}
$$

where $\alpha_{i}=v_{i}^{T} H v_{i}$ and $\beta_{i}=\left\|w_{i-1}\right\|=v_{i-1}^{T} H v_{i}$.

Preliminaries 2: Lanczos algorithm

- $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ are known as Lanczos vectors each of size $(D \times 1)$.
- Note that we do orthogonalization w.r.t only previous two vectors. But, the beauty of Lanczos algorithm is that this guarantees global orthonormality (in exact arithmetic). Therefore, $V^{T} V=I$.
- This gives the following tridiagonal matrix

$$
H^{\text {Lanczos }}=V^{T} H V=\left(\begin{array}{ccccc}
\alpha_{0} & \beta_{1} & & & \\
\beta_{1} & \alpha_{1} & \beta_{2} & & \\
& \beta_{2} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \beta_{k-1} \\
& & & \beta_{k-1} & \alpha_{k-1}
\end{array}\right)_{(k \times k)}
$$

- Diagonalization of $H_{\text {Lanczos }} \Longrightarrow$ low lying eigenvalues of H.

Preliminaries 2: Lanczos algorithm

- Eigenvectors : one need to store all the Lanczos vectors i.e the matrix V.
- If $H_{\text {Lanczos }} \psi^{0}=E_{0} \psi^{0}$ then $\Psi=V_{D \times k} \psi_{k \times 1}^{0}$ gives an approximate eigenstate of H of eigenvalue E_{0}.
- Stability : very prone to numerical instability. Loss of orthogonality is the main issue. Reorthogonalization should be done whenever necessary.
- some numbers: Ground and low lying excited states of systems with Hilbert space dimension ($D \sim 30000000$) can be be obtained with k as small as 1000 .
- Ref: "Lanczos Algorithms for Large Symmetric Eigenvalue Computation "by Cullum \& Willoughby.

FSA $\left(\right.$ from $\left.\mathbb{Z}_{2}\right)$

- Lanczos calculation starting from $\left|v_{0}\right\rangle=\mathbb{Z}_{2}$ with Krylov space dimension (k) $L+1$ is sufficient to capture the scars in PXP model.

- Lets do the following decomposition of PXP model

$$
H=-\sum_{i} \tilde{\sigma}_{i}^{x}=H^{+}+H^{-} \text {where } H^{ \pm}=-\sum_{i \in \text { even }} \tilde{\sigma}_{i}^{ \pm}-\sum_{i \in \text { odd }} \tilde{\sigma}_{i}^{\mp}
$$

- Note that $H^{-} \mathbb{Z}_{2}=0$ and $H^{+} \overline{\mathbb{Z}}_{2}=0$. So, if we take $v_{0}=\mathbb{Z}_{2}$, then from Lanczos algorithm

FSA (from $\left.\mathbb{Z}_{2}\right)$

$\beta_{1} v_{1}=H v_{0}-\alpha_{0} v_{0}=H^{+} v_{0} \quad$ as $\alpha_{0}=v_{0}^{\top} H v_{0}=0$
$\beta_{2} v_{2}=H v_{1}-\alpha_{1} v_{1}-\beta_{1} v_{0}=H^{+} v_{1}+\left(H^{-} v_{1}-\beta_{1} v_{0}\right) \quad$ as $\alpha_{1}=0$

- $\alpha_{i}=0, \forall i$.
- note that $H^{+} v_{0}=-\sum_{i \in \text { odd }}|0 ; 01010 \cdots\rangle$. So, $\beta_{1}=\left\|H^{+} v_{0}\right\|=\sqrt{\frac{L}{2}}$.
- $H^{-} v_{1}=\frac{L}{2} \sqrt{\frac{2}{L}}|1010 \cdots\rangle=\beta_{1} v_{0} . \therefore\left(H^{-} v_{1}-\beta_{1} v_{0}\right)=0$.
- Similarly, $H^{-} v_{2}-\beta_{2} v_{1}=0$.
- Let's write (though not true in general)

$$
\begin{aligned}
& H^{+} v_{i}=\beta_{i+1} v_{i+1} \quad \text { forward scattering } \\
& H^{-} v_{i}=\beta_{i} v_{i-1} \quad \text { backward scattering }
\end{aligned}
$$

- Exact at all j , only for free paramagnet $\left(H=-\sum_{i} \sigma_{i}^{x}\right)$.

$$
H_{F S A}^{P X P}=V^{T} H V=\left(\begin{array}{ccccc}
0 & \beta_{1} & & & \\
\beta_{1} & 0 & \beta_{2} & & \\
& \beta_{2} & 0 & \ddots & \\
& & \ddots & \ddots & \beta_{k-1} \\
& & & \beta_{k-1} & 0
\end{array}\right)_{((L+1) \times(L+1))}
$$

- FSA gives good results at very small $(\sim L)$ computational cost.
- To calculate observables \Rightarrow store FSA vectors $\left(\sim L \phi^{L}\right)$.

Perfect scars and perfect oscillations

- Why the oscillations decay ? System leak outside the FSA manifold.
- Quantify the FSA erros :

$$
\delta_{j}=\| H^{-}\left|v_{j}\right\rangle-\beta_{j}\left|v_{j-1}\right\rangle \|
$$

- $\delta_{j} \neq 0$ for $j>2$ in PXP model.
- Can the oscillation be enhanced and made nearly perfect ?
- Note that, FSA errors \equiv damping force. Therefore, reduction of FSA errors \Rightarrow enhancement of oscillations.
- What term can be added to PXP model to fulfill this dream ??

$$
H_{\text {perturb }}=-h_{x z} \sum_{i} \tilde{\sigma}_{i}^{x}\left(\sigma_{i-2}^{z}+\sigma_{i+2}^{z}\right)
$$

$F S A$ with $H_{B}=H^{P X P}+H_{\text {perturb }}$

Redefine the decomposition $\Rightarrow H_{B}=H_{B}^{+}+H_{B}^{-}$with

$$
H_{B}^{ \pm}=-\sum_{i \in \text { even }} \tilde{\sigma}_{i}^{ \pm} W_{i}-\sum_{i \in \text { odd }} \tilde{\sigma}_{i}^{\mp} W_{i}
$$

where $W_{i}=\mathbb{I}+h_{x z}\left(\sigma_{i-2}^{z}+\sigma_{i+2}^{z}\right)$.
the new FSA errors : $\delta_{j}^{B}=\| H_{B}^{-}\left|v_{j}^{B}\right\rangle-\beta_{j}^{B}\left|v_{j-1}^{B}\right\rangle \|$.
Again, $\delta_{1}^{B}=\delta_{2}^{B}=0$.

further

$$
\delta H_{R}=\sum_{i} \sum_{d=2}^{R} h_{d}\left(\sigma_{i-d}^{z}+\sigma_{i+d}^{z}\right)
$$

with

$$
h_{d}=h_{0}\left(\tau^{d-1}-\tau^{-(d-1)}\right)^{-2}
$$

gives 99.9999% revival for $N=32$!!!

- Rest of the spectrum becomes strongly ergodic.

Emergent SU(2) algebra

- When all FSA errors are cancelled, FSA vectors become eigenstate of $H_{B}^{z}=\left[H_{B}^{+}, H_{B}^{-}\right]$.
- $\left\{H_{B}^{+}, H_{B}^{-}, H_{B}^{z}\right\}$ plays the role of $\left\{S^{+}, S^{-}, S^{z}\right\}$ within \mathcal{K}_{L+1} and forms an $s=L / 2$ representation of $S U(2)$ algebra.

$$
\begin{aligned}
S^{-}|s, j\rangle & =\sqrt{(s+j)(s-j+1)}|s, j-1\rangle \\
H_{B}^{-}\left|v_{j}^{B}\right\rangle & =\beta_{j}\left|v_{j-1}^{B}\right\rangle
\end{aligned}
$$

II B. Forward scattering approximation (from $|0\rangle$).

Decompose the PXP Hamiltonian

$$
H=-\sum_{i} \tilde{\sigma}_{i}^{x}=H^{+}+H^{-}
$$

where

$$
H^{ \pm}=-\sum_{i} \tilde{\sigma}_{i}^{ \pm}
$$

- $\#$ FSA vectors $=\frac{L}{2}+1$.
- We find, in this case also, the first two step is exact i.e $\delta_{1}=\delta_{2}=0$ and $\delta_{i} \neq 0$ for $i \geq 3$.
- We find $\sum_{i=3}^{L / 2+1} \delta_{i}=17.54$ for $|0\rangle$ where as $\sum_{i=3}^{L+1} \delta_{i}=1.85$ for \mathbb{Z}_{2} in bare PXP model (Model-A) at $\mathrm{L}=20$. This causes rapid thermalization from $|0\rangle$.
- Can we come up with terms that reduces the FSA errors for $|0\rangle$?? (Again the most challenging part).

$$
\text { Model-C }: H_{C}=-\sum_{i} \tilde{\sigma}_{i}^{x}-\left(h \sum_{i} \tilde{\sigma}_{i}^{+} \tilde{\sigma}_{i-1}^{-} \tilde{\sigma}_{i+1}^{-}+h . c\right)
$$

the additional term connects $|\cdots 01010 \cdots\rangle$ to $|\cdots 00100 \cdots\rangle$.

- Again we find $\delta_{1}^{C}=\delta_{2}^{C}=0$ though the FSA vector changes.
- Higher order FSA errors must also be minimized. But unlike \mathbb{Z}_{2}, both δ_{j}^{C} min and corresponding $h^{\text {min }}$ increases steadily with i.

- Average error per step increases with L , much more rapidly compared to \mathbb{Z}_{2}.

- Solution : Just like the \mathbb{Z}_{2} case, add longer range term of similar nature.

$$
H=H^{C}+h_{5} \sum_{i}\left(\tilde{\sigma}_{i-1}^{+} \tilde{\sigma}_{i+1}^{+} \tilde{\sigma}_{i+2}^{-} \tilde{\sigma}_{i}^{-} \tilde{\sigma}_{i-2}^{-}+h . c\right)
$$

- these parameters must be optimized together.

Physical realization

- Periodic dynamics of vacuum state $(|0\rangle)$.
- Protocol :

$$
\begin{aligned}
& \lambda(t)=+\lambda ; 0<t \leq T / 2 \\
& =-\lambda ; T / 2<t \leq T . \\
& \begin{aligned}
U(T, 0) & =e^{-i H[\lambda] T / 2 \hbar} e^{-i H[-\lambda] T / 2 \hbar} \\
& =e^{-i H_{F} T}
\end{aligned}
\end{aligned}
$$

- Variety of non-thermal phases.
- Superthermal. \Longrightarrow FSA
- Freezing of wavefunction.
- Subthermal.

$$
\begin{gathered}
H_{F}^{e f f}=\sum_{i}\left(C_{1}(\lambda, T) \tilde{\sigma}_{i}^{x}+C_{2}(\lambda, T) \tilde{\sigma}_{i}^{y}\right)+C_{3}(\lambda, T) \sum_{i}\left(\tilde{\sigma}_{i}^{+} \tilde{\sigma}_{i-1}^{-} \tilde{\sigma}_{i+1}^{-}+h . c\right) \\
\left.\frac{\left|C_{3}\right|}{\sqrt{\left|C_{1}\right|^{2}+\left|C_{2}\right|^{2}}}\right|_{\lambda^{\text {super }, ~} T^{\text {super }}}=0.35
\end{gathered}
$$

Mukherjee et al, Phys. Rev. B 102, 075123 (2020)
$\left.\begin{array}{|c}\text { Exact excited states in non-integrable models. } \\ \text { Moudgalya et al, PRB 2018. }\end{array} \begin{array}{r}\text { Connection with AKLT } \\ \text { Lin \& Motrunich, PRL 2019. } \\ \text { Shiraishi \& Mori, PRL 2017. } \\ \text { Shiraishi, J. Stat. Mach 2019. }\end{array}\right\}$

