I FINITE DIMENSIONAL VECTOR SPACES: APPENDIX — A

1 0 0 1
let $ = {(0) i (1) , (0) , <1)} be a set with 4- vectors each of size 3. Verify that any subsets
0 0 1 1

of three vectors are linearly independent. How many such subsets are there?

If X;,X;,X3 arethree linearly independent vector in R”, then so are (X; + X;), (X; + X3)
and (X, + X3). Prove or disprove.

T T T
Leta = (ay,azas) , b= (by,bybs) , ¢ = (c1,¢563) - Under what condition these are
linearly independent?

Let
1= {X= (1,22, %3)T| 1 + %, = 1}
Sz = {X= (x1,%2,%3)"| %, + x, = 0}
S3={X= (xl,xz,x3)T| xy = 0}

Which of these are subspaces?

A function f : R™ — R is called a functional. A functional in linear if
fOu +x) =f )+ f (). [x1,% €R"

flax) =af(x)[xeR™,a€cR]
Which of the following are linear functional?
(@) f(x)=XL, a;x; +b
(b) f(x)= x,
(c) f(x)=xi,
(d) fO)=—x; + 5x3 + 7x3
(&) fF(X)= x1- x;
) fl) = GF+x3+x)2

Consider a Quadratic functional
Q: R?> - R givenby

_ A0 X1 - 2 2.
e = Gax) (y 1)) =2t + 3
Draw the contour plots of Q (x) for

A=01,1=05,4A=1,1 =2, 1 =5, comment on the effect of variation of A on the
shape of the contours.




10.

11,

let |
00 = % (G §) ()

Draw the contours of Q(x) for a = +0.5, +1.0 . What happens when ais+veand ais-ve ?
Verify: llx +y I = 2 [Ix|I? + 2 |lyll ? - Parallelogram law.
Draw the unit sphere in [|x]l; , llxlly , lxloo. llxll 4
Cauchy — Schwartz inequality :
X7 Y= [iX)} IY} cos6
And conclude

IXTy | < Xl vl

Let | X]| = 1 and Y be any vector.
XTY = IYNIX]l cos8 = ||Y]} cosB

= Projection of Y onto X
.'ﬂ*
A0




Il. MATRICES: APPENDIX - B

Prove (AB)T = BT AT
det (aA) = a” det (A)

Let
2 000 100 0
_ |11 100 |11 100
A_ozao 3‘0110
0 01 4 0 01 1

Compute det (A), A~1,AB, (AB)™!

Let
- [cosB sin 6]
sin@ cos@
(a) Verify (i) ATA=AAT=1 (i) AT=A"1
(b) Letx = (i) and y=Ax. Plotyfor8=0,15,30°,60°,90°,120°,150°,180".

(c) Explain the actionof A on X = G)
(d) Find lIxll, llyll wherey = Ax. Are they same? Why?

Find examples of two 2 X 2 matrices A and B such that AB # BA.
-
Let P e R™™, non-singular, h € R. Then hhTe R"™® and (P +hhT) eR™*",

. Ty-1 _ p-1_ P 'hhTP2
Verifythat (@P+hh")™1 =P 1+hTp-1}h

by multiplying (P+hhT)(P+hh™)™ and showing that the productisIy, .

Verify : tr(AB) = tr (BA)
tr (ABC) = tr (CAB) = tr (BCA)

Let A and B be non-singular ; verify that
(AB)y™X = B7141

Verify : Sherman — Morrison — Woodbury formula

cd’
.(In+ CdT)—l—-In—miT c,deR"
-1.gT a—1
.(A+cd)'1=A‘1—%ﬁ-——-%c- c,deR"




10.
11.

12.

.(A+CD)'=A"1-A"C[+DTA*C]* DTA!
AeRM™M | CeR™XK | DeRM*K
(A+CBD)1=A"1-A"1C[B~1+DTA™*C]* DTA™?
AeRRXn , Bekak A CeRnxk , DeR nxk

Find the eigenvalues and eigenvectors of

_[ 5 -
a4 = [—2 8]
: _Ja b
Compute the inverse of A = [c d]
Plot the eigenvalues_of

S I

for a € [-5,5] instepsof0.1

tet A= [ b

= o X= (2) Rewrite

XTAX=ax?+2bxyx,+ cxZ as
b 32 b2
XTAX =a (x1 + ; xz) + (C— —a-)x§

Verify A is positive definite whena > 0,¢>0and b? <ac




1. MULTIVARIATE CALCULUS: APPENDIX - C

1. LetaeR™ XeR™ Letf(X)=a"X= Ji ai%;

Vfx)=a —[Gradientof f(x)|

2 tetA= [} ’C’] X= (i:) FOO=XTAX
Vf(x)= 24X
3. LetQ(X) =3 XTAX-b'X, [4 = symmentic e R™™ beR™ XeR"

VQ=AX-D

4 RiR™ = R™ h(x) = (Ry (), hp(®), e ()
x = (X4,Xg s X)T

Jacobian of h(x) = Dy, (x) € R™*"

dxy Bx, T 9xy
8h; 0Ohy dhz
Dp(x) = dx, 9xpz = Oxp
Oy Ohm ARy
3x1 axz - ahn
5. f:R* >R

! ar af or \
Gradient: Vf(x) = (-axi1 ,a—fz- 3—9{1:) € R®

- @3f 9%f
axz %, 8%,
2 o
_ Bx0%4 %3
Hessian : VZf(x) = . .
8%t %
L% 0%, %,0%,

Compute the Hessian of f(x) in(2) above.

2
6. Let h(t,x)= x,exp {— (ﬁﬂ) }+ x; where

Xy

x = (X1, X3, X3, X4,) and tistime.

B Veh(x), VZh(x)

Compute il

3% 1

x4 0xq
%€
%, 0%p

2%

92x3 |

€ Rnxn




10.

11.

Let x€R™,h: R™ > R™and h(x) = (hy(x), hy(%) ... h,,,,(:‘r))T . Let
@@ =3 K() Ah(x), A-SPD

Verify that

V@(x) = Df(x) Ah (x), Dp(x)e R™™ isthe Jacobian of h.

Let £(x) be a smooth function. Taylor expansion for f(x):

2
fa+ =0+ Lo+ 20L o2

.let fiR* >R, xeR"™, aecR"
1
fE+a)=fx)+ aT VF(x) + N a’ V{(x) a

First Variation 81 (x) resulting from variation 8x in x.
8f(x) =< Vf(x),6x >

Let B(x) = a"x =< a,x >.Then, 60 = aTéx =< a,8x >
Let §(x) = % xTAx. Then, 60(x) = < Ax,6x > ,
Let 8(x) = 3 (z — Hx)"(z — Hx).Then, 8¢ = < H (Hx — ), 6x >

Let @: R™ - R be twice continuously differentable. Then, @ is convex when the Hessian V2@
is non-negative definite and @ is strictly convex if 72 @ is positive definite.
- Examine the convexity of  @(x) = x2, @ (x) = x3,0 (x) = (z — Hx)"(z — Hx)




V. OPTIMIZATION: APPENDIX-D

1. @:R™ - R. At the minimum :
Vo(x) =0
V29(x) is SPD

2. Minimize @(x) when g(x) = b is an equality constrained minimization problem.

Lagrangian formulation (Strong constraint)
rg,ilnL(x,l) =@+ AT (g(x) —b)

Penalty function method (Week constraint)
oC
minP @)= @)+ 3 IlgCGe)—ell?

When o« > 0 is called penalty constant.
It turns out that the solution of the weak constraint problem tends to that of the strong
constraint problem as o« —» oo

3. (i) Find the minimum of 3(®) = x + xZ when g(x)=x +xzandb=1
(ii) Minimize 2% + xZ when x; + x, = 1 by both formulation. Verify that the weak solution
tends to strang solution as «<— .

4. LetA=ab whena+b= %

Maximize A using strong and weak constrained formulation.




V. STATIC INVERSE PROBLEM: CHAPTER 5-8

1. HeR™™ , m > n. H be of Full Rank, i.e, Rank (H) = min {m,n} =n
The generalized inverse of H is denoted by H* and is given by

H* = (HT H)™*HT, He R™" 1
Properties of H*
(a HHYH=H (c) (HHYT =HH*
(b) HYH H* = H* (d) (H*H)" = H*H

e Verify properties (a) — (d)
e Compute the generalized inverse of

. 1 1 0
(@ H= <1) (b)H = (O 1) and verify these properties.

1 0 0
2. Define
Py=HH*=H(HTH)" HT called the projection (orthogonal) matrix (2)
1\ 1 0
e Compute P, when H = 1) and H= {0 1)
1 0 0

e Compute Pyzwhenz = (1,1,1)7 for these values of H
e Computee = z— Py z and compute < e,Pyz > andverifye L P,z

3. Verify that Py in (2) is such that
a) Py =P} -Symmetric
b) P%Z =Py -idempotent

Py is called orthogonal projection matrix.

4. Min, f(x) = (z— Hx)"w (z — Hx) where ze R™, He R™™, x ¢ R, We R™™ _spD

Verify that the minimizeris = (HT W H)"H™W z

5. Define
Puw=HH"WH)THTwW
(i)Verify Py 1, is not symmetric but is idempotent , that is
(i) Phw = Pyw
Py w is called an obligue projection matrix.

6. leth=(}), z=().w= [é g] be the weight matrix.
* Formulate and solve liner weighted least squares problem z = hx.
8




e Findx;s and e(X.g)
¢ Find the angle between e(x; ) and h, where x= 1, 1.5, 0.75.

7. Define
fG) = @Z-H)T Rz~ Hx) + (x—x5)"B™! (x— x5)
Find the minimize x; of f(x).
Note - This is the so called 3-D VAR Problem.

8. Verify the computation in section 8.1 (Chapter 8 in LLD(2006)) leading to the recursive form
of least squares solution.

9. PROBLEM 5.7 (Chapter 5, LLD(2006))Three layer atmosphere

0O mb
T3 L3

200 mb
T, L2

500 mb
Ty L1

To 1000 mb |

.Ty — temperature of earth’s surface
. T; — Average temperature of layer i,1 <i <3
Energy radiated R at frequency fis

Rr=e™" + folT @ w (p, yf)dp— Where

w(p.¥r) = pyy 7PV — ()

DISCRETISE USING 3- LAYERS

For the three layer problem:

Rp=e" + [ . Tsw(p,v;)dp + J’ZSDOGU T.w(p,vs)dp + _[510000 Tyw (p,vs) dp

= ()




Rewrite as (after integrating)

[fo2 “w (. ¥r ) dpl T3+ [Izsoouuw (p, Yf)dpj T; + [151:000 w (p. Yf) dpl Ty

axf Qzf aif

=Ry — eV — (3)
Substituting for w (p, yf) from (1) into (3) and integrating we get:

LINEAR MODEL

[alle + aszz + ang3 = Rf - e-Yf|—""_> (4)

Generate date

; fi ¥ri w (’P. 14 ﬂ) e
1 0.9 o9 0% exp 0:% 0.329
2 1.0 Yy .q o%e"p (0;.1'27_) 0.240
3 11 Yoz 6% exp (;_E) 0.135
4 1.2 o3 0% exp (0__.2) 0.036
5 1.3 1.0 0% - (%’ 0.007

using the values in the Table and setting Ty =09, T, =085, T3 = 0.875
First compute (Ry; — e77fi) for 1 < i < 5 using the formula (4)
Define

z;=(Rp—eVi)+ v; ——(5)

v; ~N ( 0, 62), the observation noise and generate z = (2,,22,23,24,%5 )

Set up a liner least squares problem

10




af1 axfi asfy Z
a1f axf; aaf, Ty Zy
a1fs @xfs asfs [Tz} = (23| —>(6)
Gfe ayfy asfy| LTs
aifs axfs asfs Zs

And solve for T* = (Ty, T3, T3)
T(truth) = (0.9, 0.85, 0.875,) and
Find ||IT (truth) — T*||

Plot [|IT (truth) = T*|| Vs @2 =0.1, 0.5, 1.0, 1.5, 2.0 and comment

10. Non liner problem

Let T@) =x;(p~ %)% + x3 for0<p<1
Letz; = f:iiT (p) dp. Define

X = (xll X2, x3)T ’ zZ= (Zl 122,23 124)T

h(x) = (ha(x), hy(x), ha(x), hy(x))T.

Setz = h(x)
Data:-

] a; bi
1 0.00 0.25 0.21
2 0.20 0.50 0.15
3 0.30 0.70 0.51
4 0.60 0.80 0.11

® Integrate: z; = fa’Z‘T(p)dp =hx) 1<i<4

 Setup: f(x) = (z~ h(x))"(z — h(x))
e Find Vf(x), V3f(x)
e Update using the first — order approximation.

11




VI. MATRIX METTHODS: CHAPTER 9

1. Letm = 10 and m = 8. Generate a matrixH € R™*" where h;; € [-1, 1] uniformly
randomly. Also generate z € R™ where z; € [—1,1] uniformly randomly.
1) Compute (HT H), H'z
2) Solve (HT H)x, HTz using
a) Cholesky decomposition
b) QR decomposition
c) sSvD
3) Compare the solution.

2. Let
1.0 0.0 1.0
_ |10 10 _ |30
H=110 20 Z= 120
1.0 3.0 3.0

a) Compute z—Hx, x=(x,%)"
b) Compute f(x¥)=(z—-Hx) (z—HX)
c) Plot the contoursof f(x) and identify graphically the minimum.

3. Following the exercises in chapter 9, LLD (2006), develop your own MATLAB program to solve
a) alower / upper triangular system
b) LU - decomposition
¢) Cholesky decomposition
d) QR decomposition

4, Compute number of operations needed by each of these algorithms.
5. Analyze the modified Gramm- Schmidt algorithm.

12




Vil. OPTIMIZATION PROCEDURE: CHAPTER 10-12

Let f(x) = % xT Ax — bT x where Ae R is SPD and b e R" Usinggradient

algorithm to minimize f(x) , show that

E (tier) = [1 - G| B

Where E (x) = f(x) — f(x*) and x*=A"1bh

10

LetA = [0 i

and f(x) = %xTAx

LIk
using gradient algorithm, verify that x, = (%) ( (—/fll)"‘) , With xy = ()‘)
For A = 4, plots the trajectory of the gradient algorithm.

. 1 0 . . X1 _ _]_. T
LetA—[0 2],x—(x2). fX)=;x"Ax
Verify that the trajectory {x; } of the gradient algorithm is given by

el
xk?@) [(—21)k] i (i)
Verify fCters) = 5 f (u)
Plot f(x;) Vs k.

Verify the properties of conjugate direction and conjugate gradient methods as given is
chapter 11, LLD (20086).

Let m = 50, n = 40, generate

H € R™" and z € R™ randomly.
Compute e(x) =z — Hx and
fx)=eT(x)e(x) = (z— Hx)" (z— Hx)

Minimize f(x) using

(a) Gradient algorithm

(b) Conjugate gradient algorithm.

{c) Plot f(x;) Vs k for both the methods in the same plot and compare.

Prove that the Newton’s algorithm for find the solution of f(x) = 0 converges
quadratically.

13




VIIl.  Statistical Estimation: CHAPTER 13 -17

1. Define the following properties of an estimate
a) Biased Vs unbiased
b) Consistency
c) Efficiency
d) Linear Vs non linear
2. State and prove Gauss Markov theorem.
3. Following example 15.1.1, describe the maximum likelihood estimation.
4. Following example 16.2.1, analyze the Bayasian method for estimation.

5. Repeat problem (4) for the vector case described in Example 16.2.2.

6. Following the developments in chapter 17, derive an expression for the linear, minimum
variance estimation.

7. Referring to the Table 17.1.1, compare the Bayasian estimate is Example 16.2.2 and the linear
minimum variance estimate in chapter 17. The equivalence between these two approaches rests

on the matrix identity known as Sherman - Morrison — Woodbury formula.

8. Follow the derivation in section 17.2 to understand the underpinnings of the data assimilation
phase in the Kalman filtering approach.

Note : All the reference to chapters and examples are from LLD (2006).
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IX. BASIC DATA ASSIMILATION: CHAPTER 18-20

1. Consider 1-D uniform grid with n grid points and m observations :n =7, m = 3

LN A oy
e—
g ‘s>
E XN o T
i —s X * ) ¥ ’
LY i I > QG = B >
-—
B

Compute the liner interpolation matrix H € R7*3,

2. Considera 2 — D grid with n points and m- observations.

Compute H € R™*" pilinear interpolation matrix.

Compare Cressman’s and Barne’s scheme for spreading m observation on n - grid points
(m <n).

4. Derive the expression for Wieners optimal interpolation based on spatial covariance.

Following the developments in section 20.4, derive expression for the optimal estimates for the
3-DVAR problem using the second order approximation.

15




X. 4-D VAR METHODS: CHAPTER 22-25

Following the development of fluvial dynamics in section 3.4, solve the problem 23.11 using
Legrangian multiples method.

Let X1 = @ X with X as 1.C. and 2, = hxy + Vi, Vie ~N (0, 6?)
(zx— hxi)®

=~ W.rt X

e Using x;, = a*x,, find the gradient of Q(x) = -:— Vil

e Compute the gradient using the Lagrangian multiplier method.
Following the development in section 23.5, derive the adjoint dynamics and develop the 4-D
VAR framework.

Consider the non liner dynamics
x'1 =a x1 X9
x
X, = b x? With x = (x;)
Witha+ b =0 (Burgers2 mode)
_ (A .
let z= (Zz) with

Zy = A Xy x2+171

. 2
Z, = bx? + v, } g gy

a) Discratize the model and express it as

X1 = M(xy) }
Zy = h(xk) + Vi

by setting a = % = ‘—21 and o2 = 0.01
b) Let
2
1 —h(xp
J(x) = 3 2%9_-1@"}!(:;))

e Draw the contours of J(xy) (Referto Example 24.4.1)

¢) Minimize J(xy) using the 4-D VAR method.
Solve problem 24.17, 24.18

16
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Nowvse

XI. KALMAN FILTERS: CHAPTERS 27-30

Reproduce the results of exercise 27.2.1, 27.2.2,27.2.3,27.2.4

Exercises : 27.3,27.4,27.5

Following section 28,2, explore the effect of cross correlation between model noise and
observation noise on the structure of the Kalman Filter equation.

Following examples 28.7.1, describe the role of Polters algorithm in Kalman filtering.
Work through the details of the examples 29.1.1 and 29.1.2.

Derive the extended KF, and the second — order filters (See section 29.4 )

Following the exercises 30.2 and 30.3 derive Ensemble Transform and Ensemble Adjustment
Kalman Filters.
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