Tutorial (exercises on lec. 1)

(1) For  $x \in \mathbb{Z}^d$ , let

$$\rho(x) = \lim_{n \to \infty} T(x, \partial B(n)),$$

where  $B(n) = [-n, n]^d$ . Show that

 $\rho(x) = \inf\{T(\gamma) : \gamma \text{ is an infinite, edge self-avoiding path starting at } x\}.$ 

- (2) If  $(t_e)$  is i.i.d. and Bernoulli with  $\mathbb{P}(t_e = 0) = p = 1 \mathbb{P}(t_e = 1)$ , then show that  $\rho(0) < \infty$  a.s. if and only if  $\mathbb{P}(t_e)$  is an infinite connected set of edges e with  $t_e = 0 = 1$ .
- (3) Suppose that  $(t_e)$  is i.i.d. Show that a.s., there exists a unique geodesic between any  $x, y \in \mathbb{Z}^d$  if and only if the common distribution of  $t_e$  is continuous.
- (4) Without using the shape theorem, show that if  $(t_e)$  is i.i.d. with  $\mathbb{P}(t_e = 0) = 0$ , then there exists c > 0 such that

$$\mathbb{P}\left(\liminf_{x\in\mathbb{Z}^d\atop|x|\to\infty}\frac{T(0,x)}{|x|}\geq c\right)=1.$$

- (5) Find an infinite connected graph and an i.i.d. distribution for weights  $(t_e)$  on the edges of this graph such that a.s., there are at least two vertices between which there is no geodesic.
- (6) Same as the last question, but  $t_e$  should satisfy  $\mathbb{P}(t_e = 0) > 0$ .
- (7) Show that if an infinite connected graph has bounded degree, and the distribution of  $(t_e)$  is i.i.d., then for each M>0  $\mathbb{P}(\text{there exist vertices } x,y \text{ with } |x-y| \geq M$  between which there is a geodesic) = 1.
- (8) Show that if  $\gamma_1, \gamma_2$  are infinite geodesics that coalesce, then their Busemann functions are equal; that is,  $B_{\gamma_1}(x,y) = B_{\gamma_2}(x,y)$  for all  $x,y \in \mathbb{Z}^d$ .
- (9) For  $K \geq 1$ , consider the infinite tube  $[-K, K]^{d-1} \times \mathbb{Z}$  with edges between nearest neighbors. Suppose that  $(t_e)$  is i.i.d. exponential with parameter 1. Let N be as in the lecture:

$$N = N(\omega) = \sup\{k \ge 0 : \exists k \text{ edge-disjoint infinite geodesics}\}.$$

Prove that  $\mathbb{P}(N=2)=1$ .

(10) Show that Hoffman's f is measurable relative to the cylinder sigma-algebra. Recall that f is defined as follows. We assume that N=1 a.s. on  $\mathbb{Z}^d$ , when  $(t_e)$  is i.i.d. with continuous common distribution. For an outcome  $\omega$ , we pick any arbitrary infinite geodesic  $\gamma$  (if there is one) and set  $f(x,y) = B_{\gamma}(x,y)$ , the Busemann function for  $\gamma$ .

1