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The Mallows model

We sample a permutation Πn ∈ Sn according to:

P(Πn = π) =
qinv(π)∑
σ∈Sn qinv(σ)

.

Here q > 0 is a parameter and

inv(π) := |{(i , j) : i < j and π(i) > π(j)}|,

denotes the number of inversions.

Notation : Πn ∼ Mallows(n, q).
Setting q = 1 we retrieve the uniform distribution on Sn.
Intuition:

I when 0 < q < 1 we stay “close to” the identity i 7→ i ,

I when q > 1 we stay “close to” the reverse map i 7→ n + 1− i .
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A simulation

(n = 1000, q = .95.)



A simulation

(n = 1000, q = 1.05.)



Background

Introduced by C.L. Mallows in 1957 in the context of “statistical
ranking theory”.

“There is a fixed set of individuals being assessed by a
population of judges, or by the same judge in repeated
trials, on a particular attribute whose ranking is known a
priori.”

Also studied in connection with Markov chains, random colorings
of the integers, stable matchings, random binary search trees,
learning theory, exchangeability, point processes, statistical physics,
genomics.
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More background

Longest increasing subsequence:

LIS(π) := max{k : ∃i1 < · · · < ik s.t. π(i1) < · · · < π(ik)}.

When q = 1 then
(
LIS(Πn)− 2

√
n
)
/n1/6 tends in distribution to

the Tracy-Widom distribution [Baik+Deift+Johansson 1999].

When 0 < q < 1 (is fixed) then (LIS(Πn)− µn) /(σ
√

n) tends to a
standard normal, for some µ = µ(q), σ = σ(q). [Basu+Bhatnagar
2017].

Other aspects that have been considered for the Mallows
distribution include : longest common subsequences, “pattern
avoidence”, the number of descents and the cycle structure (but
only when q = q(n)→ 1 in this last case.)
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A basic observation

If rn denotes the map i 7→ n + 1− i then

inv(rn ◦ π) =

(
n

2

)
− inv(π).

So if Πn ∼ Mallows(n, q) then

P(rn ◦ Πn = π) = P(Πn = rn ◦ π)

=
q(n2)−inv(π)∑
σ∈Sn qinv(σ)

∝ (1/q)inv(π).

That is rn ◦ Πn=d Mallows(n, 1/q).
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Mallows’ sampling algorithm for Πn when 0 < q < 1

Let Z1, . . . ,Zn be independent with

P(Zi = k) =
(1− q)qk−1

1− qn+1−i (k = 1, . . . , n + 1− i).

(“truncated geometric”).

Now set
Πn(1) := Z1,

and for 1 < i ≤ n:

Πn(i) := Zi -th smallest element of {1, . . . , n}\{Πn(1), . . . ,Πn(i−1)}.
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Why does this generate the right probability distribution?
(1/2)

Note Z1 − 1 is precisely the number of j with Πn(j) < Πn(1).

(The four values of j such that Πn(j) ∈ {1, . . . , 4} will be produce
inversions of the form (1, j).)

Similarly, Z2 − 1 is precisely the number of j > 2 with
Πn(j) < Πn(2). Etc.

Conclusion : inv(Πn) = Z1 + · · ·+ Zn − n.



Why does this generate the right probability distribution?
(1/2)

Note Z1 − 1 is precisely the number of j with Πn(j) < Πn(1).

(The four values of j such that Πn(j) ∈ {1, . . . , 4} will be produce
inversions of the form (1, j).)
Similarly, Z2 − 1 is precisely the number of j > 2 with
Πn(j) < Πn(2).

Etc.

Conclusion : inv(Πn) = Z1 + · · ·+ Zn − n.



Why does this generate the right probability distribution?
(1/2)

Note Z1 − 1 is precisely the number of j with Πn(j) < Πn(1).

(The four values of j such that Πn(j) ∈ {1, . . . , 4} will be produce
inversions of the form (1, j).)
Similarly, Z2 − 1 is precisely the number of j > 2 with
Πn(j) < Πn(2). Etc.

Conclusion : inv(Πn) = Z1 + · · ·+ Zn − n.



Why does this generate the right probability distribution?
(1/2)

Note Z1 − 1 is precisely the number of j with Πn(j) < Πn(1).

(The four values of j such that Πn(j) ∈ {1, . . . , 4} will be produce
inversions of the form (1, j).)
Similarly, Z2 − 1 is precisely the number of j > 2 with
Πn(j) < Πn(2). Etc.

Conclusion : inv(Πn) = Z1 + · · ·+ Zn − n.



Why does this generate the right probability distribution?
(2/2)

For each π ∈ Sn there are k1, . . . , kn such that

P(Πn = π) = P(Z1 = k1, . . . ,Zn = kn)

=
∏n

i=1
(1−q)qki−1

1−qn+1−i

∝ qk1+···+kn−n

= qinv(π).
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The infinite Mallows model (for 0 < q < 1)

Let Z1,Z2, . . . be i.i.d. Geom(1− q) and define the random
bijection

Π : N→ N,

by
Π(1) := Z1,

and for i > 1:

Π(i) := Zi -th smallest element of N \ {Π(1), . . . ,Π(i − 1)}.

Notation : Mallows(N, q).



Key property of Mallows(N, q)

There is a coupling of Πn,Π such that, with probability 1− o(1),
Πn(i) = Π(i) for all 1 ≤ i ≤ n − log2 n.



The bi-infinite Mallows model

For 0 < q < 1, Gnedin+Olshanski 2012 introduce a random
bijection

Σ : Z→ Z,

with the property that Πn is “locally approximated” by Σ.
(The precise definition of Σ is rather technical)

Notation : Mallows(Z, q).



Key properties of Mallows(Z, q)

If in, n − in →∞ then

Πn(in)− in
d−−−→

n→∞
Σ(0).

More generally, for k ∈ N fixed

(Πn(in − k)− in, . . . ,Πn(in + k)− in))
d−−−→

n→∞
(Σ(−k), . . . ,Σ(k)).

The probability mass function z 7→ P(Σ(0) = z) has an explicit
expression in terms of q-hypergeometric functions.
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Cycles in permutations

A k-cycle in a permutation π ∈ Sn is a set of indices {i1, . . . , ik}
such that π(i1) = i2, . . . , π(ik−1) = ik , π(ik) = i1.

In particular a 1-cycle is a fixed point of π.

Notation : Ck(π) := #k-cycles of π.
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A first year undergrad exercise.

If dn denotes the number of π ∈ Sn with C1(π) = 0 then

dn =

⌊
n!

e
+

1

2

⌋
.

In particular for q = 1:

P(C1(Πn) = 0)→ 1/e.
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Generalisation of the exercise

If q = 1 (uniform), a classical result of Gontcharoff [1941] and
Kolchin [1976] says:

(C1(Πn),C2(Πn), . . . ,Ck(Πn))
d−→ (Po(1),Po(1/2), . . . ,Po(1/k)) ,

(a vector of independent Poissons with means 1, 1/2, . . . , 1/k .)

Curiously, the case when q 6= 1 is fixed has not previously been
investigated, but the case when q = q(n)→ 1 has (by
Gladkich+Peled 2018).
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Cycles when 0 < q < 1

Theorem. [He+M+Verstraaten 2023]
For 0 < q < 1 there exist positive constants m1,m2, . . . and an
infinite matrix P ∈ RN×N such that for all ` ≥ 1 we have

1√
n

(C1(Πn)−m1n, . . . ,C`(Πn)−m`n)
d−→ N`(0,P`),

where N`(·, ·) denotes the `–dimensional multivariate normal
distribution and P` is the submatrix of P on the indices [`]× [`].



The constants m1,m2, . . .

For i = 1, 2, . . . we have

mi = (1/i) · P(0 lies in an i-cycle of Σ),

where Σ ∼ Mallows(Z, q).

In particular

m1 = P(Σ(0) = 0) = 0φ1(−; q; q, q3) · (1− q) ·
∞∏
i=1

(1− qi ),

where rφs denotes the q-hypergeometric function.



Plot of m1
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Curve : m1 as a function of q.
Crosses : simulations with n = 1000, average of 105 tries is shown.



Sketch of the proof of the multivariate normal limit when
0 < q < 1

When 0 < q < 1 the Mallows models has a “renewal structure”:

(Plot taken from [Basu+Bhatnagar 2017].)

The “blocks” are approximately i.i.d.
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Slightly more detailed sketch

We use the coupling above and consider Π rather than Πn.

Renewal times :

T1 := inf{t : Π[{1, . . . , t}] = {1, . . . , t}},
Ti+1 := inf{t > Ti : Π[{1, . . . , t}] = {1, . . . , t}}.

If Xi = Ti − Ti−1 and Yi is the number of k-cycles in the i-th
block then (X1,Y1), (X2,Y2), . . . are i.i.d. and well behaved (all
moments exist).
Now Ck(Πn) ≈ Y1 + · · ·+ YN where N is the (random) value such
that TN ≤ n < TN+1.
We apply a version of the CLT adapted to such “randomly stopped
sums” (Gut+Janson 1983), and the Cramer-Wold device.
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Even cycles when q > 1

Theorem. [He+M+Verstraaten 2023]
For q > 1 there exist positive constants µ2, µ4, . . . and an infinite
matrix Q ∈ RN×N such that for all ` ≥ 1 we have

1√
n

(C2(Πn)− µ2n, . . . ,C2`(Πn)− µ2`n)
d−→ N`(0,Q`),

where N`(·, ·) denotes the `–dimensional multivariate normal
distribution and Q` is the submatrix of Q on the indices [`]× [`].

Note this is only for even cycles.
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The constants µ2, µ4, . . .

Let q > 1 and Σ,Σ′ ∼ Mallows(Z, 1/q) be independent. For
i = 1, 2, . . . we have

µ2i =
1

2i
· P(0 is in an i-cycle of Σ′ ◦ Σ)
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Odd cycles when q > 1.

Theorem. [He+M+Verstraaten 2023]
For q > 1, let Πn ∼ Mallows(n, q) and Σ ∼ Mallows(Z, 1/q) and
let r , ρ denote the maps i 7→ −i , respectively i 7→ 1− i .
We have

(C1(Π2n+1),C3(Π2n+1), . . .)
d−→ (C1(r ◦ Σ),C3(r ◦ Σ), . . .)

and

(C1(Π2n),C3(Π2n), . . .)
d−→ (C1(ρ ◦ Σ),C3(ρ ◦ Σ), . . .).

Moreover, the two limiting distributions above are distinct for all
q > 1.



Expected number of fixed points when q > 1.

For q > 1, let Πn ∼ Mallows(n, q) and Σ ∼ Mallows(Z, 1/q). Then

EC1(Π2n+1)→ P(Σ(0) even),

EC1(Π2n)→ P(Σ(0) odd).



A plot of the expected number of fixed points when q > 1

Curves : expected no. of fixed points as a function of q.
Crosses : simulations with n = 1000, 1001. average no. fixed
pts. in 105 tries is shown.



Why the difference between 0 < q < 1 and q > 1?

Recall: If Πn ∼ Mallows(n, q) then rn ◦ Πn ∼ Mallows(n, 1/q)
where rn(i) = n + 1− i .

T1 T2 T3

0 < q < 1

q > 1

Fixed points

No fixed points
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Even cycles for q > 1

Solution for even cycles: Define the “joint return times”

Ti := inf

{
t > Ti−1 :

Πn[{1, . . . , t}] = rn[{1, . . . , t}] and
Πn[rn[{1, . . . , t}]] = {1, . . . , t}

}

q > 1

Joint left and right return time

The joint return times still behave well (finite moments of all order)
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What about cycles of odd length when q > 1?

q > 1

Joint left and right return time

Odd cycles can only occur around the middle, and are sandwiched
between the final joint return time.
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Why the dependence on the parity of n?
Example n = 4:

Π
r4 ◦ Π

1 2 3 4 1 2 3 4

Figure: Candidates for images in Π ∈ S4 that lead to fixed points in r4 ◦Π

Example n = 5:

Π
r5 ◦ Π

Figure: Candidates for images in Π ∈ S5 that lead to fixed points in r5 ◦Π
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Open questions

I Recall lim
n→∞

EC1(Π2n), lim
n→∞

EC1(Π2n+1)→ 1

2
as q ↓ 1. Why?

(At q = 1 this limit equals one.)

I Apparently lim
n→∞

EC1(Π2n) <
1

2
< lim

n→∞
EC1(Π2n+1) for all

q > 1.
(We were not able to show it. Maybe someone better versed
in q-hypergeometric functions can manage.)
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Encore

How did we (=Fiona Skerman + TM + Teun Verstraaten) get
interested?

Limit laws for logic of random permutations.
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Two logical languages of permutations

Two different (first order) languages of permutations:

theory of one bijection (TOOB)

and

theory of two total orders (TOTO)

names invented by Albert+Bouvel+Feray [JCTA, 2020]



TOOB

We are allowed to use the quantifiers ∀, ∃, variables x , y , z , . . . , the
logical connectives ∧,∨,¬, etc., brackets and the relation symbols
=,R.

The variables range over [n] := {1, . . . , n} and xRy just means
that π(x) = y .



TOOB examples

I π is a derangement (has no fixed points) can be expressed as

∀x : ¬(xRx).

I There exists a 2-cycle:

∃x , y : (xRy) ∧ (yRx) ∧ ¬(x = y).

I Non-example: the number of fixed points is even.

I Non-example: occurrence of the pattern 231.
(I.e. existence of i1 < i2 < i3 with π(i3) < π(i1) < π(i2).)
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TOTO

We are allowed to use the quantifiers ∀, ∃, variables x , y , z , . . . , the
logical connectives ∧,∨,¬, etc., brackets and the relation symbols
=, <1, <2.

The variables range over [n] and x <1 y just means that x < y
while x <2 y means that π(x) < π(y).



TOTO examples

I The occurrence of the pattern 231 can be expressed as

∃x , y , z : (x <1 y) ∧ (y <1 z) ∧ (z <2 x) ∧ (x <2 y).

I Simple, i.e. no proper non-singleton interval is mapped onto
an interval. [Albert-Bouvel-Feray]

I Sortable by k iterations of Bubble sort. [Albert-Bouvel-Feray]

I Non-example: existence of a fixed point (π(i) = i).
[Albert-Bouvel-Feray]
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Definition: zero-one/convergence law

For (Πn)n a sequence of random permutations and
L ∈ {TOOB,TOTO} we say Πn satisfies the zero-one law if

lim
n→∞

P(Πn |= ϕ) ∈ {0, 1},

for all ϕ ∈ L.

We say the convergence law holds if

lim
n→∞

P(Πn |= ϕ) exists,

for all ϕ ∈ L.
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Results for TOOB

In 1989, Compton has already shown that when q = 1 (uniform
distribution) the convergence law holds, but the zero-one law fails,
for TOOB.

Theorem. [M+Skerman+Verstraaten, 2023+]
Let Πn ∼ Mallows(n, q). The following hold for Πn wrt. TOOB:

(i) If 0 < q < 1 then the zero-one law holds,

(ii) If q > 1 then the convergence law fails.
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Some words on the proof.

In TOOB we can only “see” the cycle structure.
We can exploit the results from earlier on the talk, combined with
relatvely routine arguments from logic / random graphs.



Results for TOTO

In 1990, Foy and Woods had already shown that when q = 1 the
convergence law fails.

Theorem. [M+Skerman+Verstraaten, 2023+]
Let Πn ∼ Mallows(n, q) the following hold with respect to TOTO.

(i) If q 6= 1 is fixed the the convergence law holds
(but the zero-one law fails)

(ii) If q = q(n)→ 1 and 1− 1
log∗ n < q < 1 + 1

log∗ n then the
convergence law fails.

Here log∗(.) is the “discrete inverse” of the tower function T (.)
given by

T (k) = 22
··
·2

(height k).

(The condition on q in (ii) can be improved.)
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Some words on the proofs

Non-convergence when q = 1 was already shown by Foy+Woods
1990, using a variant of the “arithmetization” technique of
Shelah+Spencer 1988.

For the case q → 1 (but not very, very slowly), we “zoom” in on a
small initial interval {1, . . . , i}, so small that it behaves almost like
the q = 1 case, and apply a construction similar to the Foy-Woods
one there.



Thank you for your attention!


