

Transport properties of an active Brownian agent in

Transport properties of an active Brownian agent in complex environments

Thomas Franosch Institut für Theoretische Physik Universität Innsbruck

Self-propelled agents

Bacteria using flagella to swim

innsbruck

Paramecium uses cilia

self-propelled Janus particle

- Swimming mechanism by shape deformations or induced gradients in the fluid .
- . intrinsically far from equilibrium
- recent experimental progress to build artificial self-propelled particles .
- . plethora of collective phenomena (flocking, swarms, phase separation, trapping....)
- mostly simulational studies .
- lacking: complete characterization of single particle motion .

Motivation- Transport of Stiff Rods

cellular crowding

O. Medalia et al (2002) Science

Fibroblast Rodionov et al., PNAS 96, 1999 tobacco mosaic virus

R.G. Milne

silver rods

Y. Roichman, Tel Aviv

Experimental model systems

reconstituted F-actin, entangled with a network of ...

... methylcellulose

... F-actin

Miklós Kellermayer University of Budapest (Hungary) Rudolf Merkel FZ Jülich (Germany)

Toy Model for F-Actin solutions

- filaments are stiff and thin
 → approximate by needles
- single filament dynamics
 → fix surrounding filaments in 3-dim. space
 needle Lorentz model
- restrict motion to a plane
 surrounding filaments appear as hard disks

An artists view on the cell MPI CBG Dresden

Tube Model

innsbruck

- F-actin: very thin filaments $L \approx 10 \dots 100 \ \mu\text{m}, R \approx 0.005 \ \mu\text{m}$ \rightarrow reduce rod to a thin needle and disks to points (R = 0)
- isolate entanglement effects (no excluded volume) • dynamic crowding
- . at high filament densities: Tube model mesh size $\xi := n^{-1/2}$ tube diameter $d \sim 1/nL = \xi^2/L$ tilt angle $\varepsilon = d/L$ reduced density $n^* = nL^2$ rotational diffusion constant

$$D_{
m rot}\sim rac{arepsilon^2}{2 au_d}\sim rac{1}{n^2L^4 au_0}$$

Doi & Edwards (1978)

Persistence of the Orientation

Brownian rod in 2D

- sliding motion of the rod
- orientation changes only gradually
- experiment Yael Roichman (TAU) S3_pillar

Persistence of the Orientation

Brownian rod in 2D

- sliding motion of the rod
- orientation changes only gradually
- experiment Yael Roichman (TAU) S3_pillar

Brownian dynamics simulation

Brownian dynamics in 3D

- . infinitely thin needles of number density n, length L dimensionless density $n^* = nL^3$
- free motion. rotational diffusion D_{rot}^0 , anisotropic translational diffusion $D_{\parallel}^0, D_{\parallel}^0$
- unit vector of orientation \mathbf{u} , $|\mathbf{u}| = 1$, position of the needle \mathbf{r} Stochastic dynamics (Itō)

$$\begin{split} \mathrm{d}\mathbf{u} &= -2D_{\mathsf{rot}}^{0}\mathbf{u}\mathrm{d}t - \sqrt{2D_{\mathsf{rot}}^{0}}\mathbf{u} \times \boldsymbol{\xi}\mathrm{d}t \\ \mathrm{d}\mathbf{r} &= \left[\sqrt{2D_{\parallel}^{0}}\mathbf{u}\mathbf{u} + \sqrt{2D_{\perp}^{0}}(\mathbb{I} - \mathbf{u}\mathbf{u})\right]\boldsymbol{\eta}\mathrm{d}t \end{split}$$

- independent white noise $\boldsymbol{\xi}, \boldsymbol{\eta}$: $\langle \xi_i(t)\xi_i(t')\rangle = \langle \eta_i(t)\eta_i(t')\rangle = \delta_{ii}\delta(t-t')$ ۲
- implementation by orthogonal integrator, pseudo-scheme: interrupted free propagation using pseudo-velocities, pseudo-angular velocities drawn from Maxwell distributions
- elastic collisions with other needles symmetry-adapted neighbor list •

innsbruck

Diffusion coefficients

Brownian dynamics simulations

- needle liquids
- needle Lorentz system tracer needle explores frozen array of needles needle in a haystack
- data to highly entangled regime
- Doi-Edwards scaling $D_{
 m rot} \sim n^{-2}$ 🗸
- Needle Lorentz and Liquids behave similarly
- Prediction for $D_\perp \sim n^{-2}$ by entering new tubes

Tube is collectively build by many surrounding needles

Leitmann, Höfling, Franosch, PRL (2016)

Ramifications of the Tube

Phantom needle

• Tube confines needle

→ motion essentially along the tube, orientational relaxation by tube renewal Phantom needle performs anisotropic diffusion with **effective** transport coefficients $D_{rot}, D_{\perp}, D_{\parallel}$ forgotten!(?) prediction of Doi & Edwards (1978)

• conditional probability density $\mathbb{P}(\mathbf{r}, \mathbf{u}, t | \mathbf{u}_0)$ (Green function) Perrin equation (Markov process)

 $\partial_t \mathbb{P} = \mathcal{D}_{\mathsf{rot}} \Delta_{\mathbf{u}} \mathbb{P} + \partial_{\mathbf{r}} \cdot \left[\mathcal{D}_{\parallel}(\partial_{\mathbf{r}} \mathbb{P}) - \Delta \mathcal{D}(\mathbb{I} - \mathbf{uu}) \cdot (\partial_{\mathbf{r}} \mathbb{P}) \right]$

orientational diffusion

anisotropic translational diffusion $\Delta D = D_{\parallel} - D_{\perp}$

marginalize for ISF

$$F(k,t) = \langle \exp\left(-i\mathbf{k}\cdot\Delta\mathbf{r}(t)\right) \rangle = \int_{S^2} \mathrm{d}\mathbf{u} \int_{S^2} \frac{\mathrm{d}\mathbf{u}_0}{4\pi} \int_{\mathbb{R}^3} \mathrm{d}^3r \, \exp(-i\mathbf{k}\cdot\mathbf{r}) \mathbb{P}(\mathbf{r},\mathbf{u},t|\mathbf{u}_0)$$

Solve or simulate phantom needle

Spatio-temporal transport

- Phantom needle describes spatio-temporal dynamics for dynamically crowded systems $n^* = nL^3 \gtrsim 100$
- First data in highly entangled regime, first test of Doi-Edwards prediction 🗸
- Characteristic tail $t^{-1/2}$ sliding motion in the tube

Leitmann, Höfling, Franosch, PRL (2016)

Mini-Résumé

Dynamically crowded needles

- Minimal model for solutions of F-actin
- First simulations of needles deep in the semidilute regime $nL^3 \gg 1$ symmetry adapted neighbor list
- Tube concept reduces many-body problem to single particle motion → non-perturbative approach
- Needle liquids and needle Lorentz systems behave asymptotically identically justifies 2D toy model
- Strong suppression of orienatational diffusion $D_{
 m rot} \sim n^{-2}$ 🗸
- Full spatio-temporal information encoded in phantom needle
- algebraic decay is fingerprint of sliding motion
- full analytic solution of the phantom needle beyond Doi & Edwards simplified harmonic oscillator analysis
- Form factor can be included easily in simulation

Model set-up

Active Brownian Particle

- Active propulsion with constant velocity v along the long axis u, |u| = 1
- Rotational diffusion D_{rot}
- Anisotropic translational diffusion D_{\parallel}, D_{\perp}
- ignores microscopic origin of propulsion, effective description
- simplistic model encoding persistent random walk persistence length $\ell = v/D_{rot}$, persistence time $\tau = 1/D_{rot}$

Stochastic equations (3D)

Active Brownian particle

$$d\mathbf{u} = -2D_{\mathsf{rot}}\mathbf{u}dt - \sqrt{2D_{\mathsf{rot}}}\mathbf{u} \times \boldsymbol{\xi}dt$$
$$d\mathbf{r} = \mathbf{v} \mathbf{u}dt + \left[\sqrt{2D_{\parallel}}\mathbf{u}\mathbf{u} + \sqrt{2D_{\perp}}(\mathbb{I} - \mathbf{u}\mathbf{u})\right]\boldsymbol{\eta}dt$$

position fixed velocity

orientation

$$\langle \xi_i(t)\xi_j(t')
angle = \langle \eta_i(t)\eta_j(t')
angle = \delta_{ij}\delta(t-t')$$

independent Gaussian white noise

- multiplicative noise (Itō)
- translational anisotropy $\Delta D = D_{\parallel} D_{\perp}$ mean diffusion coefficient $\bar{D} = (D_{\parallel} + 2D_{\perp})/3$
- For long rods $D_{\parallel} = 2D_{\perp}, D_{\rm rot} = 12D_{\perp}/L^2$, length of the needle L
- Dimensionless parameters

reduced number density $n^* = nL^3$ anisotropy $\Delta D/\bar{D}$ Péclet number Pe = vL/\bar{D}

Active Brownian particle in 3D

Separation ansatz

- choose coordinates k in z-direction, parametrize $\mathbf{u} = (\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$, write $\eta = \cos \vartheta$
- separation ansatz yields superposition of eigenfunctions

$$\tilde{\mathbb{P}}(\mathbf{k},\mathbf{u},t|\mathbf{u}_{0}) = \frac{1}{2\pi}e^{-D_{\perp}k^{2}t}\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}e^{im(\varphi-\varphi_{0})}\mathsf{Ps}_{\ell}^{m}(c,R,\eta)\mathsf{Ps}_{\ell}^{m}(c,R,\eta_{0})^{*}\exp(-A_{\ell}^{m}D_{\mathsf{rot}}t)$$

• generalized spheroidal wave functions $\mathsf{Ps}_\ell^m(\mathsf{R},\mathsf{c},\eta)$

$$\begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\eta} \left((1 - \eta^2) \frac{\mathrm{d}}{\mathrm{d}\eta} \right) + R\eta - c^2 \eta^2 + \frac{m^2}{1 - \eta^2} + A_{\ell}^m \right] \mathsf{Ps}_{\ell}^m(c, R, \eta) = 0$$

active propulsion
$$R = -ikv/D_{\mathrm{rot}} \qquad c^2 = \Delta Dk^2/D_{\mathrm{rot}}$$
eigenvalue

- deformation of (associated) Legendre polynomials $\mathsf{P}_\ell^m(\eta)$
- Intermediate scattering function

$$F(k,t) = \frac{1}{2\pi} e^{-D_{\perp}k^2 t} \sum_{\ell=0}^{\infty} \exp(-A_{\ell}^0 D_{\text{rot}}t) \left| \int_{-1}^1 \mathrm{d}\eta \operatorname{Ps}_{\ell}^0(c,R,\eta) \right|^2$$

Low-order moments

Mean-square displacement (3D)

Expansion of ISF for isotropic system

$$F(k,t) = \langle \exp(-i\mathbf{k} \cdot \Delta \mathbf{r}(t)) \rangle = \left\langle \frac{\sin(k|\Delta \mathbf{r}(t)|)}{k|\Delta \mathbf{r}(t)|} \right\rangle$$

$$F(k,t) = 1 - rac{k^2}{3!} \langle |\Delta \mathbf{r}(t)|^2
angle + rac{k^4}{5!} \langle |\Delta \mathbf{r}(t)|^4
angle + \mathcal{O}(k^6)$$

 MSD initially translational diffusion dominates persistent swimming effective diffusion

$$\langle |\Delta \mathbf{r}(t)|^2
angle = 6 ar{D} t + rac{v^2}{2D_{
m rot}^2} \left(e^{-2D_{
m rot}t} + 2D_{
m rot}t - 1
ight)$$

Low-order moments

Non-Gaussian parameter (3D)

Non-Gaussian parameter

$$lpha_2(t) = rac{3\langle |\Delta {f r}(t)|^4
angle}{5\langle |\Delta {f r}(t)|^2
angle^2} - 1$$

 initially non-gaussian by translational anisotropy characteristic minimum due to persistent swimming eventually again Gaussian

Intermediate scattering function

 characteristic oscillations emerge at intermediate wavenumbers fingerprint of persistent swimming

$$F(k,t) = \left\langle rac{\sin(k|\Delta \mathbf{r}(t)|)}{k|\Delta \mathbf{r}(t)|}
ight
angle$$

- large wavenumbers anisotropic translational diffusion
- small wavenumbers effective diffusion

$$D_{\rm eff}=ar{D}+v^2/6D_{
m rot}$$

How can oscillations emerge?

Intermediate scattering function sum of relaxing exponentials?

$$F(k,t) = \frac{1}{2\pi} e^{-D_{\perp}k^2t} \sum_{\ell=0}^{\infty} \exp(-A_{\ell}^0 D_{\text{rot}}t) \left| \int_{-1}^1 \mathrm{d}\eta \operatorname{Ps}_{\ell}^0(c,R,\eta) \right|^2$$

 Eigenvalue problem is non-Hermitian, eigenvalues become complex branching in the eigenvalues → no perturbation theory fingerprint of active motion
 Christina Kurzthal

Christina Kurzthaler et al, Sci. Rep. (2016)

Crowded suspension of active needles

Does the tube model apply to active needles? How do the dynamics change?

Crowded is faster

• mean-square displacement $\langle [\Delta \mathbf{r}(t)]^2 \rangle$ displays three regimes short-time diffusion – directed motion – effective diffusion

• free needle
$$D_{
m eff}^0=ar{D}^0+v^2 au_{
m rot}^0/3$$

• Entanglement speeds up the effective diffusion $D_{
m eff}/D_{
m eff}^0 \sim (n^*)^2$

Orientational dynamics

- Orientation correlation function $\langle \mathbf{u}(t) \cdot \mathbf{u}(0) \rangle$ approaches perfect exponential
- relaxation time $\tau_{\rm rot}$ increases by orders of magnitude

Relaxation time

• tube picture:

disengagement time $\tau_0 \doteq$ time to move length *L* interpolation formula $\tau_0^{-1} = D_{\parallel}^0/L^2 + v/L$ rotation angle $\varepsilon \sim d/L \sim (n^*)^{-1}$

$$au_{
m rot} \sim rac{1}{arepsilon^2 au_0^{-1}} \sim rac{(n^*)^2}{D_\parallel^0/ar{D}^0 + {
m Pe}} au_{
m rot}^0$$

reduces to Doi-Edwards for Pe = 0additional decrease by activity

master plot for effective diffusion

$$rac{D_{
m eff}}{D_{
m eff}^0} \sim rac{ au_{
m rot}}{ au_{
m rot}^0} \sim rac{(n^*)^2}{
m Pe}$$

Corroborating the tube picture

- perpendicular displacement in comoving frame $\Delta \mathbf{r}_{\perp}(t)$
- plateau emerges for highly entangled systems \rightarrow defines tube diameter d

• scaling
$$d/L \sim (n^*)^{-1}$$
 V

Spatio-temporal transport

intermediate scattering function

$$F(k,t) = \langle \exp[-i\mathbf{k} \cdot \Delta \mathbf{r}(t)] \rangle = \left\langle \frac{\sin(k|\Delta \mathbf{r}(t)|)}{k|\Delta \mathbf{r}(t)|} \right\rangle$$

- agreement over 5 orders of magnitude -> exact theory for high entanglement
- swimming motion approximately described by $|\Delta \mathbf{r}(t)| = vt \rightarrow F(k, t) = \sin(kvt)/kvt$

S. Mandal, C. Kurzthaler, T. Franosch, and H. Löwen, PRL 125, 138002 (2020)

Mini-Résumé on Needles

Active Brownian particles in 3D

- intermediate scattering function can be solved analytically
- non-trivial oscillations as fingerprint of active propulsion

Active needles in suspension

- crowding rectifies the motion of active needles -> crowded is faster
- Doi-Edwards tube model can be extended to active needles
- exact description on mesoscopic scales by renormalized orientational diffusion D_{rot}
- origin is a separation of time and length at mesoscopic scales

Lorentz Model

- classical gas of non-interacting, structureless particles
- randomly distributed, fixed obstacles: overlapping hard spheres Swiss Cheese model

ballistic motion, elastic scattering

- relevant for transport in disordered media
- single control parameter: reduced obstacle density $n^* = n\sigma^d$

Mean-Square Displacement (3D)

- ballistic motion, specular scattering
- critical density n_c subdiffusive transport $\delta r^2(t) \sim t^{2/z}$
- localization transition percolation of void space

localization length $\ell^2 = \delta r^2 (t \to \infty)$ $\ell \sim (n_c^* - n^*)^{\nu + +\beta/2}$ geometric exponents of percolation ν, β

scaling theory of critical phenomena

$$\delta r^2(t) = t^{2/z} \delta \hat{r}_{\pm}^2(\hat{t}), \qquad \hat{t} \propto t \ell^{-z}$$

corrections to scaling are relevant

F. Höfling, T. Franosch, E. Frey, PRL 96, 165901 (2006)

Infinite cluster

Infinite cluster only

0.2 $D_{\infty}|\varepsilon|^{-\mu_{\infty}}$ $D|\varepsilon|^{-\mu}$, I $D^{1/\mu_{\infty}}_{\infty}$ and 0.1 10^{-2} 10^{-1} 10^{0} $\varepsilon = (n^* - n_c^*)/n_c^*$ D^{1/µ} all clusters ($\mu = 2.88$) 0 infinite cluster ($\mu_{\infty} = 2.47$ 0 07 0.75 0.8 0.85 Density n^*

- Voronoi tesselation identifies infinite cluster only conducting side
- subdiffusive at critical point $\delta r_{\infty}^2 \sim t^{2/d_{\rm W}}$ walk dimension $d_{\rm W} \approx 4.81$
- scaling behavior anticipated

• diffusion coefficient vanish $D(n) \sim \varepsilon^{\mu}$, $\varepsilon = (n - n_c)/n_c D_{\infty}(n) \sim \varepsilon^{\mu_{\infty}}$ extrapolate to same point

M. Spanner et al, J.Phys.:Condens. Matt. (2011)

Mean-square displacement for Brownian tracers (2D)

- Brownian tracers
- critical density n_c subdiffusive transport $\delta r^2(t) \sim t^{2/z}$ critical exponent z = 3.036(lattice value)
- localization transition percolation of void space
- scaling theory of critical phenomena

T. Bauer et al, EPJ-ST (2010)

Time-dependent diffusion (2D)

• time-dependent diffusion coefficient

$$D(t) := rac{1}{2d} rac{\mathrm{d}}{\mathrm{d}t} \delta r^2(t)$$

diffusion constant

$$D = \lim_{t \to \infty} D(t)$$

slowing down of diffusion

- critical density n_c subdiffusive transport $D(t) \sim t^{2/z-1}$ critical exponent z = 3.036(lattice value)
- localization transition D(t)
 ightarrow 0

T. Bauer et al, EPJ-ST (2010)

Long-time tails (2D)

velocity-autocorrelation function

$$Z(t) := \frac{1}{2d} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \delta r^2(t)$$

• persistent anticorrelations for $n^* < n_c^*$

$$Z(t)\simeq -At^{-2}$$

repeated scattering with the same obstacle

• rectification shows universality approximately $\propto n^* \rightarrow$ can be calculate to first order in n^*

T. Bauer et al, EPJ-ST (2010)

Brownian tracers in the 2D Lorentz model

Persistent correlations

- theory describes nicely the data at low densities \$
- Long-time tails persists at all densities

Formal scattering theory

borrowed from quantum many-body problems

Lorentz model analogous to Anderson model: Localization transition ⇔ Metal-Insulator transition

 $\label{eq:long-time-tails} \ensuremath{\mathsf{Long-time-tails}} \Leftrightarrow weak \ \ensuremath{\mathsf{localization}}$

Multiple collision expansion to first order in density

Velocity autocorrelation function (VACF)

- explicit expression for $Z(\omega)$
- diffusion coefficient $D = Z(\omega = 0) = D_0(1 - \pi n^*) + O(n^{*2})$
- algebraic long-time tail

$$Z(t)\simeq rac{-\pi n^*\sigma^2}{2t^2} \qquad ext{for } t
ightarrow \infty$$

Franosch et al Chem. Phys. (2010)

ABP in disordered environement

- Soft spheres: Weeks-Chandler-Anderson potential
- diameter of ABP: 2R_s

t/Td

• definition of Péclet number Pe = $2R_s v/D$ persistent length $L = v\tau_{rot}$ time scale $\tau_{rot} = 1/D_{rot}, \tau_{diff} = (2R_s)^2/D$ here $\tau_{rot}/\tau_{diff} = 1/3$

$$rac{L}{2R_s} = ext{Pe} \ rac{ au_{ ext{rot}}}{ au_{ ext{diff}}} = ext{100} imes rac{1}{3}$$

• packing fraction $\eta = \pi R_0^2 / A$

area fraction $\phi_{0} = 1 - \exp(-\eta)$

• **sliding** along the boundary

M. Zeitz, K. Wolff, and H. Stark, Eur. Phys. J. E (2017) 40: 23

ABP in disordered environement

Mean-square displacement

- crossover from persistent to diffusive motion $L/2R_s = 33.33$ for $\eta = 0$
- suppression of persistent motion already at small obstacle density since $L \gg 2R_s$
- confining space are explored more rapidly by sliding
- subdiffusive transport $\propto t^{2/z}$ at critical packing fraction
- localized at high packing fraction

M. Zeitz, K. Wolff, and H. Stark, Eur. Phys. J. E (2017) 40: 23

ABP in disordered environement

Critical density

- subdiffusion for all Péclet numbers at critical packing fraction
- critical exponent $z = z_{\text{lat}} \doteq 3.036$ is universal in 2D \checkmark

M. Spanner et al PRL **116**, 060601 (2016)

prefactor of asymptotic behavior depends strongly on Péclet number

M. Zeitz, K. Wolff, and H. Stark, Eur. Phys. J. E (2017) 40: 23

Circle swimmers

Escherichia coli

DiLuzio

Lauga

- Chirality of flagellar motion
- Hydrodynamic coupling close to boundaries
 → circular motion
- angular drift velocity ω

$$\frac{\mathrm{d}}{\mathrm{d}t}\vartheta(t) = \omega + \zeta(t)$$
$$\langle \zeta(t)\zeta(t')\rangle = 2D_{\mathrm{rot}}\delta(t-t')$$

Disordered environment

Skipping orbits

- independently distributed obstacles exclusion radius σ dimensionless scatterer density $n^* = n\sigma^2$ \rightarrow Lorentz model
- idealize to pure circular motion \rightarrow deterministic orbits dimensionless trajectory curvature $B = \sigma/R$
- skipping orbits along edges of scatterer clusters
- model originally designed for electron transport in a magnetic field

 2DEG, obstacle by nanofabrication

long-range transport by edge percolation

W. Schirmacher et al, Phys. Rev. Lett. (2015)

Phases

- low scatterer density: skipping orbit around isolated clusters only → insulating phase
- intermediate density: skipping orbits percolate through entire system -> diffusive phase
- high scatterer density: void space consists only of finite pockets → localized phase

Purely geometric transition

Phase diagram

- Transition line to localized phase independent of curvature
 - ightarrow conventional percolation of void space

 $n_c^* = 0.359081...$

critical exponents correspond to conventional percolative transport on lattices

Delocalization transition

 $n_m(R) = n_c^* \sigma^2 / (\sigma + R)^2$

→ percolation of disks+halo exact result!, 2 significant digits

Kuzmany & Spohn, PRE (1998)

Mean-square displacements

anamalous transport at $n_m^* = n_m^*(R)$

mean-square displacement (MSD)

 $\delta r^2(t) = \langle [\mathbf{R}(t) - \mathbf{R}(0)]^2 \rangle$

• subdiffusive close to
$$n_m^* = n_m^*(R)$$

$$\delta r^2(t o \infty) \sim t^{2/z}$$

critical exponent $z=2/\gamma$ measured value $z=3.44\pm0.03$

• different from random walkers on percolating lattices $z \neq z_{\text{lat}} = 3.036 \pm 0.001$

New dynamic universality class

W. Schirmacher et al, Phys. Rev. Lett. (2015)

A more realistic scattering rule

- ideal circle swimmer $D_{rot} = 0$
- circle radius $R = v/\omega$
- obstacle diameter σ , dimensionless obstacle density $n^* = N\sigma^2/L^2$
- swimmer slides along the edge
- random exit angle $\Delta \in [-\pi/2, \pi/2]$ orientation ϑ remains fixed

O. Chepizhko and T. Franosch, Soft Matter 15, 452 (2019)

Phase diagram

- phase diagram pure geometric!
- percolation to localization at

 $n_c^* = 0.359081...$

• meandering transition at

$$n_m^*(\sigma,R) = n_c^* \frac{\sigma^2}{(\sigma+R)^2} = 0.35908 \dots \frac{\sigma^2}{(\sigma+R)^2}$$

O. Chepizhko and T. Franosch, Soft Matter 15, 452 (2019)

Mean-square displacements

critical dynamics

$$\delta r^2(t) \propto t^{2/z}$$
 for $t \to \infty$

at the meandering transition n_m^*

- dynamics drastically slower than lattice or magnetotransport
 - $z = 5.17 \pm 0.48$
- various scaling relations hold $D \propto (n^* n_m^*)^\mu$
- attributed ot weak links in percolating networks
 new universality class

O. Chepizhko and T. Franosch, Soft Matter 15, 452 (2019)

Adding orientational noise

angular diffusion

$$rac{\mathrm{d}}{\mathrm{d}t}artheta(t) = \omega + \zeta(t)$$

 $\langle \zeta(t)\zeta(t')
angle = 2D_{\mathrm{rot}}\delta(t-t')$

- Localization transition is unaffected geometric blocking
- smearing of meandering transition
- enhancement of diffusion by meandering along boundaries for small obstacle density n^* most efficient for small radii $R \ll \sigma$
- strong suppression for large n*

O. Chepizhko and T. Franosch, New J. Phys. 22, 073022 (2019)

Conclusion on random environments

Passive particles ballistic/Brownian particles

- Lorentz model as paradigm for disorder randomly distributed overlapping obstacles
- localization transition at critical obstacle density
- percolative transport: critical phenomenon
 - ightarrow universal exponents \checkmark

Active Brownian particles and circle swimmers

- \circ ABP displays same universal localization transition \checkmark
- Meandering transition for ideal circle swimmer/magneto-transport new universality class for percolative transport
- small or moderate density of obstacles promotes diffusion
 - crowded is faster