Transport properties of an active Brownian agent in complex environments

Thomas Franosch
Institut für Theoretische Physik Universität Innsbruck

Self-propelled agents

Bacteria using flagella to swim

Paramecium uses cilia

self-propelled Janus particle

- Swimming mechanism by shape deformations or induced gradients in the fluid
- intrinsically far from equilibrium
- recent experimental progress to build artificial self-propelled particles
- plethora of collective phenomena (flocking, swarms, phase separation, trapping,...)
- mostly simulational studies
- lacking: complete characterization of single particle motion

Motivation- Transport of Stiff Rods

cellular crowding
O. Medalia et al (2002) Science

Fibroblast
Rodionov et al., PNAS 96, 1999

tobacco mosaic virus R.G. Milne

silver rods
Y. Roichman, Tel Aviv

Experimental model systems

reconstituted F -actin, entangled with a network of ...

Miklós Kellermayer
University of Budapest (Hungary)
... F-actin

Rudolf Merkel FZ Jülich (Germany)

Toy Model for F-Actin solutions

- filaments are stiff and thin
\rightarrow approximate by needles
- single filament dynamics
\rightarrow fix surrounding filaments in 3-dim. space needle Lorentz model

- restrict motion to a plane
\rightarrow surrounding filaments
appear as hard disks

Tube Model

- F-actin: very thin filaments
$L \approx 10 \ldots 100 \mu \mathrm{~m}, R \approx 0.005 \mu \mathrm{~m}$
\rightarrow reduce rod to a thin needle and disks to points ($R=0$)
- isolate entanglement effects (no excluded volume) dynamic crowding
- at high filament densities: Tube model mesh size $\xi:=n^{-1 / 2}$
tube diameter $d \sim 1 / n L=\xi^{2} / L$
tilt angle $\varepsilon=d / L$
reduced density $n^{*}=n L^{2}$
rotational diffusion constant

$$
D_{\mathrm{rot}} \sim \frac{\varepsilon^{2}}{2 \tau_{d}} \sim \frac{1}{n^{2} L^{4} \tau_{0}}
$$

Doi \& Edwards (1978)

Persistence of the Orientation

Brownian rod in 2D

- sliding motion of the rod
- orientation changes only gradually
- experiment Yael Roichman (TAU) S3_pillar

Persistence of the Orientation

Brownian rod in 2D

- sliding motion of the rod
- orientation changes only gradually
- experiment Yael Roichman (TAU) S3_pillar

Brownian dynamics simulation

Brownian dynamics in 3D

- infinitely thin needles of number density n, length L dimensionless density $n^{*}=n L^{3}$
- free motion: rotational diffusion $D_{\text {rot }}^{0}$, anisotropic translational diffusion $D_{\|}^{0}, D_{\perp}^{0}$
- unit vector of orientation $\mathbf{u},|\mathbf{u}|=1$, position of the needle \mathbf{r} Stochastic dynamics (Itō)

$$
\begin{aligned}
& \mathrm{d} \mathbf{u}=-2 D_{\mathrm{rot}}^{0} \mathbf{u} \mathrm{~d} t-\sqrt{2 D_{\mathrm{rot}}^{0}} \mathbf{u} \times \boldsymbol{\xi} \mathrm{d} t \\
& \mathrm{~d} \mathbf{r}=\left[\sqrt{2 D_{\|}^{0}} \mathbf{u u}+\sqrt{2 D_{\perp}^{0}}(\mathbb{I}-\mathbf{u} \mathbf{u})\right] \boldsymbol{\eta} \mathrm{d} t
\end{aligned}
$$

- independent white noise $\boldsymbol{\xi}, \boldsymbol{\eta}:\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)$
- implementation by orthogonal integrator, pseudo-scheme: interrupted free propagation using pseudo-velocities, pseudo-angular velocities drawn from Maxwell distributions
- elastic collisions with other needles symmetry-adapted neighbor list

Diffusion coefficients

Brownian dynamics simulations

- needle liquids
- needle Lorentz system tracer needle explores frozen array of needles needle in a haystack
- data to highly entangled regime
- Doi-Edwards scaling $D_{\text {rot }} \sim n^{-2}$
- Needle Lorentz and Liquids behave similarly
- Prediction for $D_{\perp} \sim n^{-2}$ by entering new tubes

> Tube is collectively build by many surrounding needles

Leitmann, Höfling, Franosch, PRL (2016)

Ramifications of the Tube

Phantom needle

- Tube confines needle
\rightarrow motion essentially along the tube, orientational relaxation by tube renewal Phantom needle performs anisotropic diffusion with effective transport coefficients $D_{\mathrm{rot}}, D_{\perp}, D_{\|}$ forgotten!(?) prediction of Doi \& Edwards (1978)
- conditional probability density $\mathbb{P}\left(\mathbf{r}, \mathbf{u}, t \mid \mathbf{u}_{0}\right)$ (Green function)

Perrin equation (Markov process)

$$
\partial_{t} \mathbb{P}=D_{\text {rot }} \Delta_{\mathbf{u}} \mathbb{P}+\quad \partial_{\mathbf{r}} \cdot\left[D_{\|}\left(\partial_{\mathbf{r}} \mathbb{P}\right)-\Delta D(\mathbb{I}-\mathbf{u u}) \cdot\left(\partial_{\mathbf{r}} \mathbb{P}\right)\right]
$$

orientational diffusion

 anisotropic translational diffusion $\Delta D=D_{\|}-D_{\perp}$- marginalize for ISF

$$
F(k, t)=\langle\exp (-i \mathbf{k} \cdot \Delta \mathbf{r}(t))\rangle=\int_{S^{2}} \mathrm{~d} \mathbf{u} \int_{S^{2}} \frac{\mathrm{~d} \mathbf{u}_{0}}{4 \pi} \int_{\mathbb{R}^{3}} \mathrm{~d}^{3} r \exp (-i \mathbf{k} \cdot \mathbf{r}) \mathbb{P}\left(\mathbf{r}, \mathbf{u}, t \mid \mathbf{u}_{0}\right)
$$

Solve or simulate phantom needle

Spatio-temporal transport

- Phantom needle describes spatio-temporal dynamics for dynamically crowded systems $n^{*}=n L^{3} \gtrsim 100$
- First data in highly entangled regime, first test of Doi-Edwards prediction
- Characteristic tail $t^{-1 / 2}$ sliding motion in the tube

Leitmann, Höfling, Franosch, PRL (2016)

Mini-Résumé

Dynamically crowded needles

- Minimal model for solutions of F-actin
- First simulations of needles deep in the semidilute regime $n L^{3} \gg 1$ symmetry adapted neighbor list
- Tube concept reduces many-body problem to single particle motion \rightarrow non-perturbative approach
- Needle liquids and needle Lorentz systems behave asymptotically identically justifies 2D toy model
- Strong suppression of orienatational diffusion $D_{\text {rot }} \sim n^{-2}$
- Full spatio-temporal information encoded in phantom needle
- algebraic decay is fingerprint of sliding motion
- full analytic solution of the phantom needle beyond Doi \& Edwards simplified harmonic oscillator analysis
- Form factor can be included easily in simulation

Model set-up

Active Brownian Particle

- Active propulsion with constant velocity v along the long axis $\mathbf{u},|\mathbf{u}|=1$
- Rotational diffusion $D_{\text {rot }}$
- Anisotropic translational diffusion $D_{\|}, D_{\perp}$
- ignores microscopic origin of propulsion, effective description
- simplistic model encoding persistent random walk
persistence length $\ell=v / D_{\text {rot }}$, persistence time $\tau=1 / D_{\text {rot }}$

Stochastic equations (3D)

Active Brownian particle

$$
\begin{gathered}
\mathrm{d} \mathbf{u}=-2 D_{\operatorname{rot}} \mathbf{u d} t-\sqrt{2 D_{\operatorname{rot}}} \mathbf{u} \times \boldsymbol{\xi} \mathrm{d} t \\
\mathrm{~d} \mathbf{r}={ }_{\hat{v}}^{v} \mathbf{u} d t+\left[\sqrt{2 D_{\|}} \mathbf{u u}+\sqrt{2 D_{\perp}}(\mathbb{I}-\mathbf{u u})\right] \boldsymbol{\eta} \mathrm{d} t \\
\text { orientation } \\
\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)
\end{gathered}
$$

independent Gaussian white noise

- multiplicative noise (Itō)
- translational anisotropy $\Delta D=D_{\|}-D_{\perp}$ mean diffusion coefficient $\bar{D}=\left(D_{\|}+2 D_{\perp}\right) / 3$
- For long rods $D_{\|}=2 D_{\perp}, D_{\text {rot }}=12 D_{\perp} / L^{2}$, length of the needle L
- Dimensionless parameters

$$
\text { reduced number density } n^{*}=n L^{3}
$$

$$
\text { anisotropy } \Delta D / \bar{D}
$$

$$
\text { Péclet number } \mathrm{Pe}=v L / \bar{D}
$$

Active Brownian particle in 3D

Separation ansatz

- choose coordinates \mathbf{k} in z-direction, parametrize $\mathbf{u}=(\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$, write $\eta=\cos \vartheta$
- separation ansatz yields superposition of eigenfunctions

$$
\tilde{\mathbb{P}}\left(\mathbf{k}, \mathbf{u}, t \mid \mathbf{u}_{0}\right)=\frac{1}{2 \pi} e^{-D_{\perp} k^{2} t} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} e^{i m\left(\varphi-\varphi_{0}\right)} \operatorname{Ps}_{\ell}^{m}(c, R, \eta) \operatorname{Ps}_{\ell}^{m}\left(c, R, \eta_{0}\right)^{*} \exp \left(-A_{\ell}^{m} D_{\mathrm{rot}} t\right)
$$

- generalized spheroidal wave functions $\operatorname{Ps}_{\ell}^{m}(R, c, \eta)$

- deformation of (associated) Legendre polynomials $\mathrm{P}_{\ell}^{m}(\eta)$
- Intermediate scattering function

$$
F(k, t)=\frac{1}{2 \pi} e^{-D_{\perp} k^{2} t} \sum_{\ell=0}^{\infty} \exp \left(-A_{\ell}^{0} D_{\mathrm{rot}} t\right)\left|\int_{-1}^{1} \mathrm{~d} \eta \mathrm{Ps}_{\ell}^{0}(c, R, \eta)\right|^{2}
$$

Low-order moments

Mean-square displacement (3D)

- Expansion of ISF for isotropic system

$$
\begin{gathered}
F(k, t)=\langle\exp (-i \mathbf{k} \cdot \Delta \mathbf{r}(t))\rangle=\left\langle\frac{\sin (k|\Delta \mathbf{r}(t)|)}{k|\Delta \mathbf{r}(t)|}\right\rangle \\
\left.\left.F(k, t)=1-\left.\frac{k^{2}}{3!}\langle | \Delta \mathbf{r}(t)\right|^{2}\right\rangle+\left.\frac{k^{4}}{5!}\langle | \Delta \mathbf{r}(t)\right|^{4}\right\rangle+\mathcal{O}\left(k^{6}\right)
\end{gathered}
$$

- MSD initially translational diffusion dominates persistent swimming effective diffusion

$$
\left.\left.\langle | \Delta \mathbf{r}(t)\right|^{2}\right\rangle=6 \bar{D} t+\frac{v^{2}}{2 D_{\text {rot }}^{2}}\left(e^{-2 D_{\text {rot }} t}+2 D_{\text {rot }} t-1\right)
$$

Low-order moments

Non-Gaussian parameter (3D)

- Non-Gaussian parameter

$$
\alpha_{2}(t)=\frac{\left.\left.3\langle | \Delta \mathbf{r}(t)\right|^{4}\right\rangle}{\left.\left.5\langle | \Delta \mathbf{r}(t)\right|^{2}\right\rangle^{2}}-1
$$

- initially non-gaussian by translational anisotropy characteristic minimum due to persistent swimming eventually again Gaussian

Intermediate scattering function

- characteristic oscillations emerge at intermediate wavenumbers
fingerprint of persistent swimming

$$
F(k, t)=\left\langle\frac{\sin (k|\Delta \mathbf{r}(t)|)}{k|\Delta \mathbf{r}(t)|}\right\rangle
$$

- large wavenumbers anisotropic translational diffusion
- small wavenumbers effective diffusion

$$
D_{\mathrm{eff}}=\bar{D}+v^{2} / 6 D_{\mathrm{rot}}
$$

How can oscillations emerge?

(a)

(b)

- Intermediate scattering function sum of relaxing exponentials?

$$
F(k, t)=\frac{1}{2 \pi} e^{-D_{\perp} k^{2} t} \sum_{\ell=0}^{\infty} \exp \left(-A_{\ell}^{0} D_{\mathrm{rot}} t\right)\left|\int_{-1}^{1} \mathrm{~d} \eta \operatorname{Ps}_{\ell}^{0}(c, R, \eta)\right|^{2}
$$

- Eigenvalue problem is non-Hermitian, eigenvalues become complex branching in the eigenvalues \rightarrow no perturbation theory fingerprint of active motion

Christina Kurzthaler et al, Sci. Rep. (2016)

Crowded suspension of active needles

Does the tube model apply to active needles? How do the dynamics change?

Crowded is faster

- mean-square displacement $\left\langle[\Delta \mathbf{r}(t)]^{2}\right\rangle$ displays three regimes short-time diffusion - directed motion - effective diffusion
- free needle $D_{\text {eff }}^{0}=\bar{D}^{0}+v^{2} \tau_{\text {rot }}^{0} / 3$
- Entanglement speeds up the effective diffusion $D_{\text {eff }} / D_{\text {eff }}^{0} \sim\left(n^{*}\right)^{2}$

Orientational dynamics

- Orientation correlation function $\langle\mathbf{u}(t) \cdot \mathbf{u}(0)\rangle$ approaches perfect exponential
- relaxation time $\tau_{\text {rot }}$ increases by orders of magnitude

Relaxation time

- tube picture:
disengagement time $\tau_{0} \hat{=}$ time to move length L interpolation formula $\tau_{0}^{-1}=D_{\|}^{0} / L^{2}+v / L$ rotation angle $\varepsilon \sim d / L \sim\left(n^{*}\right)^{-1}$

$$
\tau_{\text {rot }} \sim \frac{1}{\varepsilon^{2} \tau_{0}^{-1}} \sim \frac{\left(n^{*}\right)^{2}}{D_{\|}^{0} / \bar{D}^{0}+\mathrm{Pe}} \tau_{\text {rot }}^{0}
$$

reduces to Doi-Edwards for $\mathrm{Pe}=0$ additional decrease by activity

- master plot for effective diffusion

$$
\frac{D_{\mathrm{eff}}}{D_{\mathrm{eff}}^{0}} \sim \frac{\tau_{\mathrm{rot}}}{\tau_{\mathrm{rot}}^{0}} \sim \frac{\left(n^{*}\right)^{2}}{\mathrm{Pe}}
$$

Corroborating the tube picture

- perpendicular displacement in comoving frame $\Delta \mathbf{r}_{\perp}(t)$
- plateau emerges for highly entangled systems \rightarrow defines tube diameter d
- scaling $d / L \sim\left(n^{*}\right)^{-1}$

Spatio-temporal transport

(a)

- intermediate scattering function

$$
F(k, t)=\langle\exp [-i \mathbf{k} \cdot \Delta \mathbf{r}(t)]\rangle=\left\langle\frac{\sin (k|\Delta \mathbf{r}(t)|)}{k|\Delta \mathbf{r}(t)|}\right\rangle
$$

- agreement over 5 orders of magnitude \rightarrow exact theory for high entanglement
- swimming motion approximately described by $|\Delta \mathbf{r}(t)|=v t \rightarrow F(k, t)=\sin (k v t) / k v t$

$$
\text { S. Mandal, C. Kurzthaler, T. Franosch, and H. Löwen, PRL 125, } 138002 \text { (2020) }
$$

Mini-Résumé on Needles

Active Brownian particles in 3D

- intermediate scattering function can be solved analytically
- non-trivial oscillations as fingerprint of active propulsion

Active needles in suspension

- crowding rectifies the motion of active needles \rightarrow crowded is faster
- Doi-Edwards tube model can be extended to active needles
- exact description on mesoscopic scales by renormalized orientational diffusion $D_{\text {rot }}$
- origin is a separation of time and length at mesoscopic scales

Lorentz Model

- classical gas of non-interacting, structureless particles
- randomly distributed, fixed obstacles: overlapping hard spheres Swiss Cheese model

- ballistic motion, elastic scattering

- relevant for transport in disordered media
- single control parameter: reduced obstacle density $n^{*}=n \sigma^{d}$

Mean-Square Displacement (3D)

- ballistic motion, specular scattering
- critical density n_{c} subdiffusive transport $\delta r^{2}(t) \sim t^{2 / z}$
- localization transition percolation of void space localization length
$\ell^{2}=\delta r^{2}(t \rightarrow \infty)$
$\ell \sim\left(n_{c}^{*}-n^{*}\right)^{\nu++\beta / 2}$ geometric exponents of percolation ν, β
- scaling theory of critical phenomena

$$
\delta r^{2}(t)=t^{2 / z} \delta \hat{r}_{ \pm}^{2}(\hat{t}), \quad \hat{t} \propto t \ell^{-z}
$$

- corrections to scaling are relevant
F. Höfling, T. Franosch, E. Frey, PRL 96, 165901 (2006)

Infinite cluster

Infinite cluster only

- Voronoi tesselation identifies infinite cluster only conducting side
- subdiffusive at critical point $\delta r_{\infty}^{2} \sim t^{2 / d_{w}}$ walk dimension $d_{w} \approx 4.81$
- scaling behavior anticipated

- diffusion coefficient vanish $D(n) \sim \varepsilon^{\mu}$, $\varepsilon=\left(n-n_{c}\right) / n_{c} D_{\infty}(n) \sim \varepsilon^{\mu_{\infty}}$ extrapolate to same point
M. Spanner et al, J.Phys.:Condens. Matt. (2011)

Mean-square displacement for Brownian tracers (2D)

- Brownian tracers
- critical density n_{c} subdiffusive transport $\delta r^{2}(t) \sim t^{2 / z}$ critical exponent $z=3.036$ (lattice value)
- localization transition percolation of void space
- scaling theory of critical phenomena
T. Bauer et al, EPJ-ST (2010)

Time-dependent diffusion (2D)

- time-dependent diffusion coefficient

$$
D(t):=\frac{1}{2 d} \frac{\mathrm{~d}}{\mathrm{~d} t} \delta r^{2}(t)
$$

- diffusion constant

$$
D=\lim _{t \rightarrow \infty} D(t)
$$

slowing down of diffusion

- critical density n_{c} subdiffusive transport $D(t) \sim t^{2 / z-1}$ critical exponent $z=3.036$ (lattice value)
- localization transition $D(t) \rightarrow 0$
T. Bauer et al, EPJ-ST (2010)

Long-time tails (2D)

- velocity-autocorrelation function

$$
z(t):=\frac{1}{2 d} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \delta r^{2}(t)
$$

- persistent anticorrelations for $n^{*}<n_{c}^{*}$

$$
Z(t) \simeq-A t^{-2}
$$

repeated scattering with the same obstacle

- rectification shows universality approximately $\propto n^{*} \rightarrow$ can be calculate to first order in n^{*}

Brownian tracers in the 2D Lorentz model

- theory describes nicely the data at low densities
- Long-time tails persists at all densities

Formal scattering theory
borrowed from quantum many-body problems
Lorentz model analogous to Anderson model:
Localization transition \Leftrightarrow Metal-Insulator transition
Long-time tails \Leftrightarrow weak localization
Multiple collision expansion to first order in density Velocity autocorrelation function (VACF)

- explicit expression for $Z(\omega)$
- diffusion coefficient

$$
D=Z(\omega=0)=D_{0}\left(1-\pi n^{*}\right)+\mathcal{O}\left(n^{* 2}\right)
$$

- algebraic long-time tail

$$
Z(t) \simeq \frac{-\pi n^{*} \sigma^{2}}{2 t^{2}} \quad \text { for } t \rightarrow \infty
$$

Franosch et al Chem. Phys. (2010)

ABP in disordered environement

- Soft spheres: Weeks-Chandler-Anderson potential
- diameter of ABP: $2 R_{s}$
- definition of Péclet number $\mathrm{Pe}=2 R_{s} v / D$ persistent length $L=v \tau_{\text {rot }}$
time scale $\tau_{\text {rot }}=1 / D_{\text {rot }}, \tau_{\text {diff }}=\left(2 R_{s}\right)^{2} / D$ here $\tau_{\text {rot }} / \tau_{\text {diff }}=1 / 3$

$$
\frac{L}{2 R_{s}}=\operatorname{Pe} \frac{\tau_{\text {rot }}}{\tau_{\text {diff }}}=100 \times \frac{1}{3}
$$

- packing fraction $\eta=\pi R_{0}^{2} / A$

$$
\text { area fraction } \quad \phi_{0}=1-\exp (-\eta)
$$

- sliding along the boundary
M. Zeitz, K. Wolff, and H. Stark, Eur. Phys. J. E (2017) 40: 23

ABP in disordered environement

Mean-square displacement

- crossover from persistent to diffusive motion $L / 2 R_{s}=33.33$ for $\eta=0$
- suppression of persistent motion already at small obstacle density since $L \gg 2 R_{S}$
- confining space are explored more rapidly by sliding
- subdiffusive transport $\propto t^{2 / z}$ at critical packing fraction
- localized at high packing fraction

ABP in disordered environement

Critical density

- subdiffusion for all Péclet numbers at critical packing fraction
- critical exponent $z=z_{\text {lat }} \doteq 3.036$ is universal in 2D M. Spanner et al PRL 116, 060601 (2016)
- prefactor of asymptotic behavior depends strongly on Péclet number

Circle swimmers

Escherichia coli

- Chirality of flagellar motion
- Hydrodynamic coupling close to boundaries \rightarrow circular motion
- angular drift velocity ω

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \vartheta(t) & =\omega+\zeta(t) \\
\left\langle\zeta(t) \zeta\left(t^{\prime}\right)\right\rangle & =2 D_{\text {rot }} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

Disordered environment

Skipping orbits

- independently distributed obstacles
exclusion radius σ
dimensionless scatterer density $n^{*}=n \sigma^{2}$
\rightarrow Lorentz model
- idealize to pure circular motion
\rightarrow deterministic orbits
dimensionless trajectory curvature $B=\sigma / R$
- skipping orbits along edges of scatterer clusters
- model originally designed for electron transport in a magnetic field \rightarrow 2DEG, obstacle by nanofabrication
long-range transport
by edge percolation

Phases

- low scatterer density: skipping orbit around isolated clusters only \rightarrow insulating phase
- intermediate density: skipping orbits percolate through entire system \rightarrow diffusive phase
- high scatterer density: void space consists only of finite pockets \rightarrow localized phase

Purely geometric transition

Phase diagram

- Transition line to localized phase independent of curvature
\rightarrow conventional percolation of void space

$$
n_{c}^{*}=0.359081 \ldots
$$

critical exponents correspond to conventional percolative transport on lattices

- Delocalization transition

$$
n_{m}(R)=n_{c}^{*} \sigma^{2} /(\sigma+R)^{2}
$$

\rightarrow percolation of disks+halo
exact result!, 2 significant digits

Kuzmany \& Spohn, PRE (1998)

Mean-square displacements

anamalous transport at $n_{m}^{*}=n_{m}^{*}(R)$

- mean-square displacement (MSD)

$$
\delta r^{2}(t)=\left\langle[\mathbf{R}(t)-\mathbf{R}(0)]^{2}\right\rangle
$$

- subdiffusive close to $n_{m}^{*}=n_{m}^{*}(R)$

$$
\delta r^{2}(t \rightarrow \infty) \sim t^{2 / z}
$$

critical exponent $z=2 / \gamma$ measured value $z=3.44 \pm 0.03$

- different from random walkers on percolating lattices $z \neq z_{\text {lat }}=3.036 \pm 0.001$

New dynamic universality class

Circle swimmer in disordered environment

A more realistic scattering rule

- ideal circle swimmer $D_{\text {rot }}=0$
- circle radius $R=v / \omega$
- obstacle diameter σ, dimensionless obstacle density $n^{*}=N \sigma^{2} / L^{2}$
- swimmer slides along the edge
- random exit angle $\Delta \in[-\pi / 2, \pi / 2]$ orientation ϑ remains fixed
O. Chepizhko and T. Franosch, Soft Matter 15, 452 (2019)

Circle swimmer in disordered environment

Sample trajectories

a)

d)

e)

f)

Circle swimmer in disordered environment

Phase diagram

- phase diagram pure geometric!
- percolation to localization at

$$
n_{c}^{*}=0.359081 \ldots
$$

- meandering transition at

$$
n_{m}^{*}(\sigma, R)=n_{c}^{*} \frac{\sigma^{2}}{(\sigma+R)^{2}}=0.35908 \ldots \frac{\sigma^{2}}{(\sigma+R)^{2}}
$$

O. Chepizhko and T. Franosch, Soft Matter 15, 452 (2019)

Circle swimmer in disordered environment

Mean-square displacements

- critical dynamics

$$
\delta r^{2}(t) \propto t^{2 / z} \quad \text { for } t \rightarrow \infty
$$

at the meandering transition n_{m}^{*}

- dynamics drastically slower than lattice or magnetotransport

$$
z=5.17 \pm 0.48
$$

- various scaling relations hold $D \propto\left(n^{*}-n_{m}^{*}\right)^{\mu}$
- attributed ot weak links in percolating networks \rightarrow new universality class
O. Chepizhko and T. Franosch, Soft Matter 15, 452 (2019)

Circle swimmer in disordered environment

Adding orientational noise

- angular diffusion

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \vartheta(t) & =\omega+\zeta(t) \\
\left\langle\zeta(t) \zeta\left(t^{\prime}\right)\right\rangle & =2 D_{\text {rot }} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

- Localization transition is unaffected geometric blocking \checkmark
- smearing of meandering transition
- enhancement of diffusion by meandering along boundaries for small obstacle density n^{*} most efficient for small radii $R \ll \sigma$
- strong suppression for large n^{*}
O. Chepizhko and T. Franosch, New J. Phys. 22, 073022 (2019)

Conclusion on random environments

Passive particles ballistic/Brownian particles

- Lorentz model as paradigm for disorder randomly distributed overlapping obstacles
- localization transition at critical obstacle density
- percolative transport: critical phenomenon
\rightarrow universal exponents

Active Brownian particles and circle swimmers

- ABP displays same universal localization transition
- Meandering transition for ideal circle swimmer/magneto-transport new universality class for percolative transport
- small or moderate density of obstacles promotes diffusion \rightarrow crowded is faster

