Gauge Theory, Toda spaces \& CouLomb branches
Physics and recently mathemaliks understanding:
3D (topological) gange theory is controlked by
Hyperkähler spaces closety related to Toda system
Pattern: Low energy behavion of a QFT should be \Longleftrightarrow sijma-model in moduli space of vacua M

Some Landmarks for gauge theon w/ linean matter:

- Seiberg and witten on 3D pure gauge thr fr SU(2)
- Argynes - Fanagi, Wanner - gemalization to $S U(n)$
- Seiberg-Intriligaton on 3D mimor symmets
- Witten. Hanany on Poincaré secies fr Coulomb branches
* Bezrukannikor, Finkelberg, Mirforic:

Topological description of Toden space from afftion Grassmanian

- Gromov-Witten bounday conds \longleftrightarrow holo. Lagrangians
- Bullimon - Dimofte-Gaiotto - obelian Coubomb bcanctus
- Bravarman -Finkelbery - Nakajima: Chicalvings for polazied reps
- Bravermar et al: proposal fr zuaternionic reps
- conshuction of chical ring

In susy gauge theories 3D 2higher: have Coubmb and liggs branches M_{c}, M_{r} of M
For 3D X/G \times hyperkähler
Higgs: $X / / / G$; Couboms: Toda + quantun conctions
2. The Todaspaces $C_{3,4}(G ; O)$

$$
\text { T L } k \text {-theory }
$$

- Hypercäler manifolds;
- in one complex stucture, complitil integrable abelian gpo over:

$$
\Theta_{3} \rightarrow \sigma_{\mathbb{C}} / / G_{\mathbb{C}}=t_{c} / w ; \Theta_{4} \rightarrow G_{c} / / G_{\mathbb{C}}=T_{\mathbb{C}} / w
$$

- Abelian cases: $l_{3}=\frac{T^{*} T_{\mathbb{C}}}{W}, l_{4}=\frac{T_{\mathbb{C}} \times T_{C}}{W}$ monatethr
- General cases: affine blow-ups of Weyl quotients
- BFM: $\mathbb{C}\left[b_{3}(G ; O)\right]=H_{x}^{G}(\Omega G) \quad$ Pontigagin product $\mathbb{C}\left[b_{4}(G ; 0)\right]=K_{*}^{G}(\Omega G)$ \& homology co-product
\Rightarrow Hopf eilgebras over H_{*}^{G}, K_{*}^{G}
- Thm(-) Some boundary conclitions fr 3D topological gange thy correspond to bundles of categodes W/ Lagrangian suppont on $b_{3,4}$ (Kapustin-RozanskJ-Saulina 2-category)

Eg from symphctic mfolds with Hamiltoxian G action:

- Symplicki cohomologies of certain open mfolds
- Quartum cohomologies of compact mfolds

Examples: - a point (Verlinde frimulas)

- a cx.representation (Ceneratized \& Coulomdbr.)
- Compact Fanos (tomonow)

3. Gauged point with a bulk deformation
$W=\frac{h}{2} \cdot \xi^{2}, \xi \in O \subset$ (invoniont quachatic from)

$$
h \in H^{4}(B G)
$$

The exponentlated graph $\Gamma(d W)$ meet the unit section of the Soda groups at lattice points in $\hbar_{c} / W, T_{c} / W$.

The Hessian determinants ane thu stucture constants for a Frobenius algebra. This is the 2D TRFT " $/ G$ " with bulk clefromation W.
4. Complex representation V

Noncompact \Rightarrow use \mathbb{C}^{x} scaling to render things finite Equivariant parameter μ (complex mass in physics) $\in H^{2}\left(B C^{x}\right)$
The associated Lagrangian is again $\Gamma(\exp (d W))$ fr the GLSM supenpotential in H_{*} and K_{*}

$$
t_{\mathbb{C}} \ni \Sigma \longmapsto \prod_{\text {wis. } \cdot}(\mu+\langle\gamma \mid \Sigma\rangle)^{\nu}
$$

$$
T_{c} \ni x \longmapsto \pi_{\nu}\left(1-m^{\gamma} x^{-1}\right)^{\nu}
$$ sections

open Q: extend to moon of cures
Thu The associated TAFT computed by intersecting Lith tin unit section is the Gromov-witten ganged the org V / G ($w /$ Chris Wood wand, generalizing Witter)
5. Main Theorem on Chiral Ring $b_{3,4}(G ; E)$
$G=$ compact connected Lie ge; $E=$ quatunionic rep j "polarized" means $E=V \oplus V^{*}$

Nakajima; Bullimon-Dimoftu-Gaiotto; yours tull; Bravuman-Finkelberg-Nakajima;

1. There exist 5^{4} constiuctithe, equivaniant coefficient systions H_{E}, \mathcal{K}_{E} oven the loop Grassmannian $G_{[}[([]]) G_{C}((z]) / G_{\mathbb{C}}[\{z]$ $G^{\Omega G}=\sigma^{\lfloor L}{ }^{2} / G$
2 The are E_{2}-multiplicative under Pontryagin proclucts and their equivariant cohomologies $\left[e_{3,4}(G ; E)\right]$ ane E_{3} ("Poisson structures of degree -2")
2. They are multiplication in $E, H_{E} \otimes H_{F} \rightarrow H_{E \in F}$

$$
\text { so } e_{3,4}(G F) \times e_{\text {Soda }} \times\left(G_{;} F\right) \longrightarrow C_{3,4}(G ; E \oplus F)
$$

4. Mon-polazized E require the removal of obstructions
5. $H_{*}^{G}\left(\Omega G_{;} H_{E}\right)$ and $K_{*}^{G}\left(\Omega G_{j} K_{E}\right)$ an bicational to b_{3}, b_{4} and ane expected to be the chiral sing $f_{2} E_{G}$
6. (Abelianization) $C_{3,4}(G \cdot E) \cong C_{3,4}\left(T_{j} E-g_{m}\right) / W$ if E contains the roots of σ. [-]
7. Polarized case: construction from GLSOM boundary cord. [-]
8. Construction in the Polarized case
(Physics; Nakajima; B-F-N; BDG)
Morally Choose a polar half V of E
Get an index bunclu " $H^{0}-H^{\prime \prime \prime}\left(\mathbb{P}^{\prime} ; p_{G} V \otimes \sqrt{k}\right)$ along P^{\prime} over $B_{n n_{G}}\left(P^{\prime}\right) \sim_{G} \backslash \Omega G=G \backslash G / G$

Build the associakd linear space Spec Sym (dual shroff)
Coefficient systems H_{E}, X_{E} are cohomologies with compact rutical supports

Morally $\ell_{3,4}\left(C_{j} E\right)=\operatorname{spec} H_{G}^{*} K_{C}^{*}\left(\Omega G ;\right.$ It ec $\left.^{\prime} X_{E}\right)$ with Ponhyagin prochict.
unit $=$ volume form \Rightarrow difficult to make precise
Prochect structure should come from 3D pair of parts by solving a ganged Dirac equation 4/ pressite boundary conclitons

$$
\longleftarrow\binom{\text { modulispnce }}{\text { of solutions }}
$$

$B u_{c}\left(P^{\prime}\right) \times B u n_{c}\left(P^{\prime}\right) \quad B u n_{0}\left(P^{\prime}\right)$
7. Algebraic Geometry Rewording (B FN)

The splitting $\mathbb{R}^{3}=\mathbb{C} \times \mathbb{R}$ reduces the 3D Dirac equation to the \bar{J} equation (and TQFT \Rightarrow constant in t)
\Rightarrow complex geometry can be used:
Use "tiny sphere" -:chis with clouskel Origin
top sheets $\mathscr{} \quad \begin{aligned} & \text { Bun }(-:-)\end{aligned}$

$$
\operatorname{Bun}(-:-) \times \operatorname{Bun}(-:-)
$$

$\operatorname{Bun}(-:-) \begin{aligned} & \text { outer } \\ & \text { sheets }\end{aligned}$
bottom sheet
The comspondince diagram is now well-difted and gives an E_{3} multiplication on $H_{*}^{6}\left(\Omega \sigma ; H_{E}, X_{E}\right)$.
8. Global construction from GLSN
$b_{3,4}(G ; E)$ arises by gluing two copies of the Tody span along the vertical shear by $\exp (d W)$ from GLSM.

Equivalently: The chiral ring for E is the subring of functions on the Toda space which survive exp (ow) translation

Reformulation (Pomerkeano): Thus is the subing of functions that preserve the Lattice $Q H_{C}^{x}(V) \subset S H_{G}^{*}(V)$ (inctucling its bulk ckfomations).
9. Non-polarized case: $E \neq V \oplus V^{*}$

- I don't have a good interpretation in terms of Gromov-Witten boundary conclitions.

Guess: in terms of $G \underset{T}{x} V(E$ is a clouts oven $T)$ the formula I han is not 'clean' though

Caution: Check paper linked from my website; the anil version has many calculational mistakes

Problem: Invoking the construction fr E instead of V leads to $b_{3,4}(G ; E \oplus E)$.

Heed to extract "Square root" of the \mathcal{H}, \mathcal{X}
Method: check real strictures.
Investigate:

Polarization of E would lift $\Omega^{2} E$ to KU
Obstructed by $\eta \cdot \Omega^{2} E \in K O O^{\prime}$
In any case: want on E_{2} lift so obalzuction really is

$$
B G \xrightarrow{E} B S_{p} \xrightarrow{\eta} z^{3} K_{0}
$$

seems unhelpful until we recall that
We don't nerd a complete lift?
Just enough to build the coefficient systems.
So the obrtuction is the image, via $\Sigma^{4} J$, into $\Sigma^{4} G L_{1}(H \mathbb{Z})$ or $\Sigma^{4} G L(K U)$ (os $\Sigma^{\varphi} G L\left(K_{0}\right)$)

For cohomology: obstruction clan in $H^{4}(B G ; \mathbb{Z} / 2)$ $\left(\omega_{1}\right) \quad$ and is $C_{2}(E) \bmod 2=w_{4}(E)$

Fr <0-theory: a secondary obotunction $\sigma \in H^{5}(B G ; 2 / 2)$ $\left(\omega_{2}\right)$ is defined if $\omega_{4}(E)=0$

For KU-thoorg: the $2^{\text {nd }}$ obortiuction is $B \sigma \in H^{6}(B G ; \mathbb{Z})$ $\left(W_{3}\right) \quad$ (Essentially $\frac{1}{2} C_{3}(E)$)

Theorem (nasty calculation)
If G is connected and $W_{4}(E)=0$, then $B \sigma=0$.
(Fails fin chis connected groups)
Improvement. One can weaken the obobuctron to W_{4} is the square of a clan in $H^{2}(B C ; \mathbb{Z})$

Wiffen: Obtractin is im $\pi_{4} G \xrightarrow{E} \pi_{4} S_{p}$

- Ore can even uduu to the obotuction predictid by ECl witten $\fallingdotseq W_{4}$ has a square nost $\in H^{2}\left(B G Q_{2}\right)$
at the poice of collapsing
the cohomology gracting mod 2:

$$
\left.136 \xrightarrow{E} B S_{y} \xrightarrow{\eta} \begin{array}{cc}
0 / 2 & 5 \\
2 / 2 & 4 \\
\text { homology grading } & 3
\end{array}\right\} \Sigma^{3} k 0
$$

