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Overview.

Transplanting techniques from discrete groups to profinite groups
leads to two unexpected outcomes:

1. The profinite case is sometimes easier, with sharper results.

2. Applying the profinite results to number theory resolves an old
question about constructing representations of the
Grothendieck-Teichmüller group.
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Group theory.

Let Fd be the discrete free group on d elements, and let Aut(Fd)
be its automorphism group.

Goal:(Grunewald-Lubotzky 2009) One can construct linear
representations of finite index subgroups of Aut(Fd) with image a
“large” arithmetic group.
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The Construction:
Choose a surjection π : Fd → H onto a finite group H and let
R = Kernel(π). Then A(π) = {α ∈ Aut(Fd) : π ◦ α = π} has
finite index in Aut(Fd). We have an exact sequence

1 // R
[R,R]

// Fd
[R,R]

π // H // 1 (1)

Grunewald and Lubotzky use Fox calculus and work of Vaserstein
to show that when

R =
R

[R,R]

d ≥ 4 and π(x0) = 1 ∈ H for some generator x0 ∈ Fd , we get a
homomorphism

ρ : A(π)→ AutZ[H](R) = G

whose image has finite index in the arithmetic group G1 that is the
kernel of all homomorphsms G → GL1 defined over Q.
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An Example:
H = Z/p, p a prime.

Z[H] ⊂ Q[H] ≡ Q⊕Q(ζp)

as algebras.

Q⊗Z R is commensurable with

Q⊕Q[H]d−1 ≡ Qd ⊕Q(ζp)d−1

as Q[H]-module.

G(Z) is commensurable with GLd(Z)×GLd−1(Z[ζp]).

G1(Z) is commensurable with SLd(Z)× SLd−1(Z[ζp]).

Note: It is hard to identify the image of

ρ : A(π)→ AutZ[H](R)1 = G1(Z).
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The profinite case

Moral: Everything is easier!

Replace Fd by its profinite completion F̂d . Use a surjection
π : F̂d → H with kernel we’ll still call R. Let β ∈ H2(H,R) be the
extension class of

1 // R =
R

[R,R]
// F̂d
[R,R]

π // H // 1 (2)

Theorem (Bleher, C, Lubotzky) Let AutZ[H],β(R) be the finite

index subgroup of γ ∈ AutZ[H](R) that preserve β. Then

A(π)→ AutZ[H],β(R) is surjective.
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Why is the profinite case easier?

Lemma(Gaschütz) Suppose ψ : G1 → G2 is a surjective
homomorphism of finitely pro-generated profinite groups. Assume
that the number of topological generators of G1 is ≤ d and that
S2 ⊂ G2 is a set of d topological generators of G2. Then there is a
set S1 ⊂ G1 of topological generators of G1 so that ψ(S1) = S2.

For a nice proof by Roquette, see “Field arithmetic” by Fried and
Jarden.

Corollary If N is a closed normal subgroup of F̂d , every
automorphism of F̂d/N can be lifted to an automorphism of F̂d
preserving N.
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Number theoretic applications

Theorem(Belyi, 1979) There is a canonical injection

GQ = Gal(Q/Q)→ Aut(F̂2).

Where does this come from?

Let Q(t)0,1,∞ be the maximal extension of Q(t) in an algebraic

closure Q(t) that is unramified over all discrete valuations that are
trivial on Q other than those that give t, t − 1 and t−1 valuation
1. Then the tower of fields Q(t) ⊂ Q(t) ⊂ Q(t)0,1,∞ gives an
exact sequence of Galois groups

1→ Gal

(
Q(t)0,1,∞

Q(t)

)
→ Gal

(
Q(t)0,1,∞

Q(t)

)
→ Gal

(
Q(t)

Q(t)

)
→ 1
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Now use

Gal

(
Q(t)

Q(t)

)
= Gal

(
Q
Q

)
= GQ

and identify

Gal

(
Q(t)0,1,∞

Q(t)

)
= πetale1 (P1

Q − {0, 1,∞})

with the profinite completion F̂2 of F2 = πtop1 (P1
C − {0, 1,∞}). We

get an exact sequence

1→ F̂2 → Gal

(
Q(t)0,1,∞

Q(t)

)
→ GQ → 1

and a canonical homomorphism

GQ → Out(F̂2).

Belyi shows how to use decomposition groups of points over 0 and
1 to lift this canonically to an injective homomorphism

GQ → Aut(F̂2).
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The Grothendieck-Teichmüller group ĜT

Belyi’s construction produces two canonical topological
pro-generators x and y of F̂2 coming from generators of inertia
groups over 0 and 1. These can be thought of as loops around 0
and 1 from a base point in P1

C.

Theorem(Drinfeld and Grothendieck) There is an infinite index

subgroup ĜT of γ ∈ Aut(F̂2) defined by certain identities involving
γ(x) and γ(y) such that Belyi’s map GQ → Aut(F̂2) gives an
injection

GQ → ĜT .

Main Question(Grothendieck) Is GQ = ĜT??

Consequence If so, every representation of GQ lifts to ĜT .
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The precise definition of ĜT (optional)
Elements of ĜT are specified by pairs (λ, f ) ∈ Ẑ∗ × F̂ ′2 where Ẑ is
the profinite completion of Z and F̂ ′2 is the commutator subgroup
of F̂2. These must satisfy some identities listed below, and they
give automorphisms of F̂2 by

x → xλ and y → f −1yλf .

The identities are:
f (x , y) · f (y , x) = 1

f (x , y)xmf (z , x)zmf (y , z)ym = 1 with m =
λ− 1

2
when xyz = 1

f (x12, x23)f (x34, x45)f (x51, x12)f (x23, x34)f (x45, x51) = 1 in κ̂0,5

when κ̂0,5 = Kernel(M(0, 5)→ S5) and M(0, 5) is the quotient of
the profinite braid group B̂5 by the relations
(σ1 · σ2 · σ3 · σ4)2 = 1 = σ4 · σ3 · σ2 · σ21 · σ2 · σ3 · σ4 and
xij = σj−1 · · ·σi+1σ

2
i σ
−1
i+1 · · ·σ

−1
j−1 for 1 ≤ i < j ≤ n.
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The question of Lochak and Schneps, and the
Leapfrog strategy

Question(Lochak and Schneps, 1997) Can one construct a
non-abelian finite dimensional representation of GQ that has

infinite order image and that lifts to ĜT?

Theorem(Bleher, C, Lubotzky) The profinite version of the
Grunewald-Lubotzky construction produces non-abelian
representations of GQ that lift to finite index subgroups of

Aut(F̂2), and therefore to finite index subgroups of ĜT . These
representations come from the adelic Tate modules of generalized
Jacobians of curves.

Question:

Which “automorphic” representations of GQ can be extended to
finite index subgroups of Aut(F̂2)?

Ted Chinburg Linear Representations of the GT group



Lifting Galois actions on Tate modules of
generalized Jacobians

X = smooth projective irreducible curve over Q.

Theorem(Belyi) There is a non-constant morphism λ : X → P1
Q

that is unramified outside {0, 1,∞}.
Let Y be the smooth curve over P1

Q whose function field Q(Y ) is

the Galois closure of Q(X ) over Q(P1
Q) = Q(t). Then

H = Gal(Q(Y )/Q(t)) is a finite quotient of

F̂2 = Gal

(
Q(t)0,1,∞

Q(t)

)
= πetale1 (P1

Q − {0, 1,∞}).

As in the profinite Grunewald-Lubotzky construction, we have an
exact sequence

1 // R =
R

[R,R]
// F̂2
[R,R]

π // H // 1 (3)
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Lemma:(Serre) R is the Galois group of the maximal abelian
cover of Y that is unramified outside the set S of points of Y lying
over {0, 1,∞} ⊂ P1

Q. As such R is isomorphic to the adelic Tate

module TS(Y ) of the generalized Jacobian of Y with respect to S .

Remarks

1. There is a number field F such that X , Y and the action of H
on Y are defined over F . For all such F , GF = Gal(Q/F )
acts on TS(Y ).

2. If X is a modular curve, F can be taken to be abelian over Q.
In this case, the action of GF on TS(Y ) is related to modular
forms of weight two via work of Shimura. This is one of the
first cases of the Langlands program.
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Main arithmetic result

Theorem(Bleher, C, Lubotzky) For a sufficiently large number
field F , the action of GF on TS(Y ) extends to an action of a finite
index subgroup AS ,Y of Aut(F̂2) when we embed GF into Aut(F̂2)
via the Belyi embedding

GF ⊂ GQ → Aut(F̂2).

Corollary For a sufficiently large number field F , the action of GF

on TS(Y ) extends to the action of a finite index subgroup of the

Grothendieck-Teichmüller group ĜT . This provides examples of
the kind sought by Lochak and Schneps.

Remark One can prove a similar result for the action of GF on
TS ′(X ) when S ′ is the inverse image of {0, 1,∞} under X → P1

Q.
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An example

Let X = Y be the curve with function field Q(t, (t(t − 1))1/3), so
that Y is the function field of the affine elliptic curve

y3 = t(t − 1).

Then Y is a cyclic H = Z/3 cover of P1
Q. There is an exact

sequence of Tate modules

0→ Ẑ(1)⊕ Ẑ(1)→ TS(Y )→ T (Y )→ 0

in which
Ẑ(1) = lim

←−
n

µn

when µn is the Galois module of nth roots of unity, and T (Y ) is
the adelic Tate module of the elliptic curve. In this case (and in
fact, whenever H is abelian), the action of GF on T (Y ) can also
be lifted to an action of a finite index subgroup of Aut(F̂2).
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Final comments

1. We can construct some (very large) finite Galois covers Y → P1

branched over {0, 1,∞} defined over Q such that the Galois action
of GQ on TS(Y ) extends to all of Aut(F̂2). So this action

automatically extends to ĜT .

In general, there will be obstructions to extending the Galois action
on TS(Y ) to all of Aut(F̂2) in a way that is consistent with Belyi’s
embedding GQ → Aut(F̂2) and with the identification of TS(Y )
with a subquotient of
F̂2 = Gal(Q0,1,∞(t)/Q(t)) = πet1 (P1

Q − {0, 1,∞}).

Future work has to do with identifying maximal subgroups Ã of
finite index in Aut(F̂2) for which such an extension exists. One can

then try to show that at least one such Ã contains ĜT by showing
the conditions specifying when α ∈ Aut(F̂2) lies in ĜT imply the
finitely many conditions that determine whether α ∈ Ã.
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2. To expand on # 1, any family of Galois representations (e.g.
the Tate modules TS(Y ) as Y varies) that are constructed “group
theoretically” from F̂2 = Gal(Q(t)0,1,∞/Q(t)) defines a family of
lifting problems relative to the Belyi embedding GQ → Aut(F̂2).
Such a family defines a system of obstructions to lifting the
representations to all of Aut(F̂2). The subgroup of Aut(F̂2) for

which all of these obstructions vanish should contain ĜT . What is
the subgroup arising from the family of all Tate modules of
generalized Jacobians?
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3. Grunewald, Larsen, Lubotzky and Malestein used the ideas
involved in their construction of representations of Aut(Fd) to
construct representations of Aut(π1(Σg )) when Σg is a closed
Riemann surface of genus g . Here π1(Σg ) is the quotient of a free
group by one relation. This relation makes it more difficult to lift
automorphisms of finite quotients of the profinite completion

π̂1(Σg ) of π1(Σg ). So it remains to construct in this way large

linear representations of Aut(π̂1(Σg )).
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4. We can realize the principal congruence modular curve
X = X (N) of positive even level N > 2 as a Galois cover of P1

Q
that is unramified outside of {0, 1,∞}, with the cusps X being the
inverse image of {0, 1,∞}. For every prime `, the Galois
representation associated to the weight two cusp forms of level N
is Hom(TX ,S ,Q`). This is why our results pertain to weight two
cusp forms when X is a modular curve.
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5. It’s natural to ask how to lift the action of finite index
subgroups of GQ on forms of weight k ≥ 2 to large subgroups of
Aut(F̂2). Let f : E → X (N)− {cusps} be the universal family of
elliptic curves with level N structure. Let T`(E

un) be the rational
`-adic Tate module of the base change Eun to Q(t)0,1,∞ of the
universal family E . Let Γ = Gal(Q(t)0,1,∞/Q(X (N))). Work of
Deligne shows the `-adic Galois representation associated to weight
k ≥ 2 forms on X is

Vk,` = H1(Γ, Symk−2T`(E
un)).

When k = 2, this gives

V2,` = H1(Γ,Q`) = Hom(Γab,Q`) = Hom(TX (N),S ,Q`).

For k > 2 one approach is to define (infinite index) subgroups of
Aut(F̂2) that act compatibly on Γ and on Symk−2T`(E

un). (The
latter action is automatic when k = 2.)
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How to view T`(E
un) mod the action of ±1 using the group

theory of Γ = Gal(Q(t)0,1,∞/Q(X (N)))

Assume ` does not divide N. Let Q(X (N))mod ,` be the subfield of
Q(t)0,1,∞ that is the union of Q(X (N`n)) over all integers n. Then
Gal(Q(X (N))mod ,`/Q(X (N))) is canonically isomorphic to
PSL2(Z`). Let Umod ,` be the upper triangular unipotent subgroup
of PSL2(Z`). We can identify T`(E

un) with Z2
` in such way that

the following is true. Let T̃`(E
un) be the set of equivalence classes

in T`(E
un) under the multiplication action of {±1}. Then there is

a map from the cosets PSL2(Z`)/Umod ,` to T̃`(E
un) that sends

the coset (
a b
c d

)
· Umod ,`

to the equivalence class [(a, c)] of (a, c). The image I of this map
consists of the equivalence classes [(a, c)] of all pairs (a, c) ∈ Z2

`

such that at least one of a or c is a unit.
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The upshot for extending Galois actions on modular forms of
weight k > 2 to actions of subgroups of Aut(F̂2).
We can lift the action of a finite index subgroup of Gal(Q/Q) on
Vk,` to a subgroup H̃ ⊂ Aut(πet1 (P1

Q − {0, 1,∞})) = Aut(F̂2)

provided H̃ has the following properties:

(1) H̃ takes Gal(Q(t)0,1,∞/Q(X (N))mod ,`) to itself.

(2) The action of H̃ on
Gal(Q(X (N))mod ,`/Q(X (N))) = PSL2(Z`) that is induced by
condition (1) takes the unipotent subgroup Umod ,` to itelf.

(3) The action of H̃ on the cosets PSL2(Z`)/Umod ,` that is
induced by conditions (1) and (2) lifts to a Z` linear action of
H̃ on T`(E

un). When such a lift exists, it is unique up to
multiplication by a quadratic character of H̃.

Note that if k − 2 is even, then the quadratic character in step (3)
will not affect the action of H̃ on Vk,` since the quadratic
character will not affect the action of H̃ on Symk−2T`(E

un).
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