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I thank G.Prasad, Q, A.Rapinchuk, B.Sury and Aleksy Tralle, for their
invitation to take part in this great conference.

I will talk about unipotent generators for arithmetic groups. To illustrate
the kind of results discussed here, let me start with a non-example.
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The group SL(2,Z)

Consider a subgroup Γ ⊂ SL2(Z) of finite index. The elementary
subgroup ∆ of Γ is the subgroup of Γ generated by the upper and lower
triangular matrices U+ ∩ Γ and U− ∩ Γ in the group Γ.

For example, if Γ is the principal congruence subgroup of level m in
SL2(Z), then

∆ =<

(
1 m
0 1

)
,

(
1 0
m 1

)
> .

If m ≥ 3, then ∆ has infinite index in Γ (or in SL2(Z)).
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The Group SLn(Z)

In contrast, a theorem of J.Tits says that if Γ is a subgroup of finite
index in SLn(Z) for n ≥ 3, then the subgroup ∆ of Γ generated by
upper and lower triangular unipotent matrices in Γ has finite index in Γ.

The proof uses the methods of the proof of the congruence subgroup
property for SLn(Z) (n ≥ 3).

The group SL2(Z) is a lattice in the real rank one group SL2(R),
whereas, for n ≥ 3, the group SLn(Z) is a lattice in a "higher rank"
group SLn(R).
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Generalisation

Suppose G is a connected linear semi-simple algebraic group defined
over Q. Assume G is Q-simple; that is, the only connected normal
algebraic subgroups of G are G and the trivial group.

Assume also that G has higher real rank i.e. R− rank(G) ≥ 2.

Assume further that Q− rank(G) ≥ 1 (equivalent conditions: (2)
G(R)/G(Z) is non-compact, (3) G(Z) has unipotent elements and (4)
G has a proper parabolic subgroup P defined over Q) .

Fix a proper parabolic Q-subgroup P ⊂ G, with unipotent radical
U = U+. Let U− be the opposite unipotent radical.
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The Main Result

Theorem 1
With the foregoing assumptions, given a subgroup Γ ⊂ G(Z) of finite
index, the "elementary subgroup" ∆ of Γ generated by U+ ∩ Γ and
U− ∩ Γ has finite index in Γ.

This theorem is due to various people (Tits (1976) for Chevalley
Groups G over number fields K with K − rank(G) ≥ 2; Vaserstein
(1973) for classical groups of higher rank over number fields, and due
to Raghunathan and myself in general (1994)).

A very different, but similar looking result is due to Hee Oh (1998),
Benoist-Oh (2010), Benoist and Miquel (2020), who proved that if
Γ ⊂ G(R) is a Zariski dense discrete subgroup generated by lattices in
opposing unipotent radicals of real parabolic subgroups, then Γ is a
lattice (provided R− rank(G) ≥ 2). I understand that the proof uses
the foregoing theorem.
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Remarks

The earlier proof by Raghunathan and myself was quite general, but
especially in the Q− rank(G) = 1 case, involved some complicated
case-by-case check (of an SU(2,1)-reduction for a complicated
system of embedded SU(2,1)’s) . The present proof is uniform and is
much shorter. It uses, however, certain embedded SL2 (the
Jacobson-Morozov Theorem).

In the Q− rank(G) = 1 case, the Artin reciprocity law was also used
crucially, but the present proof uses "only" the Dirichlet theorem on the
infinitude of primes in arithmetic progressions.

If R− rank(G) = 1, then for most congruence subgroups Γ ⊂ G(Z),
the elementary subgroup ∆ has infinite index. In this sense, the
statement is always false for real rank one groups.
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Remarks

The proof also gives the centrality of the congruence subgroup kernel
C in the non-uniform case (due to Raghunathan). Once the centrality
is proved, (assuming that G is simply connected) the finiteness and the
exact computation of C follows (from the work of Raghunathan, Gopal
Prasad and Rapinchuk).

Rapinchuk (unpublished) has a proof of centrality of the congruence
subgroup kernel which does not even use the Dirichlet theorem.
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Given a maximal parabolic Q-subgroup P, with unipotent radical U
and a Levi decomposition P = MU, let P− = U−M be the opposite
parabolic subgroup. Let F (m) denote the subgroup of G(Z) generated
by P(m) and P−(m). By results of Nori and Weisfeiler, there is a
smallest congruence subgroup Γm of G(Z) containing F (m). Note that
Γm is an arithmetic group.

Theorem 2

If R− rank(G) ≥ 2, then F (m) contains the commutator subgroup
[Γm, Γm].

The Margulis normal subgroup theorem immediately implies that F (m)
is arithmetic. Since ∆P(m) = ∆(m) =< U(m),U−(m) > is normalised
by F (m) =< U(m),M(m),U−(m) >, it follows that the elementary
group ∆P(m) is arithmetic, for maximal parabolic subgroups P. But, for
any parabolic subgroup Q ⊂ P with P maximal, and unipotent radicals
V ,U respectively, we have the inclusion of unipotent radicals U ⊂ V ,
and hence ∆Q(m) ⊃ ∆P(m) is arithmetic.
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A Topology on G(Q)

Assume that P is a maximal parabolic Q-subgroup of G. We have the
opposite parabolic subgroup P−. The first step in the proof is to
consider the system {F (m)}m≥1 of subgroups generated by the
congruence subgroups P±(mZ). We designate this family to be a
fundamental system of neighbourhoods of identity. By left translation,
we get a fundamental system of neighbourhoods of any element of
G(Q).

Let us say that a sequence (gk )k≥1 in G(Q) is a Cauchy sequence, if
given any integer m ≥ 1, there exists an integer K = K (m) such that
for k , l ≥ K , we have g−1

k gl ∈ F (m).

Two Cauchy sequences {gk} and {hk} are equivalent if given the
"level" m, there exists an integer K = K (m) such that for all k ≥ K , we
have g−1

k hk ∈ F (m). Given two Cauchy sequences (gk ) and (hk ), we
can form the product sequence (gkhk ) and the inverse sequence
(g−1

k ).
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Theorem 3

If R− rank(G) ≥ 2, then (gkhk ) and (g−1
k ) are Cauchy sequences. The

set of equivalence classes of Cauchy sequences then becomes a
topological group G, with a continuous surjective homomorphism
G → G(Q), with kernel K , say.

If R− rank(G) ≥ 2, then the kernel K is central in G.

Thus, the higher rank assumption is used twice: to prove that the
completion G of G(Q) (with respect to the system F (m) of subgroups)
exists as a topological group, and also to prove that the relevant kernel
K is central.
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Theorem 3 implies Theorem 2

Suppose Γ̂m and F̂ (m) are the closures of Γm and F (m) in the
completion G. Since Γm and F (m) have the same closure in the
congruence completion G(Q), it follows that Γ̂m ⊂ F̂ (m)K .

Taking commutators, and noting that K is central by Theorem 3, we get
the chain of inclusions

[Γm, Γm] ⊂ [Γ̂m, Γ̂m] = [F̂ (m), F̂ (m)] ⊂ F̂ (m).

Intersecting with G(Q) we then get [Γm, Γm] ⊂ F (m), proving Theorem
2.
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Intersecting with G(Q) we then get [Γm, Γm] ⊂ F (m), proving Theorem
2.
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Existence of a topological group structure on G
It is a generality that the completion G with respect to the fundamental
system of neighbourhoods {F (m)}m∈Z is a topological group, if and
only if , given m and g ∈ G(Q), there exists m′ such that
g(F (m)) = gF (m)g−1 ⊃ F (m′).

To see how the higher rank assumption is used in the existence of the
completion, consider the "generic conjugate" g(F (m)), where g ∈ U−P
is a rational element. Let M = P ∩ P− be the Levi subgroup of P. Then
for some m′,
g(F (m))∩F (m) ⊃u−p (P(m))∩P−(m) =u−

(P∩P−(m′)) =u−
(M(m′Z)).

In the higher rank case, the group M(Z) is infinite, and this allows us to
prove that the above intersection has many elements, which also
proves (by replacing g by gγ for varying γ ∈ F (m)) that g(F (m))
contains P−(m′) for some m′. Similarly, g(F (m)) ⊃ P(m′) for some m′.
This implies g(F (m)) ⊃ F (m′) for some m′. The existence of the
completion then follows easily.
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Centrality for the group SL2(Z[
√

2])

Consider the exact sequence 1→ K → G → G(Q)→ 1, where G is the
completion of G(Q) with respect to the "F (m)" completion, and G(Q) is
the congruence completion. (By general considerations), the group K
is the inverse limit of the sets Km = F (m)\Γm/F (m) (equpped with the
discrete topology) as m varies.

Let M be the group of diagonals; then M(Z[
√

2]) is the group of
diagonals whose diagonal entries are units in the ring R = Z[

√
2]; it is

an infinite (cyclic) group. M(R) acts by conjugation on the sets F (m)
and Γm and also on the kernel K , and the inverse limit
K = lim F (m)\Γm/F (m) is compatible with this M(R) action.

If we prove that there is a fixed infinite (finite index) subgroup D of
M(R) which acts trivially on each Km as m varies, then it acts trivially
on K ; but all of G(Q) acts on K and the simplicity of G(Q) then implies
that G(Q) acts trivially on K ; hence K is central.
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SL2 continued

Suppose that g =

(
a b
c d

)
be an element of Γm viewed as an element

of the double coset F (m)\Γm/F (m), and let s =

(
u 0
0 u−1

)
∈ M(R).

In his proof of centrality of the congruence subgroup kernel for SL2
(when the number field K has infinitely many units), Serre makes the
following computation:u 0

0 u−1

(
a b
c d

)
=

(
1 0

(u−2 − 1) c
a 1

)(
a b
c d

)(
1 (u2 − 1)b

a
0 1

)
.

If u ≡ 1 (mod a), then this says that s(g) = u−gu+ where u± are
lower and upper triangular matrices in E(m). Hence t (g) = g in the
double coset F (m)ΓmF (m), and thus the congruence subgroup M(a)
of level a fixes the element g in the double coset.
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We may replace g by g′ = g
(

1 0
x 1

)
for some x ≡ 0 (mod m)

without altering the coset F (m)gF (m). But g′ =

(
a + bx b
c + dx d

)
which

shows that the group M(a + bx) also fixes the double coset through g.
Hence the group Ma,b,m generated by the collection
{M(a + bx)}x≡0(mod m) fixes the double coset.

Proposition 1
(Serre) There exists a subgroup D of finite index in M(Z) such that for
any a,b,m as above, the group D is contained in the group Ma,b,m.

The proof uses the Artin reciprocity law for the field Q(
√

2).
Thus, this group ∆ fixes every element (double coset) in
F (m)\Γm/F (m) and hence acts trivially on the inverse limit K of these
double coset spaces.
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Centrality in the general case

The proof in the general case is similar. Recall: P is a maximal
parabolic Q-subgroup with G ⊃ P = UM and P− = U−M. We then
prove

Proposition 2
For any linear algebraic Q-group M, and a fixed integer N, there exists
a subgroup ∆ ⊂ M(Z) of finite index such that for every a,b ∈ Z
coprime, and every integer m coprime to a, the group generated by the
collection {M(a + bmx)N : x ∈ Z} contains ∆.

The proof is a consequence of Dirichlet’s theorem on the infinitude of
primes in arithmetic progression.
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In the case of a diagonal torus, the result of Serre would follow from the

Lemma 4
Let φ be the Euler totient function, and let a,b be coprime integers.
Then the g.c.d.

g.c.d .{φ(a + bx) : x = 0,1,2, · · · },

is bounded by a constant independent of a,b: this g.c.d. divides 16.

This can be proved by using the Dirichlet theorem on primes in
arithmetic progression. Analogously, one can ask:

Question 1
Let n be a positive integer. Let Pn denote the set of polynomials of
degree n, whose coefficients have content one. Does there exist a
constant C = C(n) such that

g.c.d{φ(P(x)) : x ∈ Z,P ∈ Pn} ≤ C?
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When n = 2, the answer is yes, by a recent result of Sounderarajan.
He also shows that the result is true in general if one assumes a well
known conjecture (Schinzel’s conjecture) that if f ∈ Z[X ] is an
irreducible polynomial with content one, then there are infinitely many
integers x such that f (x) is prime.

THANK YOU
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