Tau Physics: hot topics and future prospects

Swagato Banerjee

UNIVERSITY OF LOUISVILLE

https://www.slac.stanford.edu/~mpeskin/Snowmass2021/BelleIIPhysicsforSnowmass.pdf

Snowmass White Paper: Belle II physics reach and plans for the next decade and beyond

Belle II Collaboration

9	Tau	lepton physics 2	27
	9.1	Lepton flavor universality	27
	9.2	Cabibbo-angle anomaly	28
	9.3	Charged lepton flavor violation	29
	9.4	Further non-SM probes	30
		9.4.1 Anomalous electric and magnetic dipole moments	30
		9.4.2 Probing non-SM physics in G-parity-suppressed second-class currents 3	31

Swagato Banerjee UofL

Tau Decays

Tau physics

Lepton Flavor universality: muon vs electron $\left(\frac{g_{\mu}}{g_{e}}\right)$

$$\left(\frac{g_{\mu}}{g_{e}}\right)^{2} = \frac{\mathscr{B}(\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})}{\mathscr{B}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}$$

 $f(x) = 1 - 8x + 8x^3 - x^4 - 12x \ln x$ (approximating all $m_v = 0$)

Measure:

$$R_{\mu} \equiv \frac{\mathscr{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{\mathscr{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})}$$

Lepton Flavor universality: tau vs electron $\left(\frac{g_{\tau}}{2}\right)$

Tau physics

Lepton Flavor universality: tau vs muon $\left(\frac{g_{\tau}}{g_{\mu}}\right)$

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \mathscr{B}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}) \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{EW}^{\mu}}{f(m_{e}^{2}/m_{\tau}^{2})r_{EW}^{\tau}}$$
$$f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x \ln x \quad \text{(approximating all } m_{v} = 0\text{)}$$

Measure:

$$m_{\tau}, \tau_{\tau}, \mathscr{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})$$

Lepton Flavor universality: tau vs muon $\left(\frac{g_{\tau}}{g_{\mu}}\right)$

$$\frac{g_{\tau} \quad v_{\tau}}{\tau \quad \pi, K} \qquad \left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1+\delta_{\tau/h})m_{\tau}^{2}\tau_{\tau}}\frac{\mathscr{B}(\tau^{-} \rightarrow h^{-}\nu_{\tau})}{\mathscr{B}(h^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu})} \left(\frac{1-m_{\mu}^{2}/m_{h}^{2}}{1-m_{\mu}^{2}/m_{\tau}^{2}}\right)^{2}$$

$$\frac{\pi, K}{\nu_{\mu}} \qquad Measure:$$

$$m_{\tau}, \tau_{\tau}, \mathscr{B}(\tau^{-} \rightarrow h^{-}\nu_{\tau}) \ [h^{-} = \pi^{-}/K^{-}]$$

Lepton Flavor universality

Table 12: Universality coupling ratios correlation coefficients (%)

$$\begin{pmatrix} \frac{g_{\tau}}{g_{e}} \end{pmatrix}_{\tau} & 51 \\ \begin{pmatrix} \frac{g_{\mu}}{g_{e}} \end{pmatrix}_{\tau} & -50 & 49 \\ \begin{pmatrix} \frac{g_{\tau}}{g_{\mu}} \end{pmatrix}_{\pi} & 16 & 18 & 1 \\ \begin{pmatrix} \frac{g_{\tau}}{g_{\mu}} \end{pmatrix}_{\pi} & 12 & 11 & -1 & 7 \\ & \begin{pmatrix} \frac{g_{\tau}}{g_{\mu}} \end{pmatrix}_{\kappa} & \left(\frac{g_{\tau}}{g_{e}} \right)_{\tau} & \left(\frac{g_{\tau}}{g_{e}} \right)_{\tau} & \left(\frac{g_{\mu}}{g_{e}} \right)_{\tau} & \left(\frac{g_{\tau}}{g_{\mu}} \right)_{\pi} \\ \end{pmatrix}_{\pi}$$

Tau physics

τ mass and lifetime

Most precise measurements at $\tau^-\tau^+$ threshold

Most precise measurement by Belle using 3-vs-3 topology

Tau physics

Tau-pair event at Belle II

1-vs-3 topology

Swagato Banerjee UofL

10

Tau Mass at Belle II

The tau mass can be calculated as

Tau physics

• Then, the distribution of the pseudomass is fitted to an empirical edge function, and the position of the cutoff indicates the value of the mass.

Tau Mass at Belle II

arXiv:2008.04665 [hep-ex]

Our result is still dominated by statistical uncertainty, and consistent with previous measurements:

We expect significant reduction in the main systematic uncertainties.

Blue: statistical; Green: systematic

Projection towards high luminosity

Tau physics

Tau Lifetime at Belle II

- The world-leading measurement by Belle¹ uses a **3x3 topology**, with both tau leptons decaying to $3\pi v_{\tau}$.
 - τ_{τ} = 290.17 ± 0.53(stat) ± 0.33(syst) fs

¹ PRL 112, 031801 (2014), arXiv:1310.8503 [hep-ex]

- Strategy at Belle II:
 - 1. Reconstruct vertex for 3-prong τ . Only one 3-prong = higher statistics.
 - 2. Estimate the τ momentum $\overrightarrow{p}_{\tau}$. Hadronic decays in both sides.
 - 3. Find the production vertex. Intersection of $\overrightarrow{p}_{\tau}$ with the plane IP_y.

Tau physics

Tau Lifetime at Belle II

- In MC simulations, the Belle II proper time resolution is ~2x better than Belle.
 - Due to PXD and smaller beam pipe diameter.

Proper decay time resolution:

Fit proper time distribution, subtracting $q\overline{q}$ backgrounds

- Lifetime extraction:
 - $\tau_{\tau} = 287.2 \pm 0.5$ (stat) fs
 - Same statistical uncertainty of Belle. (200 fb⁻¹ vs 711 fb⁻¹)

Swagato Banerjee UofL

Lepton Flavor universality at Belle II

Tau physics

Leptonic branching fractions

$$R_{\mu} \equiv \frac{\mathscr{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{\mathscr{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})}$$

Belle II will significantly improve the precision on inputs to lepton-flavor universality-violating quantities yielding some of the most stringent constraints on non-SM deviations from charged current lepton universality.

The $|V_{us}|$ element of CKM Matrix

Vij: Mixing between Weak and Mass Eigenstates

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$
$$\left| \left| V_{ud} \right|^2 + \left| V_{us} \right|^2 + \left| V_{ub} \right|^2 = 1 \right|$$

• $|V_{ud}| = 0.97373 \pm 0.00031$ (from nuclear β decays) J.C.Hardy & I.S.Towner, PRC 102 (2020) 045501

• $|V_{ub}| = (3.82 \pm 0.24) \times 10^{-3} (\text{from B} \rightarrow X_u \ \ell \ \nu \text{ decays})$ Particle Data Group 2021

 $\Rightarrow |V_{us}|^{CKM} = 0.2277 \pm 0.0013$

Precision measurement of IV_{us}I is a test of CKM unitarity

CKM Unitarity

V-A interaction via W-exchange with quarks have V_{ij}

 $\Delta_{\rm CKM} \sim (v/\Lambda)^2$ sensitive to new physics in large class of models

CKM Unitarity violation: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{CKM}$

Approaches to |V_{us}|

KI3 decays: $K^{0} \stackrel{\overline{s}}{d} \stackrel{\overline{t}}{\longrightarrow} \stackrel{\overline{t}}{d} \pi^{-} \qquad K^{+} \stackrel{\overline{s}}{u} \stackrel{\overline{t}}{\longrightarrow} \stackrel{\overline{t}}{u} \pi^{0} \Rightarrow |V_{us}| f_{+}(0)$ KI2 decays: $K^{+} \stackrel{\overline{s}}{u} \stackrel{\overline{t}}{\longrightarrow} \stackrel{\overline{t}}{t} \qquad \pi^{+} \stackrel{\overline{d}}{u} \stackrel{\overline{t}}{\longrightarrow} \stackrel{\overline{t}}{t} \qquad \Rightarrow \frac{|V_{us}|}{|V_{ud}|} \frac{F_{K}}{F_{\pi}}$ Hyperon decays:

 $\Xi^{0} \overset{s}{u} \xrightarrow{\nu} \overset{\nu}{\iota} \Sigma^{+}$

 $\Rightarrow |V_{us}|f_1(0)$

τ decays:

 $\tau \xrightarrow{\nu} \sqrt{u} = V_{ud}d + V_{us}s$

 $\Rightarrow m_s, |V_{us}|$

Tau physics

er 2013

Hadronic width of the τ lepton

QCD corrections : $R_{\tau} = |V_{ud}|^2 N_C + |V_{us}|^2 N_C + O(\alpha_S)$ Spectral Moments: $R_{\tau}^{kl} = \int_0^1 dz (1-z)^k z^l \frac{dR_{\tau}}{dz}, \ z = \frac{q^2}{m^2}$ Zeroth order moments are simply the τ branching fractions $\left(\left| \begin{array}{c} \text{Finite erg} \\ \mathcal{R}_{\tau}^{kl} = \frac{R_{\tau,non-strange}^{kl}}{\left| V_{ud} \right|^2} - \frac{R_{\tau,strange}^{kl}}{\left| V_{us} \right|^2} \right| \begin{array}{c} \mathcal{R}_{\tau,strange}^{kl} = 0.1544 (37) + 9.3 (3.4) m_s^2 \\ + 0.0034 (28) = 0.238 \pm 0.033 \\ m_s = 93.00 \pm 8.54 \text{ MeV} \quad [\text{PDG2020}] \end{array} \right)$

E.Gamiz, M.Jamin, A.Pich, J.Prades & F. Schwab, arXiv 0709.0282 [hep-ph]

Truncation errors studied with QCD lattice inputs in terms of weights:

$$|V_{us}| = \sqrt{\frac{R_{V+A;us}^{w}(s_0)}{|V_{ud}|^2} - \delta R_{V+A}^{w,OPE}(s_0)}} - \delta R_{V+A}^{w,OPE}(s_0)$$

R. J. Hudspith, R. Lewis, K. Maltman, and J. Zanotti, arXiv:1702.01767 [hep-ph]

|Vus| from inclusive strange decays

[Preliminary]

Table 13: HFLAV 2021 τ branching fractions to strange final states.

Branching fraction	HFLAV 2021 fit (%)
${\cal K}^- u_ au$	$\textbf{0.6957} \pm \textbf{0.0096}$
${\cal K}^-\pi^{\sf 0} u_ au$	$\textbf{0.4322} \pm \textbf{0.0148}$
$\mathcal{K}^- 2 \pi^0 u_ au$ (ex. \mathcal{K}^0)	$\textbf{0.0634} \pm \textbf{0.0219}$
$\mathcal{K}^- 3 \pi^{0} u_{ au}$ (ex. \mathcal{K}^{0} , η)	$\textbf{0.0465} \pm \textbf{0.0213}$
$\pi^-\overline{{m \kappa}}{}^{m 0} u_ au$	$\textbf{0.8375} \pm \textbf{0.0139}$
$\pi^-\overline{{\pmb{\kappa}}}{}^{\pmb{o}}\pi^{\pmb{o}} u_ au$	$\textbf{0.3810} \pm \textbf{0.0129}$
$\pi^-\overline{{m K}}{}^{m 0}2\pi^{m 0} u_ au$ (ex. ${m K}{}^{m 0}$)	$\textbf{0.0234} \pm \textbf{0.0231}$
$\overline{K}^0 h^- h^- h^+ u_ au$	0.0222 ± 0.0202
${\cal K}^-\eta u_ au$	$\textbf{0.0155} \pm \textbf{0.0008}$
${\cal K}^-\pi^{\sf 0}\eta u_ au$	$\textbf{0.0048} \pm \textbf{0.0012}$
$\pi^-\overline{{m \kappa}}{}^{m o}\eta u_ au$	$\textbf{0.0094} \pm \textbf{0.0015}$
${m K}^-\omega u_ au$	$\textbf{0.0410} \pm \textbf{0.0092}$
${\cal K}^- \phi({\cal K}^+ {\cal K}^-) u_ au$	0.0022 ± 0.0008
$\mathcal{K}^- \phi(\mathcal{K}^0_\mathcal{S}\mathcal{K}^0_\mathcal{L}) u_ au$	$\textbf{0.0015} \pm \textbf{0.0006}$
${\cal K}^-\pi^-\pi^+ u_ au$ (ex. ${\cal K}^{0}$, ω)	$\textbf{0.2924} \pm \textbf{0.0068}$
$\mathcal{K}^{-}\pi^{-}\pi^{+}\pi^{0} u_{ au}$ (ex. \mathcal{K}^{0} , ω , η)	$\textbf{0.0387} \pm \textbf{0.0142}$
$K^{-}2\pi^{-}2\pi^{+} u_{ au}$ (ex. K^{0})	$\textbf{0.0001} \pm \textbf{0.0001}$
$K^{-}2\pi^{-}2\pi^{+}\pi^{0} u_{ au}$ (ex. K^{0})	0.0001 ± 0.0001
$X_s^- u_ au$	$\textbf{2.9076} \pm \textbf{0.0478}$

$$|V_{us}|_{\tau s} = \sqrt{R_s} \left[\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}} \right]$$

 $B_s = (2.908 \pm 0.048)\%$

 $B_{\rm VA} = B_{\rm hadrons} - B_s = (61.83 \pm 0.10)\%$

To get R, we normalize by $(B_e)^{univ} = (17.812 \pm 0.022)\%$

The error on B_e is improved using lepton universality & improved measurements of mass (m_{τ}) and lifetime (τ_{τ}).

 $\Rightarrow |V_{us}| = (0.2184 \pm 0.0021)$

Dominant contribution to error on $|V_{us}|$ comes from error on the measured $B_{s.}$ δR_{theory} contributes to $\Delta |V_{us}| = 0.0011$.

$|V_{us}|$ from exclusive τ decays

$$\begin{aligned} \frac{\mathcal{B}(\tau^- \to K^- \nu_\tau)}{\mathcal{B}(\tau^- \to \pi^- \nu_\tau)} &= \frac{f_{K\pm}^2 |V_{us}|^2}{f_{\pi\pm}^2 |V_{ud}|^2} \frac{\left(m_\tau^2 - m_K^2\right)^2}{\left(m_\tau^2 - m_\pi^2\right)^2} \left(1 + \delta R_{\tau K/\tau \pi}\right) \\ \mathcal{B}(\tau^- \to K^- \nu_\tau) &= \frac{G_F^2}{16\pi\hbar} f_{K\pm}^2 |V_{us}|^2 \tau_\tau m_\tau^3 \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2 S_{EW}(1 + \delta R_{\tau K}) \end{aligned}$$

- Independent of convergence of OPE, as electroweak corrections cancel • Radiative corrections S_{EW} =1.02320 ± 0.00030 [Erler 2004]
- Long Distance effects ($R_{\tau K/\tau \pi}$) known [Decker & Finkmeier 1995, Marciano 2004] •All non-perturbative QCD effects encapsulated as ratio of meson decay constants: $f_K/f_{\pi} = 1.1932 \pm 0.0021$, $f_K = 155.7 \pm 0.3$ MeV [FLAG 2019 Lattice Averages]

Summary of |V_{us}| results

- \bullet $|V_{us}|$ from kaon and tau falls short of CKM unitarity value by ${\sim}3\sigma$
- $\bullet \left| V_{us} \right|$ from inclusive tau decays independent of Lattice errors used for kaons
- \bullet New physics affecting 3rd generation only affects $|V_{us}|$ from taus
- Tau decays at Belle II offers unique and complementary insight

Tau physics

Search for lepton number/flavor violation in τ decays

 $\mathcal{B}(\tau^{\pm} \to \mu^{\pm} \gamma) \text{[Lee-Shrock, Phys. Rev. D 16, 1444 (1977)]}$ = $\frac{3\alpha}{128\pi} \left(\frac{\Delta m_{23}^2}{M_W^2}\right)^2 \sin^2 2\theta_{\text{mix}} \mathcal{B}(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau})$ With $\Delta \sim 10^{-3} \text{ eV}^2$, $M_W \sim \mathcal{O}(10^{11}) \text{ eV}$ $\approx \mathcal{O}(10^{-54}) \ (\theta_{\text{mix}} : \text{max})$

many orders below experimental sensitivity!

LNV/LFV is NOT forbidden by any continuous symmetry ⇒ most New Physics (NP) models naturally include such processes

Any observation of LNV/LFV ⇒ unambiguous signature of NP

- Mass dependent couplings enhance tau LFV w.r.t. lighter leptons
- Some models predict LFV up to existing experimental bounds
- eg. SUSY models: non-diagonal slepton mass matrix \Rightarrow LFV
- Solution Normal (Inverted) hierarchy for slepton $\Rightarrow \tau \rightarrow \mu \gamma$ ($\tau \rightarrow e \gamma$)

New Physics expectations

Neutrinoless 2 and 3 body τ decays have different sensitivity

 $\Rightarrow \mathcal{B}(\tau \to \mu \eta) : \mathcal{B}(\tau \to \mu \gamma) : \mathcal{B}(\tau \to \mu \mu \mu) = 8.4 : 1.5 : 1$

Tau physics

New Physics expectations

Tau physics

27

- $e^-e^+ \rightarrow \tau^-\tau^+$
- Known initial conditions (beam energy constraint)
- Clean environment (less backgrounds)

28

Signal characteristics

Tau physics

29

Upper limit estimation

$$B_{\rm UL}^{90} = N_{\rm UL}^{90} / (N_\tau \times \varepsilon)$$

<u>ε:</u> high statistics signal MC simulated for different Data-taking periods

ε = T	$\epsilon = \text{Trigger}$. Reco . Topology . PID . Cuts . Signal–Box							
	90%	70%	70%	50%	50%	50%		
Cumulative:								
	90%	63%	44%	22%	11%	~5%		

	2σ signal ellipse	6		$\times 10^{-8}$	Mode	ε (%)	N _{BG}	$\sigma_{ m syst}$ (%)) $N_{\rm obs}$ \mathcal{B} (×10 ⁻⁸)	
Decay modes	s obs exp	e (%)	obs	exp	$\tau^- \to e^- e^+ e^-$	6.0	0.21 ± 0.15	9.8	0 < 2.7	
${\tau^{\pm} \rightarrow e^{\pm} \gamma}$ $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$	$\begin{array}{ccc} 0 & 1.6 \pm 0.4 \\ 2 & 3.6 \pm 0.7 \end{array}$	3.9 ± 0.3 6.1 ± 0.5	3.3	9.8 8.2	$\tau \rightarrow \mu^{-} \mu^{+} \mu^{-}$ $\tau^{-} \rightarrow e^{-} \mu^{+} \mu^{-}$ $\tau^{-} \rightarrow \mu^{-} e^{+} e^{-}$	6.1 9.3	0.13 ± 0.00 0.10 ± 0.04 0.04 ± 0.04	9.5 7.8	0 < 2.1 0 < 2.7 0 < 1.8	
	2 5.6 - 6.7	0.1 = 0.5		0.2	$\tau^- ightarrow e^+ \mu^- \mu^-$ $\tau^- ightarrow \mu^+ e^- e^-$	10.1 11.5	$\begin{array}{c} 0.02 \pm 0.02 \\ 0.01 \pm 0.01 \end{array}$	7.6 7.7	0 < 1.7 0 < 1.5	/
E BABAR	Phys. Rev. Lett. 104 (2010) 02180	$_2$ $N_{\tau} =$	963 M	[BELLE	F B68	Phys. Lett. 7 (2010) 13	39]	$N_{\tau} = 1438 \text{ M}$	
S. Baner University of Victoria	Jee			3	0		S	wagat	o Banerjee Uo	FL

Current status of LFV limits

Tau physics

Current and future prospects

Tau physics

Synergy with other experiments

Model-independent probes of new physics at scale (Λ) encoded as Wilson coefficients (C_n) via EFT approach

Tau to electron transitions

Tau to muon transitions

e-Print: 2203.14919 [hep-ph]

Tau physics

Electric dipole moment of τ

• Charge asymmetry along spin direction

• EDM $\neq 0 \Rightarrow$ P, T violation. Search for CP violation in $\tau^- \tau^+ \gamma$ vertex.

- SM prediction $\simeq \mathcal{O}(10^{-37}e \cdot cm)$ far below experimental sensitivity
- New Physics contributions in loops can enhance EDM $\simeq O(10^{-19}e \cdot cm)$

W. Bernreuther, A. Brandenburg, and P. Overmann, Phys. Lett. B 391, 413 (1997).

Huang, W. Lu, and Z. Tao, Phys. Rev. D 55, 1643 (1997).

• EDM $\neq 0 \Rightarrow$ unambiguous signature of New Physics

Electric dipole moment of $\boldsymbol{\tau}$

Future Projections:

- Belle; 29.5fb⁻¹ data [PLB 551(2003)16] $-2.2 < Re(d_{\tau}) < 4.5 \ (10^{-17} e \text{ cm})$ $-2.5 < Im(d_{\tau}) < 0.8 \ (10^{-17} e \text{ cm})$

Belle; 833 fb⁻¹ data (arXiv:2108.11543 [hep-ex])

- 95% confidence intervals $-1.85 \times 10^{-17} < \text{Re}(d_{\tau}) < 0.61 \times 10^{-17} \text{ ecm},$ $-1.03 \times 10^{-17} < \text{Im}(d_{\tau}) < 0.23 \times 10^{-17} \text{ ecm}.$
- Consistent with zero EDM
- Systematic errors similar to statistical
- Dominant systematics: Data-MC mismatch in momentum/angular distributions
- Preliminary studies at Belle II show much better control of data-MC mismatch
- After improved control of systematics, extrapolation based on statistical errors only
- Probe $\simeq \mathcal{O}(10^{-19}e \cdot cm)$ with 50 ab⁻¹ data at Belle II.
- Further improvement expected from proposed upgrade of polarized e- beams.

Magnetic dipole moment of $\boldsymbol{\tau}$

- Tensions are seen in electron and muon.
- Current bound in tau ~ 10⁻² [DELPHI, Eur. Phys. J. C 35, 159 (2004)].
- Belle II will explore $(g-2)_{\tau}$. Polarized beam can enhance sensitivity.

EFT Extension for τ -Pair Production

Tau physics

Magnetic dipole moment of τ

Second class currents

Hadronic current in τ decays: $J_h^{\ \mu} = \langle 0|V^{\mu} - A^{\mu}|u\bar{d}\rangle$ Charge Conjugation: $\langle 0|V^{\mu}|u\bar{d}\rangle \xrightarrow{C} -\langle 0|V^{\mu}|u\bar{d}\rangle \ \langle 0|A^{\mu}|u\bar{d}\rangle \xrightarrow{C} \langle 0|A^{\mu}|u\bar{d}\rangle$ Isospin Rotation: $R(u\bar{d}): e^{i\pi I_2}|\pi^+\rangle = (-1)^I|\pi^-\rangle = -|\pi^-\rangle$

G-Parity combines C & R: $\langle 0|V^{\mu}|u\bar{d}\rangle \xrightarrow{G} \langle 0|V^{\mu}|u\bar{d}\rangle \xrightarrow{G} -\langle 0|A^{\mu}|u\bar{d}\rangle$

Classification of weak currents according to their G parity

Current Class	Vector	Axial Vector
First	G = +1	G = -1
Second	G = -1	G = +1

S. Weinberg, Phys. Rev. 112, 1375 (1958).

C. Leroy and J. Pestieau, Physics Letters B 72, 398 (1978).

Isospin violating Second Class Current (SCC) in $\tau^- \rightarrow \pi^- \eta \nu_{\tau}$ decays:

• expected at the level of $(m_u - m_d) \sim 10^{-5}$

enhanced by new physics contributions

Scalar contributions from extended Higgs/Leptoquark sector

A precision measurement, accompanied by improved theoretical knowledge of the scalar form factor, will set stringent bounds on charged Higgs exchange competitive to those obtained from $B^- \rightarrow \tau^- v_{\tau}$ data, even if no excess is seen over second class current predictions.

E. A. Garc'es, M. H. Villanueva, G. L. Castro, and P. Roig, J. High Energy Phys. 12, 027 (2017).

Tau physics

Lots of interesting physics with tau's

