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Diffusion:
The laws of diffusion were first investigated by Graham. Later by Loschmidt, and that 
of liquids by Fick and Voit with great accuracy 

The laws of diffusion were first formulated by Fick 
and he proposed following two laws of diffusion

The above two equations combine to give the diffusion equation
Adolf Fick

𝐽 = −𝐷∇𝜌 , 𝜕𝜌
𝜕𝑡

= −∇. 𝐽

!"
!#
= ∇. 𝐷∇𝜌



They used kinetic theory and demonstrated, theoretically, 
that the phenomenon of diffusion is the result of Brownian 
motion. 

Brownian Motion

Einstein (1905) Smoluchowski (1906)
Einstein’s Theory:
vThe motion of each particle is independent of the others

vThe movements of one and the same particle after different intervals of time must be 
considered as mutually independent processes

Let dn be the number of particles which experience a displacement between Δ and Δ 
+ dΔ in time interval τ

where



The value of the concentration ρ(x, t) after time has elapsed can be computed from the 
values of ρ(x +Δ , t) for all possible values of Δ, weighted by ɸ(Δ)

Expanding ρ in Taylor’s series for small τ and Δ, 
the equation

Neglecting terms of higher order, the above equation reduces to

where

And the solution of the 
above equation is 

It follows that the mean and variance value

Or



Langevin’s Approach (1908):
The dynamics of a free Brownian particle is governed by the frictional 
force −6πaηv and by a fluctuational force X, that results from the 
random collisions of the Brownian particle with the molecules of the 
surrounding fluid, after the frictional force is subtracted.

If additional fields of force act on the diffusing particles

where

The above equations are stochastic differential equations, because those are driven by 
a random force F(t)

The main mathematical difference between the two approaches is that Einstein 
assumes that the displacements Δ are independent, whereas Langevin assumes that 
the random force F(t) and the displacement x are independent.

P. Langevin

𝑚𝑥̈ = −6𝜋𝑎𝜂𝑥̇+F(t)

𝑚𝑥̈ + Γ𝑥̇ − F$%#(t)= F(t) 𝐹$%# = −∇𝑈(𝑥)



Denoting v = x˙ and multiplying the Langevin equation by x

Averaging under the assumption that the fluctuational force and the displacement
of the particle x are independent, we obtain

since

Where C is a constant

It follows that Einstein’s relation!

In 1908, Perrin computed the Avogadro number from observations 
of the Brownian movement, obtaining N= 6.85 x 1023 mol-1

If times well in excess of the frictional relaxation time, m/6πaη

Perrin

∆𝑥 ! =
𝑅𝑇𝑡

3𝜋𝜂𝑎𝑁
Where N=R/k



Thus, Langevin’s equation of motion, according to Newton's second law of motion, is for 
a particle of mass m

(i) F (t) is independent of x.
(ii) F(t) varies extremely rapidly compared to the variation of x(t).

We note that the noise force F(t) in the Langevin equation may be related to the drag 
coefficient 𝜻 as follows.

where𝑚
𝑑!𝑥(𝑡)
𝑑𝑡!

= −𝜁
𝑑𝑥 𝑡
𝑑𝑡

+ 𝐹(𝑡) 𝜁𝑥̇ = 6𝜋𝜂𝑎𝑥̇

𝐹(𝑡) = 0 𝐹 𝑡 𝐹(𝑡′) = 2𝜁𝑘𝑇𝛿(𝑡 − 𝑡′)
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Criticism of Langevin’s Equation:
Doob show how that equation should properly be interpreted as an 
integral equation and not as a differential equation

We write the Langevin equation

The distribution of [B (s + t) - B (t)] is Gaussian with mean zero, variance c2|t| and if 
t1<....<tn,  B(t2)-B(t1), ..., B(tn)- B(tn-1) are mutually independent random variables and B(t) 
follows the definition of Weiner process
Let us integrate both sides of the above equation after multiplying a continuous function f(t)

Doob

𝑑𝑢 𝑡 = −𝛽𝑢 𝑡 𝑑𝑡 + 𝑑𝐵(𝑡)

<
%&'

(
𝑓 𝑡 𝑑𝑢 𝑡 = −𝛽<

'

(
𝑓 𝑡 𝑢 𝑡 𝑑𝑡 + <

'

(
𝑓 𝑡 𝑑𝐵(𝑡)

Setting and since integration of by parts is permissible, we obtain𝑓 𝑡 = 𝑒)%

𝑢 𝑡 = 𝑢 0 𝑒$)% +<
*&"

%
𝑒$) %$* 𝑑𝐵(𝑠)



Wiener Process:
Let X ( t ) be a random variable and let X(0) = 0. We shall assume the following. 

2. The increments are independent and they follow Markov process 

3. We have

4. Since we have assumed that X( t ) - X( s) is the sum of a large number of 
independent random variables, each having an arbitrary distribution, it follows from the 
central limit theorem

1. The displacement X ( t ) - X ( s ) of the Brownian 
particle over (s, t ) is the sum

It follows that 

and

Wiener

E
+&,

-

𝑋 𝑡+ − 𝑋 𝑡+$, .

𝑋 𝑡, − 𝑋 𝑠 , 𝑋 𝑡! − 𝑋 𝑡, ,…, 𝑋 𝑡- − 𝑋 𝑡-$,

𝑋 𝑡, − 𝑋 𝑠 = 𝑋 𝑡+ − 𝑋 𝑡+$, = 0

𝜙(𝑢). % $/(*) = 𝑒{$
,
!3

! . % $/(*) ! }

𝑋 𝑡 − 𝑥(𝑠) ! = 𝑐!|𝑡 − 𝑠| 𝑋 𝑠 𝑋(𝑡) = 𝑐!min(𝑠, 𝑡)



OU theory of Brownian Motion:

The relation obtained by Einstein and Langevin has fundamental 
flaw that it is not root mean square differentiable at t = 0

(ignoring the inertia of the particles)

In 1930, Uhlenbeck and Ornstein by 
including the inertia of the particles

Here, the root mean square differentiable at t = 0

We write the Langevin equation in phase space (x,v)

Uhlenbeck

∆𝑥 ! =
2𝑘𝑇
𝜁
|𝑡|

∆𝑥 ! =
2𝑘𝑇
𝜁!

𝜁
𝑚

𝑡 − 1 + 𝑒$5|%|/8

∆𝑥 ! =
𝑘𝑇
𝑚
𝑡!

𝑥̇ 𝑡 = 𝑣(𝑡)

𝑚𝑣̇ 𝑡 = −𝜁𝑣 𝑡 + 𝜆(𝑡)

Every process, which is MARKOVian, stationary and GAUSSian is (by DOBB’s
theorem) the ORNSTEIN-UHLENBECK process.



It follows that

Therefore, we obtain

The white noise λ(t) follows the definition

𝜆(𝑡,)𝜆(𝑡!) = 2𝐷𝛿 𝑡, − 𝑡! , 𝐷 = 𝜁𝑘𝑇

𝑣 𝑡 = 𝑥̇ 𝑡 = 𝑣"𝑒$)% +
1
𝑚
<
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%
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𝛽
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1
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<
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𝑣"
𝛽

1 − 𝑒$)% where 𝛽 = 𝜁/𝑚

∆𝑥 ! =
𝑣"
𝛽

1 − 𝑒$)%
!
+

2𝐷𝑡
𝑚𝛽 ! +

𝐷
𝑚!𝛽:

[−3 + 4𝑒$)% − 𝑒$!)%]and



The inertia induced shift as obtained by 2-D stochastic 
motion in phase space, which is equivalent to a colored
noise driven dynamics in configuration space 

The velocity autocorrelation is exponential

If we have a Maxwell-Boltzmann distribution of initial velocities v0

inertia is included, however,         I  s differentiable and the velocity exists.



Formal Description of Stochastic Process:

Let us consider B is a Brownian Motion (BM) which is stochastic process (SP) defined 
in the following way

1. For s<t, the increment Bt-Bs~N(0, t-s)

2. Bt-Bs is independent of {Bu, 0≤u ≤s}

3. Bt is continuous in ’t’ (almost surely pathwise)

Nondifferentiabality of Bt

lim
!→#

𝐵$%! − 𝐵$
ℎ 𝑁(0,

ℎ
ℎ&
) 𝑁(0,

1
ℎ)

Distance travel from one point to another point is ∞

Definition of Bt

Bt is the value of B at time t



Stochastic Integrals:
Consider the following integral E

#

'

𝑥𝑑𝑥 =
𝑋&

2

But for the stochastic integral E
#

(

𝐵$𝑑𝐵$ ≠
𝐵(&

2
L
)

𝐵?(𝐵$!"# − 𝐵$!)

𝐵$!"# 𝐵$!
𝐵$!%$!"#

&
Each of them gives different answer!

Hard to calculate this integral, take the expectation,  

𝐸 ∑)𝐵$!(𝐵$!"# − 𝐵$!) = ∑) 𝐸 𝐵$! 𝐵$!"# − 𝐵$!

= ∑) 𝐸 𝐸 𝐵$! 𝐵$!"# − 𝐵$! |𝐹$!

Where 𝐹$!= 𝐵$: 0 ≤ 𝑡 ≤ 𝑡) : All the information up to time 𝑡)

Linearity of 𝐸

Tower property of 𝐸: 𝐸 𝐸 𝑌|𝑋 = 𝐸 𝑌

= ∑) 𝐸 𝐵$!𝐸 𝐵$!"# − 𝐵$! |𝐹$! Since 𝐸 𝑋𝑌|𝑋 = 𝑋𝐸 𝑌|𝑋 and 𝐵$! is 𝐹$! measurable   

As 𝐵$!"# − 𝐵$! is independent of 𝐹$! (second property of BM) 

𝐸 L
)

𝐵$!(𝐵$!"# − 𝐵$!)

= ∑) 𝐸 𝐵$!𝐸 𝐵$!"# − 𝐵$! = 0

Therefore, it appears that ∫"
T𝐵%𝑑𝐵% ≈ has zero mean L

)

𝐵$!(𝐵$!"# − 𝐵$!)



Let us guess the expectation of integral E(∫"
T𝐵%𝑑𝐵%) ≈ E U#!

! = T
! ≠ 0 since 𝐵T~𝑁(0, 𝑇)

From the above argument it is clear that ∫"
T𝐵%𝑑𝐵% ≠

U#!

!

The actual value of the ∫"
T𝐵%𝑑𝐵% =

U#!

! − T
! (Ito integral)

∫#
(𝐵$𝑑𝐵$ ≈L

)

𝐵$!%$!"#
&

(𝐵$!"# − 𝐵$!) =
𝐵(&

2
(Stratonovich integral)

∫#
(𝐵$𝑑𝐵$ ≈ L

)

𝐵$!"#(𝐵$!"# − 𝐵$!) =
𝐵(&

2 +
𝑇
2 (Backward Ito integral)

Ito integral:
Consider the following Taylor Expansion of a function f(x)
d𝑓 𝑥 = 𝑓+ 𝑥 𝑑𝑥 + ,$$ -

&!
(𝑑𝑥)&+ + ,$$$ -

/!
(𝑑𝑥)/+⋯

If f(x)=x2 and x=Bt then d𝑓 Bt = 𝑓+ Bt 𝑑Bt +
,$$ Bt
&!

(𝑑Bt)&+ +
,$$$ Bt

/!
(𝑑Bt)/+⋯

And since (𝑑Bt)&≈ 𝑑𝑡 for BM; Substitute it and take the integral

𝑓 𝐵$ − 𝑓 𝐵# = ∫#
( 𝑓+ Bt 𝑑𝐵$ +

0
& ∫#

( 𝑓++ Bt 𝑑𝑡

Upon substitution of the f(x) 𝐵(& − 𝐵#& = ∫#
( 2𝐵$𝑑𝐵$ +

0
& ∫#

( 2𝑑𝑡 E
#

(

𝐵$𝑑𝐵$ =
𝐵(&

2 −
𝑇
2



More on Ito integral:
In general a stochastic integral is written as E

#

(

𝑋$𝑑𝐵$
Where Xt is a stochastic process, 
which is Ft measurable

E
#

(

𝑋$&𝑑𝐵$ <∝ (Square integrable)Then

𝐸E
#

(

𝑋$&𝑑𝐵$ <∝If then 𝐸E
#

(

𝑋$𝑑𝐵$ = 0 𝐸 E
#

(

𝑋$𝑑𝐵$

&

= 𝐸E
#

(

𝑋$&𝑑𝐵$and

If Xt is deterministic then E
#

(

𝑋$𝑑𝐵$ ~𝑁 0,E
#

(

𝑋$&𝑑𝐵$

Martingales: 
A process M is called Martingale if

The BM is a Martingale 𝐸 𝐵%|𝐹* = 𝐵* for s ≤t

𝐸<
"

T

𝑋%!𝑑𝐵% <∝If then 𝑀% = ∫"
%𝑋*𝑑𝐵* is a Martingale

1. 𝐸 𝑀 <∝
2. 𝐸 𝑀%|𝐹* = 𝑀* for s ≤t



Solution of SDE Using Ito formula:

ODE: 𝑑𝑋$ = 𝜎𝑋$𝑑𝑡 𝑋$ = 𝑋#𝑒1$𝑋$ − 𝑋# = E
#

$

𝜎𝑋2𝑑𝑠
𝑑𝑋$
𝑑𝑡 = 𝜎𝑋$

𝑋% − 𝑋" = <
"

%

𝜇𝑋*𝑑𝑠 + <
"

%

𝜎𝑋*𝑑𝐵*

SDE: 𝑑𝑋$ = 𝜇𝑋$𝑑𝑡 + 𝜎𝑋$𝑑𝐵$ ≠
3'%
3$
= 𝜇𝑋$ + 𝜎𝑋$

34%
3$ Not differentiable

drift diffusion

Hard to solve

Solution Using Ito Formula: d𝑓 Xt = 𝑓9 Xt 𝑑Xt +
c"" Xt
!!

(𝑑𝑋%)!

e.$
.$
= 𝑑 log𝑋% = 𝜇𝑑𝑡 + 𝜎𝑑𝐵%Rearrange the SDE Thus 𝑓 Xt = log 𝑋%; 𝑓9 Xt = ,

.$
; 𝑓99 Xt =- ,

.$!

𝑑 log𝑋% = 𝜇𝑑𝑡 + 𝜎𝑑𝐵% −
,
!
𝜇𝑑𝑡 + 𝜎𝑑𝐵% !

= 𝜇𝑑𝑡 + 𝜎𝑑𝐵% −
,
!
𝜎!𝑑𝑡 Since 𝑑𝑡! → 0; 𝑑𝑡𝑑𝐵% → 0; 𝑑𝐵%

! → 𝑑𝑡

log𝑋% − log𝑋" = ∫"
% 𝜇 − ,

!𝜎
! 𝑑𝑠+ ∫"

% 𝜎𝑑𝐵* = 𝜇 − ,
!𝜎

! t+ 𝜎𝑑𝐵%

𝑋% = 𝑋"𝑒
$ f$,!g

! higeU$



Fokker Planck Equation:
Time evolution of the probability distribution function of the Brownian Particle

𝑑𝐚
𝑑𝑡

= 𝐯 𝐚 + 𝐅(𝐭)

where v(a) is some given function of the variables a. Our aim is to obtain a noise average 
probability distribution function, f(a, t) of the values of a at time t. To do that one can recognize, 
f(a, t) is conserved i.e.

𝐅 𝐭 𝐅(𝐭′) = 𝟐𝐁𝛅(𝐭 − 𝐭′)𝐅 𝐭 = 𝟎

<𝑑𝐚𝑓(𝐚, 𝑡) = 1

Immediately, it suggest that the time derivative of the density, f(a, t)  is balanced by the 
divergence of a flux, a velocity times that density

𝜕𝑓(a, t)
𝜕𝑡

= −
𝜕
𝜕𝐚

w
𝜕𝐚
𝜕𝑎
𝑓(a, t) = −

𝜕
𝜕𝐚

w 𝐯 𝐚 f(a, t)+ 𝐅(𝐭)f(a, t)

𝜕 𝑓(a, t)
𝜕𝑡

= −
𝜕
𝜕𝐚

w 𝐯 𝐚 f(a, t) +
𝜕
𝜕𝐚

w 𝑩 w
𝜕
𝜕𝐚

f(a, t)

Where a noise term, 𝐅(𝐭) is there. Upon taking the average over noise, the Fokker-
Planck equation is obtained



Illustrations:
Start with a Langevin equation, where the relaxation time, τ = m/𝜻 is very much shorter than 
any natural time scale associated with motion in the potential U(x). The inertial term, 
𝑚 e!/(%)

e%! , can be ignored 𝑑𝑥 𝑡
𝑑𝑡

= −
1
𝜁
𝑈(𝑥)9 +

1
𝜁
𝐹(𝑡)

It leads to a F-P equation which is commonly known as Smoluchowski equation,
jc
j% =

,
5
j
j/ 𝑈(𝑥)

9𝑓 + +T
5

j!

j/! 𝑓

= D j
j/ 𝑒

$k(/)/+T j
j/ 𝑒

k(/)/+T𝑓

Where D=kT/ 𝜻

It describes the diffusion over a barrier. Moreover, one can make it self-adjoint 
equation  by a trick. Upon substitution              ,   leads to a Schrodinger like equation𝑓 = 𝑓lm𝑔

−
𝜕𝑔
𝜕𝑡

= 𝐷 −
𝜕!

𝜕𝑥!
+ 𝑈lcc(𝑥) 𝑔 𝑈lcc 𝑥 =

1
2𝑘𝑇

𝜕𝑈
𝜕𝑥

!
−

1
2𝑘𝑇

𝜕!𝑈
𝜕𝑥!Where



First Passage Time:
a0

V ∂V
ü Evolution (a(t)) of a set of variables a is governed by a 

Langevin equation

ü The initial point a0 starts out somewhere in a "volume" 
V in this space, bounded by a "surface" ∂V

ü The first passage time is the first time that the point 
leaves V 

The motion of a cloud of initial points satisfies the Fokker-Planck equation. An 
absorbing boundary condition is imposed on ∂V that  removes all paths that have 
crossed the boundary of V before time t and focus on only those points that have 
not left V by time t. Then the distribution of points that have not left by time t is 
P(a,t), and satisfies

𝜕𝑃
𝜕𝑡

= −∇' w 𝐯 𝐚 𝑃 + ∇' w 𝑩 w ∇'𝑃 = 𝐷𝑃

𝑃 𝐚, 0 = 𝛿(𝐚 − 𝐚𝟎) 𝑃 𝐚, 𝑡 = 0 On ∂V

𝑃 𝐚, 𝑡 = 𝑒%o𝛿(𝐚 − 𝐚𝟎)Thus



𝑆 𝑡, 𝐚𝟎 = <
p

𝑑𝐚𝑃 𝐚, 𝑡

The integral of P over all a in the volume V is the number of all starting points that are 
still in V at time t; it depends on the initial location a0.

The difference S(t) - S(t + dt) is the number of initial points that have not left before time 
t but have left during the time interval dt following t and therefore determines the 
distribution of first passage times ρ(t, a0),

The mean first passage time is the first moment of t,

𝑆 𝑡, 𝐚𝟎 − 𝑆 𝑡 + 𝑑𝑡, 𝐚𝟎 = 𝜌 𝑡, 𝐚𝟎 𝑑𝑡 𝜌 𝑡, 𝐚𝟎 =- eq %,𝐚𝟎e%Or

𝜏 𝐚𝟎 = <
𝟎

𝒕
𝑑𝜏𝜏 𝜌 𝜏, 𝐚𝟎 = <

𝟎

𝒕
𝜏 𝑑𝑆 𝜏, 𝐚𝟎 = <

𝟎

𝒕→#
𝑑𝜏 𝑆 𝜏, 𝐚𝟎 = <

𝟎

#
𝑑𝑡 𝑆 𝑡, 𝐚𝟎



There is more direct way to calculate  

𝜏 𝐚𝟎 = <
𝟎

#
𝑑𝑡 𝑆 𝑡, 𝐚𝟎 = <

𝟎

#
𝑑𝑡 <

p

𝑑𝐚𝑃 𝐚, 𝑡 = <
𝟎

#
𝑑𝑡 <

p

𝑑𝐚 𝑒%o𝛿 𝐚 − 𝐚𝟎

= <
𝟎

#
𝑑𝑡 <

p

𝑑𝐚 𝛿 𝐚 − 𝐚𝟎 𝑒%o&1

Now the integration over a and drop the subscript 0

𝜏 𝐚 = <
𝟎

#
𝑑𝑡 𝑒%o&1

𝐷u𝜏 𝐚 = <
𝟎

#
𝑑𝑡 𝐷u𝑒%o&1 = <

𝟎

#
𝑑𝑡

𝑑
𝑑𝑡
𝑒%o&1 = −1

The lower limit survives and the upper limit vanishes due to absorbing boundary 
condition. The MFPT problem is determined by solving inhomogeneous adjoint equation

𝐷u𝜏 𝐚 = −1 𝜏 𝐚 = 0 on ∂V



Application to the Smoluchowski equation:

𝜕𝑓
𝜕𝑡

= D
𝜕
𝜕𝑥

𝑒$k(/)/+T
𝜕
𝜕𝑥

𝑒k(/)/+T𝑓The Smoluchowski equation is written as

D𝑒
k /
+T

𝜕
𝜕𝑥

𝑒$
k /
+T

𝜕
𝜕𝑥
𝜏 𝑥 = −1

The corresponding adjoint equation is 

v The coordinate x is the starting position of the Brownian particle. 
v The absorbing barrier is located at b, and we assume that there is a reflecting barrier at a, 

with a < x < b. 

𝑒$
k /
+T

𝜕
𝜕𝑥
𝜏 𝑥 = −

1
𝐷
<
'

/
𝑒
$k v
+T ev

𝜏 𝑥 =
1
𝐷
<
/

(
𝑑𝑦 𝑒

k w
+T <

'

w
𝑑𝑧𝑒

$k v
+T

Integrate once over x

integrate once more over x, using 
the boundary conditions at the two 
limits a and b



Kramer’s Problem:
Determine the rate at which the Brownian particle escapes from a potential well

Rearrangement Dissociation

Assume the motion is purely diffusive, allows to use Smoluchowski equation, and the 
barrier is sufficiently high: The rate of arrival at the barrier is estimated by taking the 
reciprocal of the first passage time to the barrier.
Place an absorbing barrier at xmax, U(xmax)=Umax and the reflecting barrier at x = a,  
provided by a repelling potential at x→∞ (initial position)  

𝜏 𝑥 =
1
𝐷
<
/

/'()

𝑑𝑦 𝑒k(w)/+T<
$#

w
𝑑𝑧 𝑒$k v /+T

At low temperature (small kT), the integral over z is dominated by the potential near 
the minimum



𝑈 𝑧 = 𝑈8x- +
1
2
𝜔8x-! (𝑧 − 𝑥8x-)!+wwww

!
!"

#
𝑑𝑧𝑒𝑥𝑝 −

𝑈 𝑧
𝑘𝑇

≅ !
!"

"
𝑑𝑧𝑒𝑥𝑝 −

𝑈$%&
𝑘𝑇

𝑒𝑥𝑝 −
𝜔$%&'

2𝑘𝑇
𝑧 − 𝑥$%& ' = 𝑒𝑥𝑝 −

𝑈$%&
𝑘𝑇

2𝜋𝑘𝑇
𝜔$%&'

𝑈 𝑦 = 𝑈8'/ −
1
2
𝜔8'/! 𝑦 − 𝑥8'/ ! +****

The integral over y is practically independent of x as long as x is near the potential 
minimum, so the lower limit can be replaced by minus infinity,

Then the upper limit of integration can be replaced by infinity, and the integral is

The integral over y is dominated by the potential near the barrier and has the quadratic expansion,

+
/

/'()

𝑑𝑦𝑒𝑥𝑝 −
𝑈 𝑦
𝑘𝑇

≅ +
$#

/'()

𝑑𝑦𝑒𝑥𝑝
𝑈8'/
𝑘𝑇

𝑒𝑥𝑝 −
𝜔8'/!

2𝑘𝑇
𝑦 − 𝑥8'/ !

=
1
2
𝑒𝑥𝑝 −

𝑈8'/
𝑘𝑇

2𝜋𝑘𝑇
𝜔8'/!

1/2 appears because only half 
of the Gaussian is included



The mean first passage time (MFPT) (in the high barrier limit) is

𝜏 𝑥 ≅ ,
!o

!y+T
z'()z'*+

𝑒𝑥𝑝 k'()$k'*+
+T Where D=kT/ 𝜻

The rate of arrival is 1/τ , and the rate of crossing, k𝜅, is half of that, so that

𝑘{ ≅
z'()z'*+

!y5
𝑒𝑥𝑝 − k'()$k'*+

+T

The escape rate is correct only in the high friction limit of Brownian motion

i) The rate of activation has a typical Arhenius form Ae−E0/kBT

ii) The rate is thus inversely proportional to the friction coefficient of the 
medium.



Master Equation:
Master equation is a typical probability balance equation
Recall the evolution of probability of a Brownian particle, given by Einstein

This equation relates the probability distribution function of a Brownian particle at x and time t+τ
, to that for the particle at a previous position x+Δ at an earlier time t

probability of a jump 
of magnitude 

Let y= x+Δ; it follows dy=dΔ. We also can write ɸ(Δ)=ɸ(y→x) and P(x,t)=ρ(x,t) 

𝑃 𝑥, 𝑡 + 𝜏 = +𝜙 𝑦 → 𝑥 𝑃(𝑦, 𝑡) 𝑑𝑦

Upon expansion𝑃 𝑥, 𝑡 + 𝜏
𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= +𝜙 𝑦 → 𝑥 𝑃(𝑦, 𝑡) 𝑑𝑦
𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= +𝜙 𝑦 → 𝑥 𝑃(𝑦, 𝑡) 𝑑𝑦 − 𝑃 𝑥, 𝑡



The above equation is the continuous version of Master equation, and W is the probability 
jump per unit time. Immediately, one can immediately write its discrete version   

𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= +𝑊 𝑦 → 𝑥 𝑃(𝑦, 𝑡) 𝑑𝑦 − +𝑊 𝑥 → 𝑦 𝑃(𝑥, 𝑡) 𝑑𝑦

and replace ɸ/ τ by W+ ɸ(x→y)𝑑𝑦 = + ɸ(−Δ)dΔ = 1Consider the fact

e|'(%)
e% = ∑-𝑊-8𝑃-(𝑡) − ∑-𝑊8-𝑃8(𝑡)

Gain of m state due to transition 
from the other n states  

Loss due to transition from 
the m to all other n states  

At equilibrium 𝑑𝑃8(𝑡)
𝑑𝑡

= 0 implies F
-

𝑊-8𝑃-
lm (𝑡) =F

-

𝑊8-𝑃8
lm (𝑡)

For each pair of n and m, separately 
the transitions must balance 𝑊-8𝑃-

lm = 𝑊8-𝑃8
lm Principle of detailed balance!



1-D Random Walk:

nr -nl =i: current state of the walker

nr: Total no of leftward jump
nr: Total no of rightward jump

𝑑𝑃-,--(𝑡)
𝑑𝑡

= −(𝑘}+𝑘~)𝑃-,--(𝑡) + 𝑘}𝑃-,--./(𝑡) + 𝑘~𝑃-,$,--(𝑡)

The master equation for this walk

All the sites are equivalent to each other

This is an infinite set of equations because the number of possible jumps are unlimited
Introducing two auxiliary variables sr and sl and associated generating function, G and 
substitute it into above equation  

𝐺 𝑠~, 𝑠} , 𝑡 = F
*,,*-&"

#

𝑃-,--(𝑡) 𝑠~
-,𝑠}

--

𝑑𝐺
𝑑𝑡

= −(𝑘}+𝑘~) + 𝑘}𝑠} + 𝑘~𝑠~ 𝐺 𝐺 = 𝑒 $+, ,$*, % 𝑒 $+- ,$*- %And its solution

The solution reflects the fact that the joint probability distribution for the left and right jumps 
reflects two statistically independent Poisson distributions

⇌⇌ ⇌ ⇌
kr
kl

kr kr kr
kl kl kl

kr
kl

⇌
i=0 i=1 i=2

nr =1, nl=0nr =2, nl=0

nr =2, nl=1

⋅⋅⋅ ⋅⋅⋅



𝐺 𝑠~, 𝑠} , 𝑡 = F
*,,*-&"

#

𝑒$+,%
(𝑘~𝑡)-,
𝑛~!

𝑒$+-%
(𝑘}𝑡)--
𝑛}!

𝑠~
-,𝑠}

--

𝑃-,--(𝑡) = 𝑒$+,% (+,%)
+,

-,!
𝑒$+-% (+-%)

+-

--!
𝑠~
-,𝑠}

--

𝐺 = 𝑒 $+, ,$*, % 𝑒 $+- ,$*- %Expand the equation,                                                  in a Taylor series in sr and sl

Upon comparing with  its definitions 

The distribution of walker’s position along the line follows immediately

𝑃x(𝑡) = F
*,,*-&"

#

𝑃-,-- 𝑡 𝛿--$-,,x = 𝑒$ +,i+- % F
-,&"

#
(𝑘~𝑡)-,
𝑛~!

(𝑘}𝑡)-,ix

(𝑛~+𝑖)!

This sum can be shown to approach shown to approach a Gaussian distribution as time 
approaches infinity 



The mean and variances can be calculated by using the following property of G(sr, sl, t)

𝜕'𝜕(

𝜕𝑠~'𝜕𝑠~'
𝐺 𝑠~, 𝑠} , 𝑡 |*,&*-&, = 𝑛~ 𝑛~ − 1 … 𝑛~ − 𝑎 + 1 𝑛} 𝑛} − 1 … 𝑛} − 𝑎 + 1 (𝑡)

Therefore, the mean will be 𝑖 𝑡 = 𝑛} − 𝑛~ 𝑡 = 𝑘} − 𝑘~ 𝑡

and the variance will be 𝑖! − 𝑖 ! 𝑡 = 𝑛} − 𝑛~ ! − 𝑖 ! 𝑡 = 𝑘} + 𝑘~ 𝑡

The distribution function, 𝑃 𝑖, 𝑡 ≈
1

2𝜋 𝑘} + 𝑘~ 𝑡
𝑒𝑥𝑝 −

𝑖 − 𝑘} − 𝑘~ 𝑡 !

2 𝑘} + 𝑘~ 𝑡
ü The GF reduces infinite number of coupled equation to a finite number of dynamic equation at the 

expense of new continuous auxiliary variables

ü The whole exercise is relatively simple, involving only strategic placement of auxiliary variables within 
the ordinary eom

ü The method provides probability and statistical moments for the occurrence of events under investigation

ü Possible  to track multiple types of events within a single GF eom, each type is associated with unique 
auxiliary variable



Chemical Kinetics:
Consider the following bimolecular reaction

𝐴 + 𝐵 ⇆ 𝐴 + 𝐴
𝑘0
𝑘&

𝑚 → 𝐴
n→ 𝐵
𝑚 + 𝑛 = 𝑁 (Conservation)

A state of the system is completely specified by [m, n]
With the above prescription, the following transitions will happen

𝐴 + 𝐵 → 𝐴 + 𝐴 𝑚 − 1, 𝑛 + 1 to [𝑚, 𝑛]
𝑘0

𝑘&
𝐴 + 𝐴 → 𝐴 + 𝐵 𝑚 + 1, 𝑛 − 1 to [𝑚, 𝑛]

𝑡 − 𝜏 𝑡

Then the Master equation takes the following form
𝑑𝑃$,&
𝑑𝑡

=
𝑘)
𝑉

𝑚 − 1 𝑛 + 1 𝑃$!),&*) 𝑡 −
𝑘)
𝑉
𝑚𝑛𝑃$,& 𝑡 +

𝑘'
𝑉

𝑚 + 1 '𝑃$*),&!) 𝑡 −
𝑘'
𝑉
𝑚'𝑃$,& 𝑡

Because of the conservation law, one can eliminate one of the variables
𝑑𝑃$
𝑑𝑡

=
𝑘)
𝑉

𝑚 − 1 𝑁 −𝑚 + 1 𝑃$!) 𝑡 −
𝑘)
𝑉
𝑚(𝑁 −𝑚)𝑃$ 𝑡 +

𝑘'
𝑉

𝑚 + 1 '𝑃$*) 𝑡 −
𝑘'
𝑉
𝑚'𝑃$ 𝑡



𝑑𝑃$
𝑑𝑡

=
𝑘)
𝑉

𝐸!) − 1 𝑚(𝑁 −𝑚)𝑃$ 𝑡 +
𝑘'
𝑉

𝐸 − 1 𝑚'𝑃$ 𝑡

The above equation can be written in the form of shift operator as

Where the 𝐸𝑃8 𝑡 = 𝑃8i, 𝑡 𝐸$,𝑃8 𝑡 = 𝑃8$, 𝑡

Rather than attempting a complete solution of the master equation, we give a mean field 
description of a chemical reaction. Let us introduce a concentration variable  

In the limit of large V, we can expand in powers of 1/V
𝐶 =

𝑚
𝑉
; 𝐶" =

𝑁
𝑉
; 𝜌 𝐶, 𝑡 = 𝑃8(𝑡)

𝐸𝑃8 𝑡 = 𝑃8i, 𝑡 = 𝑃 8i,
p
, 𝑡 = 𝜌 𝐶 + ,

p
, 𝑡 = 1 + ,

p
j
j�
+ ,
!p!

j!

j�!
+⋯ 𝜌

𝐸$,𝑃8 𝑡 = 𝑃8$, 𝑡 = 𝑃 8$,
p , 𝑡 = 𝜌 𝐶 − ,

p , 𝑡 = 1 − ,
p
j
j� +

,
!p!

j!

j�! +⋯ 𝜌

𝐸 = 1 +
1
𝑉
𝜕
𝜕𝐶 +

1
2𝑉!

𝜕!

𝜕𝐶! +⋯
And    𝐸$, = 1 + ,

p
j
j� +

,
!p!

j!

j�! +⋯



Upon substitution of these relations into the master equation in all aspects  

𝜕𝜌
𝜕𝑡

=
𝑘,
𝑉
𝑉! −

1
𝑉
𝜕
𝜕𝐶

+
1
2𝑉!

𝜕!

𝜕𝐶!
+⋯ 𝐶 𝐶" − 𝐶 𝜌 +

𝑘!
𝑉
𝑉!

1
𝑉
𝜕
𝜕𝐶

+
1
2𝑉!

𝜕!

𝜕𝐶!
+⋯ 𝐶!𝜌

= − j
j� 𝑘,𝐶 𝐶" − 𝐶 − 𝑘!𝐶! 𝜌 +

,
!p

j!

j�! 𝑘,𝐶 𝐶" − 𝐶 + 𝑘!𝐶! 𝜌

Fokker Planck equation  

Immediately one can recognize

v(C)= 𝑘,𝐶 𝐶" − 𝐶 − 𝑘!𝐶!

B(C)= 𝑘,𝐶 𝐶" − 𝐶 + 𝑘!𝐶!



Stochastic Modelling and Simulation of Biochemical Network

u Realistic description of chemical system

u Numerical solution of stochastic master equation

u Consider the fluctuations and correlations of the chemical system

u Stochastic formulation is always valid where deterministic valid; in fact stochastic
formulation reduces to deterministic one at thermodynamic limit

u Deterministic approach is applicable when only few species are present in the
system (both by analytically or numerically); stochastic is applicable for any
number of species

Motivation 

Advantages over Deterministic



Numerically simulate the Markov process that master equation
describes analytically; even though the master equation never explicitly
used during formulation

Specific Aim for Developing the Algorithm 

Xi≅ current number of molecules of chemical species Si in V

V N

Inert species

S1
S2

S3
S4

S5

S6

S7

There will be M chemical reactions{Rμ, μ=1…M} and
each of the chemical reaction characterized by a reaction
parameter cμ



Fundamental Hypothesis 

Under what conditions, the above hypothesis has a legitimate physical basis

Center to center distance between two molecules
Consider this reaction

And the relative velocity,
d1

d2

v12
S1

S2
S2

S2

For ideal gas

Thus, the reaction parameter



Relation Between cμAnd kμ

X1 number of molecule S1 and X2 number of molecule S2 , then there will be distinct X1X2
combination of reactant molecules inside V and the addition theorem of probability that
X1X2 cμdt gives the probability that the Rμ reaction occur in volume V

Consider this reaction

Thus the average rate at which Rμ reaction occur in volume V,

Thus the average rate per unit volume, = ,

The kμ is conventionally defined as the average rate per unit volume divided by the
product of the average densities of the reactants

Correlations and fluctuations automatically come in stochastic formulations!



Reaction Probability Density Function



Continued…



Continued…



Continued…



Step 0

Step 1

Step 2

Step 4
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M-code 5.2 makeSSA: implementation of Gillespie’s SSA.

function [ssa,ensem] = makeSSA(S,a)
rng(’shuffle’); s = size(S,1);
ssa = @gillespie; ensem = @ensemble;

function [tt,nn] = gillespie(n,tmax,dt) % Single run
t = 0; steps = tmax/dt;
tt = zeros(steps,1);
nn = zeros(steps,s);
nn(1,:) = n; idx = 1;
while t<tmax

if all(n==0) % exhaustion check
disp(’Reactants exhausted!’);
break;

end
asum = cumsum(a(n));
t = t - (1/asum(end))*log(rand);
j = find(asum>asum(end)*rand,1);
n = n + S(:,j);
if (t - tt(idx)) > dt

idx = idx + 1;
tt(idx) = t;
nn(idx,:) = n;

end
end
tt(idx:end) = []; nn(idx:end,:) = [];

end
function [TT,NN] = ensemble(n0,tmax,dt,runs) % Ensemble

TT = (0:dt:tmax)’; ttmax = zeros(runs,1);
NN = zeros(1+tmax/dt, s, runs);
for i=1:runs

[tt,nn] = gillespie(n0,tmax,dt);
ttmax(i) = tt(end);
NN(:,:,i) = interp1q(tt, nn, TT);

end
idx = (TT > min(ttmax));
TT(idx) = []; NN(idx,:,:) = [];

end
end
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is a sample of the random index J(n). For the range of values taken by J ,
the above condition is equivalent to

F (j ≠ 1) < u2 Æ F (j) .

Multiplying both sides by a0(n) and plugging in values for F (j) gives the
criteria

j≠1ÿ

l=1
al(n) < u2a0(n) Æ

jÿ

l=1
al(n) . (5.23)

for j to be a sample of the index J(n) of the next reaction known to have
occurred in state n.

5.3.3 Gillespie Algorithm
The two results (5.21) and (5.23) allow a simple procedure to simulate the
Markov process: (1) Pick a sample · from the exponential distribution with
rate a0(n) to compute the time until the next reaction will occur, and (2)
pick a sample j from the discrete distribution with probabilities (5.22) to
determine the type of the next reaction. This is the stochastic simulation
algorithm (SSA), known as the “Gillespie algorithm” [52] and involves the
following steps:

1. Initialize the system at t = 0 with initial numbers of molecules for each
species, n1, . . . , ns.

2. For each j = 1, . . . , r, calculate aj(n) based on the current state n.

3. Calculate the exit rate a0(n) =
qr

j=1 aj(n). Terminate if a0(n) = 0.

4. Compute a sample · of the time until the next reaction using (5.21).

5. Update the time t = t + · .

6. Compute a sample j of the reaction index using (5.23).

7. Update the state n according to Rj . That is, set n = n + S⇧j , where S⇧j
denotes jth column of the stoichiometry matrix S.

8. If t < tmax, return to Step 2.

Improvements and approximations: For large biochemical systems, with
many species and reactions, stochastic simulations (based on the original
Gillespie algorithm) become computationally demanding. Recent years have
seen a large interest in improving the e�ciency/speed of stochastic simulations
by modification/approximation of the original Gillespie algorithm. These
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the modification and the demodification are monomolecular reactions. With
0 < n < n

tot unmodified proteins, expressions for the reaction propensities
a(n) are listed here (on the right) together with the corresponding reactions
on the left:

U kw
≠≠≠≠≠æ W,

W ku
≠≠≠≠≠æ U,

------

aw(n) = kwn,

au(n) = (ntot
≠ n)ku .

Z
^

\ (5.14)

Example 5.2 (Heterodimerization) The reversible heterodimerization (2.6)
is a 3-component 2-reaction network. Let N1(t), N2(t), and N3(t) denote, the
respective copy numbers of the components X1, X2, and X3. The full state
has to respect the two conservation relations (2.22), which translate to

N1(t) + N3(t) = q̂1 and N2(t) + N3(t) = q̂2,

where q̂1 = �q1 and q̂2 = �q2 are the conserved copy numbers and � = NAV

is the system size. The Markov process N(t) = N3(t) having states n = n3
is su�cient to describe the system, because the remaining two variables
can be determined from the conservation relations above. Subject to those
conservation relations, expressions for the channel propensities a(n) in state
n = n3 are listed here (on the right) together with the corresponding reactions
on the left:

X1 + X2
k1

≠≠≠≠≠æ X3,

X3
k2

≠≠≠≠≠æ X1 + X2,

------

a1(n) = k̂1 (q̂1 ≠ n) (q̂2 ≠ n) ,

a2(n) = k2n .

Z
^

\ (5.15)

Example 5.3 (Lotka–Volterra model) The mutual interaction between two
kinds of entities depicted in (2.7) is a 2-component 3-reaction network. Let
N1(t) denote the population of the prey X1, and N2(t) that of the predator
X2. The prey replication and the predation are of the second order, whereas
predator death is of first order. Expressions for the channel propensities
a(n) in state n = (n1, n2)T are listed here (on the right) together with the
corresponding reactions on the left:

X1 + A k̂1
≠≠≠≠≠æ 2X1,

X1 + X2
k̂2

≠≠≠≠≠æ 2X2,

X2
k̂3

≠≠≠≠≠æ ?,

----------

a1(n) = k̂1nAn1,

a2(n) = k̂2n1n2,

a3(n) = k̂3n2 .

Z
____̂

____\

(5.16)

Example 5.4 (Enzyme kinetic reaction) The enzyme kinetic model (2.8) is
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a 4-component 3-reaction network. Let NE(t) denote the copy number of
the enzyme, NS(t) that of the substrate, NES(t) that of the complex, and
NP(t) that of the product. The full state has to respect the two conservation
relations (2.24), which translate to

NE(t) + NES(t) = n
tot
E and NS(t) + NES(t) + NP(t) = n

tot
S ,

where n
tot
E = �x

tot
E and n

tot
S = �x

tot
S are the conserved copy numbers and

� = NAV . The Markov process

N(t) =
!
NS(t), NES(t)

"T

having states n = (nS, nES)T is su�cient to describe the system, because
the remaining two variables can be determined from the conservation rela-
tions above. The (enzyme–substrate) complex formation is a bimolecular
reaction, whereas the complex dissociation and the product formation are
monomolecular reactions. Expressions for the reaction propensities a(n) in
state n = (nS, nES)T are listed here (on the right) together with the corre-
sponding reactions on the left:

E + S k1
≠≠≠≠≠æ ES,

ES k2
≠≠≠≠≠æ E + S,

ES k3
≠≠≠≠≠æ E + P,

---------

a1(n) = k̂1
!
n

tot
E ≠ nES

"
nS,

a2(n) = k2nES,

a3(n) = k3nES .

Z
___̂

___\
(5.17)

Example 5.5 (Schlögl model) For the Schlögl reaction scheme (2.9), let
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tot
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