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Diffusion:

The laws of diffusion were first investigated by Graham. Later by Loschmidt, and that
of liquids by Fick and Voit with great accuracy

The laws of diffusion were first formulated by Fick
and he proposed following two laws of diffusion

dp
J=-DVp, ZP_ _y
oV

Adolf Fick

The above two equations combine to give the diffusion equation
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Brownian Motion

They used kinetic theory and demonstrated, theoretically,
that the phenomenon of diffusion is the result of Brownian
motion.

Einstein’s Theory:

Einstein (1905) Smoluchowski (1906)

“*The motion of each particle is independent of the others

“* The movements of one and the same particle after different intervals of time must be
considered as mutually independent processes

Let dn be the number of particles which experience a displacement between A and A
+ dA in time interval 1

dn = np(A)dA,  where / H(A)dA =1, ¢(A) = ¢(—A),

— 00



The value of the concentration p(x, t) after time has elapsed can be computed from the
values of p(x +A , t) for all possible values of A, weighted by ¢(A)

plz,t4+7) = / plx+ A, t)p(A) dA. W 53¢ e

— 00

Expanding p in Taylor’s series for small 1 and A, H : s /

the eq uation Two points of observat ion t te
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Neglecting terms of higher order, the above equation reduces to R

o0

plz,t) + B(A)dA + -
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op(z,t) D()Qp(:l?,t) where D=— / —o(A)dA.
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It follows that the mean and variance value Ez(t) =0, Ea?(t)=2Dt.




Langevin’'s Approach (1908):

The dynamics of a free Brownian particle is governed by the frictional
force —61Tanv and by a fluctuational force X, that results from the
random collisions of the Brownian particle with the molecules of the
surrounding fluid, after the frictional force is subtracted.

mx = —6manx+F(t)

P. Langevin

If additional fields of force act on the diffusing particles
mi +I'x — F_,.. ()= F(t)  where F...=—-VU(x)
The above equations are stochastic differential equations, because those are driven by

a random force F(t)

The main mathematical difference between the two approaches is that Einstein
assumes that the displacements A are independent, whereas Langevin assumes that
the random force F(t) and the displacement x are independent.



Denoting v = X" and multiplying the Langevin equation by x
mad® 5 - q %

S mv* = —37ra77azv

Averaging under the assumption that the fluctuational force and the displacement
of the particle x are independent, we obtain

41 B,

: 0 . '
(%) = kT, since g—l'ﬁiy,z =i

d(z?)/dt = kT /3man + Ce—6mant/m  Where C is a constant

If times well in excess of the frictional relaxation time, m/61ran

It follows that (22) — (22) = (kKT/3man)t Einstein’s relation!

(a7 = | Where N=R/k
3ntnalN

\
In 1908, Perrin computed the Avogadro number from observations
of the Brownian movement, obtaining N= 6.85 x 1023 mol-

Perrin



Thus, Langevin’s equation of motion, according to Newton's second law of motion, is for
a particle of mass m
d*x(t)  dx(t)

= — F where  (x = 6mnax
m—_ { ——+ (t) ¢ n

(i) F (t) is independent of x.
(ii) F(t) varies extremely rapidly compared to the variation of x(t).

F(t) =0 F(t)F(t) = 2¢kT6(t —t")

We note that the noise force F(t) in the Langevin equation may be related to the drag
coefficient ¢ as follows.

jOOF(t)F(t + 1) dt = %jooF(t)F(t + 1) dt = (ijood(t)dT
0 —00 —00

1 0.0)
Hence ( = k_TJ F(O)F(t+ 1)drt F-D theorem
0



Criticism of Langevin’s Equation:

Doob show how that equation should properly be interpreted as an
integral equation and not as a differential equation

We write the Langevin equation du(t) = —pu(t)dt + dB(t)

The distribution of [B (s + t) - B ()] is Gaussian with mean zero, variance c?|t| and jf Doob
t,<...<t,, B(t,)-B(t), ..., B(t,)- B(t,.;) are mutually independent random variables and B(t)

follows the definition of Weiner process
Let us integrate both sides of the above equation after multiplying a continuous function f(t)

b b b
FOdu() = —B j FOuDdt + j F(OAB(t)
t=a a a

Setting  f(t) = eBt  and since integration of by parts is permissible, we obtain

t
u(t) = u(0)e ht +f e P=5)dB(s)
s=0



Wiener Process:

Let X (t) be a random variable and let X(0) = 0. We shall assume the following.

1. The displacement X (t) - X (s ) of the Brownian
particle over (s, t ) is the sum =

> [X(t) = X (-],
k=1
2. The increments are independent and they follow Markov process

X(t1) — X(s), X(t) — X(t1),..., X(t5,) — X(tp—1)

3. We have (X(t;) — X(s)) = (X(ty) — X(ty_1)) =0

4. Since we have assumed that X(t ) - X( s) is the sum of a large number of
independent random variables, each having an arbitrary distribution, it follows from the

central limit theorem L2 ([x(0)-x(s)12))

u _ = e 2
It follows that PWx(0)-x(s)

([X() — x(s)]?) = c?|t — s] and (X(s)X(t)) = c*min(s, t)



OU theory of Brownian Motion:
Every process, which is MARKOVian, stationary and GAUSSian is (by DOBB'’s
theorem) the ORNSTEIN-UHLENBECK process.

The relation obtained by Einstein and Langevin has fundamental ((ax)2) = ZkT It]
flaw that it is not root mean square differentiable att =0 ¢

(ignoring the inertia of the particles)

In 1930, Uhlenbeck and Ornstein by
including the inertia of the particles

((Ax)?) = Z(sz (,i 6] — 1+ e‘“t'/’")

kT
Here, the root mean square differentiable att=0 ((Ax)?) = Etz

We write the Langevin equation in phase space (x,v)

x(t) = v(t)
mv(t) = —qv(t) + A(t)



The white noise A(t) follows the definition

A(t)A(tz) = 2D8(ty — ty), D = (kT
1 (¢ :
It follows that v(t) = x(t) = voe Pt + — f e A=t (e at
0
Ax = x(t) — xg = ﬁ(l —e Pt + Lft[l — e‘ﬁ(t_t')]/l(t’)dt’
B mg J,
v
Therefore, we obtain X = FO(l — e‘ﬁt) where f = {/m
[ .12 2Dt D ) )
2 — |— _ pt _ pt _ 2t
and (Ax) ’,6’ (1 e )] +(m,8)2+m2,83[ 3+ 4e e ]



If we have a Maxwell-Boltzmann distribution of initial velocities v,

((Ax)z)— 2“; (ﬁt—-l+e‘ﬁ.”), (t>0)

mp

inertia is included, however, {(Ax)*) differentiable and the velocity exists.

The inertia induced shift as obtained by 2-D stochastic (

- pt
motion in phase space, which is equivalent to a colored | ™ 14 ¢ ﬁ ), (f > 0)
noise driven dynamics in configuration space ﬁ

kT
m

The velocity autocorrelation is exponential (V(t)v(r’))time — e—CIr—r’f/m |



Formal Description of Stochastic Process:

Definition of B;

Let us consider B is a Brownian Motion (BM) which is stochastic process (SP) defined
in the following way

1. For s<t, the increment B,-B,~N(0O, t-s)
2. Bi-B.is independent of {B,, O<u <s}

3. Byis continuous in 't’ (almost surely pathwise)

B, is the value of B at time t
Nondifferentiabality of B,

Biin — Bt

. h 1
Hm —— = N0, = N(O7)

Distance travel from one point to another point is «



Stochastic Integrals: JX ¥2

_ : : xdx = —
Consider the following integral o 2 /w

But for the stochastic integral f B,dB, + B% -z}gi%ﬂ — B,)
0 i

Each of them gives different answer! By B Bti+§i+1

ti

Hard to calculate this integral, take the expectation, (Z B;,(Be,,, — Btl.)>

E(S: Be,(Beyy, — Be))= X E (Bey(Beyy, — Br))  Linearity of E
=) E (E(Bti(Bti+1 — Bti)|Fti)) Tower property of E: E(E(Y|X)) = E(Y)
Where F ={B;:0 < t < t;}: All the information up to time t;
=% E(ByE(Bey,, — Be)IFy)  since E(XY|X) = XE(Y|X) and By, is F,, measurable

=) E (Btl.E(Btl.+1 — Btz)) =0 As B:,,, — By, isindependent of F;, (second property of BM)

Therefore, it appears that fOT B;dB; zz B, (B, — Br)has zero mean



2
Let us guess the expectation of integral E(fOT B.dB;) = E (B%) = % + 0 since Br~N(0,T)

2
From the above argument it is clear that fOT B;dB; # B’
The actual value of the fOT B.dB; = B% — = (Ito integral)

2

T b dB. ~ B .
Jo BedB, ~z Busu (B, ~By) =~  (Stratonovich integral)

Br* T .
[, BedB, ~ Z Bt,,Br,, —Br) =——+7  (Backward Ito integral)
lto integral:
Consider the following Taylor Expansion of a function f(x)

df @) = f'e0dx + 22 @0+ + 2 (d)*+

' , ' "B (B
If f(x)=x2 and x=B,then df (B = f'(BdBi+ %(dBt)Z‘F + fg—(!t)(dBt)?"F
And since (dBy)?~ dt for BM; Substitute it and take the integral

F(B) — f(Bo)=y f'(BIAB, +2 [ f" (Bt 52

Upon substitution of the f(x) B} — B =, 2BidB; +; f 2dt = JBtdBt - 73



More on Ito integral:

T
In general a stochastic integral is written as [ x.qp, ~ //Nere Xiis a stochastic process,
t*=t  which is F; measurable
0
Then

X,*dB, <« (Square integrable)

If £

T T 2 T
X.*dB, < then EthdBt =0 and E(j XtdBt> Ethdet
0 0

If X is deterministic then thdBt ~N <Oert2dBt>
0 0

Martingales:

A process M is called Martingale if
1. E|M| <x

2. E(M|F,) = M, fors <t

The BM is a Martingale E(B;|F,) = B; fors <t
T

If E J X,*dB, <« then M, = fOtXSdBS Is a Martingale
0



Solution of SDE Using Ito formula:

t
ODE:  dX, = oX,dt = djt oX, = X, —Xo = f oX.ds = Xe=Xoe
t

SDE: dX: =@Xtdt +@’(td3t * = Rt “XtNot differentiable
drift  diffusion

t t
Hard to solve
X, — Xo = j uX.ds + f oX.dB,
, /’ X
Solution Using Ito Frmula:  ° df (X)) = f'(X)dX+ L ( ) (dX;)?

Rearrange the SDE % = dlog X; = udt + odB, Thus f(X)= 10gxt; f'(X) = xlt;f”(xt)z')%
t

t
dlog X, = pdt + odB, — - (udt + 0dB,)?
= pdt + odB, —5o2dt  Since dt? - 0; dtdB, > 0; dB,” — dt
log X; —log X, = | (,u——a )ds+f odB, = (u——a )t+ odB,

Xt _ Xoe—(u—%a )t+0dBt



Fokker Planck Equation:
Time evolution of the probability distribution function of the Brownian Particle

Zov@+E®  (FO)=0 (FOFE) = 2Bt - )

where v(a) is some given function of the variables a. Our aim is to obtain a noise average
probability distribution function, f(a, t) of the values of a at time t. To do that one can recognize,

f(a, t) 1s conserved i.c.
f daf(a,t) =1

Immediately, it suggest that the time derivative of the density, f(a, t) is balanced by the
divergence of a flux, a velocity times that density
df(a,) ~ d (Oa 0
2 =~ (S f@0) = — = (v(@)fia, 0 + F(O)fa, 0)
Where a noise term, F(t) is there. Upon taking the average over noise, the Fokker-
Planck equation is obtained

o(fa,p) @ 0 0
T v(a)(fia,t)) + 3a B '£<f(a, t)




lllustrations:

Start with a Langevin equation, where the relaxation time, T = m/{ 1s very much shorter than
any natural time scale associated with motion in the potential U(x). The inertial term,

d?x(t :
d’;g ) can be ignored dx(t) 1 ey 1 ol
= U@ HZFO
It leads to a F-P equation which is commonly known as Smoluchowski equation,
of _ 10 KT 9%
at zax U+ 7 ox? Where D=KT/ §
— N —U(x)/kT_ U(x)/KT
Dax € 0x € f

It describes the diffusion over a barrier. Moreover, one can make it self-adjoint
equation by a trick. Upon substitution f — feq9 leads to a Schrodinger like equation

52 ’ ()_(16U)2 1 92U



First Passage Time:

v" Evolution (a(t)) of a set of variables a is governed by a
Langevin equation

v The initial point a0 starts out somewhere in a "volume"
V in this space, bounded by a "surface" oV

v The first passage time is the first time that the point
leaves V

The motion of a cloud of initial points satisfies the Fokker-Planck equation. An
absorbing boundary condition is imposed on dV that removes all paths that have
crossed the boundary of V before time t and focus on only those points that have
not left V by time t. Then the distribution of points that have not left by time t is
P(a,t), and satisfies

dP

==V, (V@P) + Yy B VP = DP

P(a,0) =6(a—agy) P(a,t) =0 Onov

Thus P(a,t) =eP§(a—ayp)



The integral of P over all a in the volume V is the number of all starting points that are
still in V at time t; it depends on the initial location a,.

S(t,ag) = f daP(a,t)
4

The difference S(t) - S(t + dt) is the number of initial points that have not left before time
t but have left during the time interval dt following t and therefore determines the
distribution of first passage times p(t, a;),

dS(t,a())
dt

S(t,ag) —S(t +dt,ag) = p(t,ap)dt Or p(t,ag) =-

The mean first passage time is the first moment of t,

t—o0

T(ag) = jotdrr p(T,ag) = jotr dS(t,ap) = J

dt S(T, a()) = j dt S(t, a())
0 0



There is more direct way to calculate

T(ag) = jooo dt S(t,ag) = jooo dtl daP(a,t) = fooo dtl daet’s5(a—ap)

— jooo dtl dad(a—ag) (etDTl)

Now the integration over a and drop the subscript O

7(a) = j dt (etP"1
()
= T = d T
Dtz(a) =j dt DTetP'1 =j dt —et?'1 = -1

The lower limit survives and the upper limit vanishes due to absorbing boundary
condition. The MFPT problem is determined by solving inhomogeneous adjoint equation

Dtr(a) = -1 (@) = 0 ondV



Application to the Smoluchowski equation:

The Smoluchowski equation is written as o = Di e—U(x)/kTi eURX/KT ¢
dt d0x d0x
The corresponding adjoint equation is
Ux) 9 _Uukx) 0
De kT — e kT —1(x) = -1
d0x d0x

“* The coordinate X is the starting position of the Brownian particle.

“* The absorbing barrier is located at b, and we assume that there is a reflecting barrier at a,
with a < X <b.

_Ux) 0 1 (* -Uu@,, Integrate once over x
e kT ar(x) —5 e kT

iIntegrate once more over X, using

U(y) —U(Z) the boundary conditions at the two
T(x) = dye “ dze limits a and b



Kramer's Problem:
Determine the rate at which the Brownian particle escapes from a potential well

A B

Rearrangement Dissociation

Assume the motion is purely diffusive, allows to use Smoluchowski equation, and the
barrier is sufficiently high: The rate of arrival at the barrier is estimated by taking the

reciprocal of the first passage time to the barrier.

Place an absorbing barrier at X, U(X2x)=Umax @and the reflecting barrier at x = a,
provided by a repelling potential at x—< (initial position)

1 (*max y
T(x) = EJ dy eU(y)/ka dz e~ U@/KT
X —00

At low temperature (small kT), the integral over z is dominated by the potential near
the minimum



U(z) = Upin + 3 5 wmm(z xmin)z"l'
Then the upper limit of integration can be replaced by infinity, and the integral is

] ’ dzexp | — U(Z) f dzexp ( Unin )exp ©min (z — xm)°% | = exp (— Umm)
o kT 2kT e kT \ wrznin

The 1ntegral over y 1s dominated by the potential near the barrier and has the quadratic expansion,

UW) = Unax — 5 w%wx(y — xmax)z T

The integral over y is practically independent of x as long as x is near the potential

minimum, so the lower limit can be replaced by minus infinity,
2

[ drern(~22) o [ ayor () o 882y )
. kT - kT KT max

_ lex (_ Umax) 2tk T 1/2 appears because only half
P kT \ W2y of the Gaussian is included



The mean first passage time (MFPT) (in the high barrier limit) is

(x) = L _ 2wkl (Umax—Umin) _
= D oo P T Where D=kT/ ¢
The rate of arrival is 1/t , and the rate of crossing, K., is half of that, so that

WmaxPmin

Kic 21{ exp (_

12

Umax_Umin)
kT

The escape rate 1s correct only 1n the high friction limit of Brownian motion

i) The rate of activation has a typical Arhenius form Ae E0kBT

i) The rate is thus inversely proportional to the friction coefficient of the
medium.



Master Equation:

Master equation is a typical probability balance equation

Recall the evolution of probability of a Brownian particle, given by Einstein
probability of a jump

p(z,t4+7) = / o(z+ At . of magnitude

— 00
This equation relates the probability distribution function of a Brownian particle at X and time t+t
, to that for the particle at a previous position X+A at an earlier time t

Let y= X+A; it follows dy=dA. We also can write ¢$(A)=p(y—x) and P(x,t)=0(X,t)

Pt +17) = j b(y = DP(, 6) dy

, 0P (x,t
Upon expansionP(x,t) + 7 ( ) j d(y = x)P(y, t)dy

P
(x ) jcb(y - x)P(y,t)dy — P(x,t)




Consider the fact f¢(x—>y)dy = Jq)(_A)dA =1 and replace ¢/ T1by W

ap(x )

j Wy > x)P(,6) dy — j W(x = y)P(x, t) dy

The above equation 1s the continuous version of Master equation, and W 1s the probability
jump per unit time. Immediately, one can immediately write its discrete version

Gain of m state due to transition

from the other n states
[Loss due to transition from

de t
®_y W S V(
the m to all other n states

do o dP,(t
At equilibrium ’;t( ) _ ¢ implies z WymPy ! (£) = z Winn P! (£)

For each pair of n and m, separately

.. eq _ eq fA A : l
the transitions must balance WamPy " = WinnPn Principle of detailed balance



All the sites are equivalent to each other

1-D Random Walk:

n,: Total no of leftward jump
n,: Total no of rightward jump

n.=2,n; =1
n,-n; =1: current state of the walker

_(k +kl)Pnln (t) + k an _1(t) +k Pnl 1n, (t)

The master equation for this walk

nlnr( )
dt
This 1s an infinite set of equations because the number of possible jumps are unlimited

Introducing two auxiliary variables s.and s; and associated generating function, G and
substitute it into above equation

G(Sl,Sr,t) — z Pnln (t)S

Sl S'r'

dG
- = [—(k,+k) + ks, + k;5;]G ~ And its solution

The solution reflects the fact that the joint probability distribution for the left and right jumps
reflects two statistically independent Poisson distributions

G = ol~ki(1-sDt} o {~ky(1-5,)1)



Expand the equation, G = et=ki(1=s)t}o{~k-(1=s7)t} in a Taylor series in s, and s,

00
ki £)™ k,t)"
sy = S e G e O

Tll! Tlr!
S1,S+=0

Upon comparing with 1ts definitions
kit )M g ()™ ny n
Pom, (t) = ™" e ;—T!Sl ‘s T
The distribution of walker’s position along the line follows immediately

k)™ (ke t) ™!
2 : —(kj+k)t E (ky r
P;(t) = Pnln (t)5n i =€ n!  (ng+i)!

S1,Sy=0

This sum can be shown to approach shown to approach a Gaussian distribution as time
approaches infinity



The mean and variances can be calculated by using the following property of G(s,, s, t)

0%9?

ds; os;

G(sp,Sr, Olsy=s,=1 = (= 1) .. (y —a + Dn(ny — 1) .. (0 — a + 1))(2)

Therefore, the mean will be (i)(t) = (n,, — ny)(t) = (k, — k)t
and the variance will be [(i%) = (D)?]1(t) = [(ny —np)?) = (D)21(t) = (ky + kDt

The distribution function, P(i,t) = exp | —

v

1 (i — (ky — kp)t)?

p
2 (e, + k)t 2(ky + ki)t

The GF reduces infinite number of coupled equation to a finite number of dynamic equation at the
expense of new continuous auxiliary variables

The whole exercise is relatively simple, involving only strategic placement of auxiliary variables within
the ordinary eom

The method provides probability and statistical moments for the occurrence of events under investigation

Possible to track multiple types of events within a single GF eom, each type is associated with unique
auxiliary variable



Chemical Kinetics:

Consider the following bimolecular reaction m— A
k
A+BS A+ A n—B
iz m + n = N (Conservation)

A state of the system is completely specified by [m, n]

With the above prescription, the following transitions will happen
t—1 t

k
A+BS A+ A Im —1,n + 1] to [m, n]
A+A->A+B Im + 1,n — 1] to [m, n]
k,
Then the Master equation takes the following form
dP k k k k
o= m =D+ DPyy a0 = 5 mnPry(6) + 57 M+ 1Py na (8) = 37 m2 Pryn(8)
Because of the conservation law, one can eliminate one of the variables
dP k k k k
=2 = DI —m+ 1Py () = N = m)P(t) + 77 (m + 1Py (8) = 57 m? B (£)



The above equation can be written in the form of shift operator as

dP,, ki k,
Pl (E~1 = 1D)m(N —m)P,(t) + % (E — 1)m?P,(t)

Where the EP,,(t)=P,.1(t) E"1P,(t)= P,_1(t)

Rather than attempting a complete solution of the master equation, we give a mean field
description of a chemical reaction. Let us introduce a concentration variable

m

N
C=—:;CHo=—; p(C,t) =P, (t
V 0= p(C,t) m (t)

In the limit of large V, we can expand in powers of 1/V
m+1

EP,,(t)=P,.1(t) = P (— t) p(C+l,t)=[1+;%+#;—;+m]p

B0 Paa 0 = P (5. = (€~ 0) = [1 - i -]

10 1 072 . 10 1 82
E_1+V66 2V26C2+'" And E =14yt 05T




Upon substitution of these relations into the master equation in all aspects

op ko[ 10 1 02+ 0 Lk afl0 1 az+
otV Vac ' 2v2ace? 0= MRV v ac T 2v2zace

. Czp

0 1 0%
—— (k1 C(Co = €) = kzC?)p + —=— (k1 C(Co — €) + kC?) p

Fokker Planck equation

Immediately one can recognize

v(C)=(k;,C(Co — C) — kC?)

B(C)=(k{C(Cy — C) + k,C?)



Stochastic Modelling and Simulation of Biochemical Network
Motivation

@ Realistic description of chemical system
€ Numerical solution of stochastic master equation

@ Consider the fluctuations and correlations of the chemical system

Advantages over Deterministic

€ Stochastic formulation is always valid where deterministic valid; in fact stochastic
formulation reduces to deterministic one at thermodynamic limit

€ Deterministic approach is applicable when only few species are present in the

system (both by analytically or numerically); stochastic 1s applicable for any
number of species



Specific Aim for Developing the Algorithm

Numerically simulate the Markov process that master equation

describes analytically; even though the master equation never explicitly
used during formulation

X;= current number of molecules of chemical species S;in V

There will be M chemical reactions{R,, p=1...M} and
each of the chemical reaction characterized by a reaction

. parameter c, % — reaction products,

S; — reaction products,

/)
e @

S; + S, — reaction products  (j # k),
28; — reaction products,
S; + §; + S, — reaction products (i #%j # k #1i)
S; + 28, — reaction products  (j # k),

sl @

Inert species :
P 3§; — reaction products.




Fundamental Hypothesis

¢, 0t = average probability, to first order in 8¢, that a
particular combination of R, reactant molecules will
react accordingly in the next time interval o¢.

Under what conditions, the above hypothesis has a legitimate physical basis

5\ Consider this reaction R, : ] 4+ Sy = 255
w Center to center distance between two molecules d12 = (dl -+ dz) /2

S ( S, \ \ And the relative velocity, Uyo

“collision volume” 8Vio1 = mdyy = vy 0F
average probability  {(8Veon/V> = mdys * {vss> 8tV
For ideal gas Vet VY = V  ndin(8k T/ mmmy,) % 8t

Thus, the reaction parameter




Relation Between C, And kﬂ

Consider this reaction R,: 8 + 8 — 25;

X; number of molecule §; and X, number of molecule S, , then there will be distinct XX,

combination of reactant molecules inside V" and the addition theorem of probability that
XX, ¢, dt gives the probability that the R, reaction occur in volume V

Thus the average rate at which R, reaction occur in volume V, <{X;X,c,) = {X;X) ¢,
Thus the average rate per unit volume, {X,X,> c,/V, = {x1Xy) Ve, , Xi = JV.

The k, is conventionally defined as the average rate per unit volume divided by the
product of the average densities of the reactants

ku = <xlx2> ch/<xl><x2>'

Correlations and fluctuations automatically come in stochastic formulations!



Reaction Probability Density Function

P(X; , Xs ..., Xy ; t) == the probability that there will be X; molecules
of S; , and X, molecules of S, ,..., and Xy
molecules of Sy, in V at time ¢,

and its moments

XP =Y ¥ XFEPXy,n X)) (= 1..Nk=12.)

Xl=0 X N=0
runs. Particularly useful are the kK = 1 and k& = 2 averages; this is because the

titi
quan 11I€S Xél)(t)
and A1) = {(X2@) — (X))

measure, respectively, the average number of §; molecules in V' at time ¢,
and the magnitude of the root-mean-square fluctuations about this average.



Continued...

h, =1,
reaction probability dens h, = X;
ku = X :fX k2

P(r, u) dr = probability at time | .
reaction in ¥V will o hu = X 3'(Xj — l)/ 2,
time mterval (1 - 7 hu = X, Xj Xk , :tlén

P(r, 1) 1s a joint probability densi
variable 7 (0 << 7 < o) and the d h“ — Xij(Xk —_— 1)/2,

h.c, 8t = probability, to first 1, = X;(X; — 1)(X; — 2)/6will
occur in ¥V in the next time interval d7.
We shall calculate the probability in (11) as the product of Py(7), the probability

at time ¢ that no reaction will occur in the time interval (¢, £ + ), times Ah,c, dr,
the subsequent probability that an R, reaction will occur in the next differential

time interval (¢t - 7, ¢ + 7 + d7):

P(r,p) dr = Py7) * h,c, dr



Continued...

(¢, t + 7) to be divided into K subintervals of equal length ¢ = /K

The probability that none of the reactions R, ,..., Ry, occurs in the first € subinterval
(t, t + €) is, by (13) and the multiplication theorem for probabilities,

[111 = hee + o] = 1— Y heye + ofe).

v=1 y=1

This is also the subsequent probability that no reaction occurs in (f 4 ¢, ¢ + 2e),
and then in (t + 2¢, t + 3¢), and so on. Since there are X such e subintervals

between ¢ and 7 4 7, then Py(7) can be written

) K
Py(7) = _l - Z hc.€ |- o(e)]

K
= [1 = S bk + ok ] .
This is true for any K > 1, and in particular it is true in the limit of infinitely
large K. Therefore,

Py(7) = lim [1 - ((Z e+ o(K-l)/K-l) /K)]

K
5

K-ao



Continued...

or, using the standard limit formula for the exponential function,

M
Py(1T) = exp [— Y. h,,c,;r] ;

=1

reaction probability density function:

Plz,.p) = Bc, exp[ Z h,c 'r]

To be precise, this formula gives P(r, ) for 0 < 7 < o0 and 1 << pu < M, with
7 real and u integer; for all other values of and p, P(7, p) is zero,

J; d'rz P(r, n) = Z h.c, j d‘rexp[— élh,c,,f:l = 1

u=1



Step 0 (jnitialization). Set the time variable # = 0. Specify and store initial
values for the & variables X; , X5 ,..., X , where X is the current number of mole-
cules of chemical species S; . Specify and store the values of the Af reaction para-
meters ¢ , Cs ,..., Cpy fOr the M chemical reactions {R,}. Using (14), calculate and
store the M quantities A,¢, , #:C5 ,..., 1300 Which collectively determine the reaction
probability density function P(+, ) in (17). Finally, specify and store a series
of “sampling times’ ¢, < t, << --+, and also a *“‘stopping time” fstop -

Step 1 By employing suitable Monte Carlo techniques, generate one
random pair (7, &) according to the joint probability density function P(+, )
in (17 Fxnlicit methods for doing this are presented in Section 5.

‘Step 2 Using the numbers + and p generated in Step 1, advance ¢ by T,
and change the {X;} values of those species involved in reaction R, to reflect the
occurrence of one R, reaction. Then, recalculate the A,c, quantities for those
reactions R, whose reactant X,-values have just been changed. (For example,
suppose R, is the reaction S; + S, — 285 . Then after replacing ¢ by ¢ + r, we
would replace X, , X, and X3 by Xy — 1, X, — 1 and X; + 2, respectively; we
would then recalculate A,c, in accordance with (14) for every reaction R, in which
either S, or S, or S; appears as a reactant.)

Step4  If 7 has just been advanced through one of the sampling times 7#;,
read out the current molecular population values X;, X5 ,..., Xn . If £ > fstop

or if no more reactants remain (all 2, = 0), terminate the calculation; otherwise,
return to Step 1.



The Algorithm

Lotaka-Volterra

X1 + A k—1> 2X1, al(n) = ]Aﬂl’ﬂAnl,
X1+ Xo k—2> 2)(27

i
Xy —F5 4 o

1. Initialize the system at t =0
species, Ny, ...,Ng.

Calculate the exit rate ag(n)

Update the time t =t + 7.

AT o o

denotes jth column of the st

8. If t < tmax, return to Step 2.

Schlogl model
A+2X —F 48X, ar(n) =kn(n—1),
3X —*2 5 A 49X, as(n) = kon(n—1) (n — 2),
B L) X, ag(n) = 1%3,
X M B, as(n) = kan,

Michelis-Menten

E+S k—1>ES, —nEs) ns,
ES —2 S E+8,

ES —* L E+P,

with initial numbers of molecules for each

For each j =1,...,r, calculate a;(n) based on the current state n.

-3

a;(n). Terminate if ag(n) = 0.

Compute a sample 7 of the time until the next reaction using (5.21).

Compute a sample j of the reaction index using (5.23).

Update the state n according to R;. That is, set n = n+S,;, where S ;

oichiometry matrix S.

function

[ssa,ensem] = makeSSA (S, a)

rng (' shuffle’); s = size(S,1);
ssa = @gillespie; ensem = (@ensemble;
function [tt,nn] = gillespie(n,tmax,dt) % Single run
t = 0; steps = tmax/dt;
tt = zeros(steps,1);
nn = zeros (steps, s);
nn(l,:) = n; idx = 1;
while t<tmax
if all (n==0) % exhaustion check
disp (' Reactants_exhausted!’);
break;
end
asum = cumsum(a(n));
t =t - (1/asum(end)) xlog(rand);
j = find(asum>asum(end) xrand, 1) ;
n=n-+ S(:,73);
if (t - tt(idx)) > dt
idx = idx + 1;
tt (idx) = t;
nn (idx, :) = n;
end
end
tt (idx:end) = []; nn(idx:end, :) = [];
end
function [TT,NN] = ensemble (n0,tmax,dt,runs) % Ensemble
TT = (0:dt:tmax)’; ttmax = zeros(runs,1l);
NN = zeros (l+tmax/dt, s, runs);

end
end

for i=1:runs

[tt,nn] = gillespie(n0,tmax,dt);
ttmax (i) = tt (end);
NN(:,:,1i) = interplg(tt, nn, TT);
end
idx = (TT > min(ttmax));
TT (idx) = []; NN(idx,:,:) = [1;
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