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Classical Heisenberg chain

3D rotors of fixed length on a 1D lattice
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Hamiltonian

H = — E Si-Si—l—l
)
Dynamics

ddStz' _ {S“H}

ddsti =S X (Sit1+ Si—1)



Classical Heisenberg Chain (CHC)

H=-Y 8;Si

Quantum Heisenberg Chain (QHC)
H=-Y 8;Si1
1
CHC is not an integrable system

QHC is integrable only for S = 1/2

CHC is thus expected to thermalise at arbitrary energies



Classical Heisenberg Chain (CHC)

Conserved quantities

Energy H — — Z Si,SHl Magnetisation M = E Sq;
i 1

Evidence of thermalisation

Diffusion at all energies observed numerically
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Bagchi and Mohanty,
Phys. Rev. B 86, 214302 (2012)

Savin, Tsironis and Zotos,
Phys. Rev. B 72, 140402R (2005)



Chaos spreading in the CHC

Spatial spreading of chaos can be characterised by the decorrelator

[analogue of the Out of Time Ordered Correlator (OTOC) for quantum systems]
D(x,t) =1 — (Sa(x,t).Sp(x, 1))
a&b correspond to a pair of “close” initial states
Correlator ('(x,t) = (S(x,1).S(0,0))

<. .. > average over initial states drawn from infinite temperature ensemble

Numerically obtained heat map of D(z, t)
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Ballistic spread of chaos with a “butterfly” velocity. Spin transport diffusive

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray and Bhattacharjee
Phys. Rev. Lett., 121 024101 (2018)



Non-reciprocal model
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dzi =Six (Sit1 —Si—1)

Previously studied in the context of a coarse grained model with a drive that induces a
current

Das, Rao and Ramaswamy, Europhys. Lett. 60(3) 418 (2002)

Non-reciprocal dynamics: Torque on i due to i+1 is equal (and not equal and opposite)
to torque on i+1 due to i

Cannot be derived from a Hamiltonian

Is there any notion of thermalisation?

What is the nature of chaos spreading in this model?



Non-reciprocal model

ddsti = SiX (Sit1 — Si—1)

The model has conserved quantities

Staggered magnetisation N = E (—1)2 Si

1

Pseudo-energy H = — Z (—1)7: SS90

Note however that
ds; -
dt # {S’w H }

The model is manifestly non-Hamiltonian

But there is a Liouville theorem for the dynamics

Hanai, arXiv:2208.08577 (2022)



Recent interest in classical non-reciprocal systems

Bachelard, Piovela and Gupta, Phys. Rev. E 99, 010104(R) (2019)

Subdiffusive behaviour with long range coupling

Fruchart, Hanai, Littlewood and Vitelli, Nature 592 363 (2021)

Time dependent phases in which spontaneously broken symmetries are
dynamically restored

McRoberts, Zhao, Moessner and Bukov, arXiv:2208.09005 (2022)

Analogue of prethermalisation in driven systems



Emergent hydrodynamics

ot =8ix (Siy1 — Si—1)

dt
X > GEETEPPEPPP .  GEEEEPPEE X  GETEPPPEEPE
0 1 2 3 21 21+ 1
Staggered magnetisation Magnetisation
_ S2i;—82i41 _ S2;+S2i41
N, = 5 M, = 5
E NN, conserved E M, not conserved
) )

Pseudo-energy



Emergent hydrodynamics

Coarse grain and retain gradient terms only to first order

Staggered magnetisation

875N — —&U (MXN)
Magnetisation

OtM = —Nx0,N + Mxo,M

Staggered energy

E=—-<(N+M).0, (N —-M)

OE =—-0, |t (M —N).(M+N) x9, (N+M)

N |—



Self-consistent calculation

Assume that higher wavenumber modes (higher gradient terms) provide a bath for the
low wavenumber hydrodynamic modes and “renormalised” couplings

875N — —)\MN&C (MXN) -+ ﬁN

| |

Effective coupling Conserving noise

OtM = - ANNXO, N + Ay Mx0, M + 1M

N/ |

Effective coupling Non-conserving noise

which gives rise to
ON = DO?N + iy oM = -2 + 7y,

Diffusion Relaxation

Self-consistent relations can be obtained for the diffusion constant, relaxation time,
coupling constants and the strengths of the noise



Propagator for VI, G/ (q, w) = S AY a2V,

—tw—2n (q,w)
Su(g=0,w=0)=—2

-

Propagator for [N, GN(q,w) — NN
EN(C] — 0, w = O) = —Dq2

Free propagator (5 (q, cu) = —ml;+5 AVAVAVAVAVAWV

Non-conserving noise
iviee w)n@(Q’, w')) = Anpo(g+q')o(w+w)das X

Conserving noise

% (g, w)nn (¢, w")) = Ang?0(q + ¢')0(w + w')dap



Self-consistent diagrammatic calculation
a la Ma and Mazenko, Phys. Rev. B 11 4077 (1975)

Diagrams contributing to > q =0, w = O

FORR Y

~ = A2, Ay 2AP ~ —AMMNANA/D2

Diagrams contributing to EN q — 0, w = O

A\ -ultraviolet
cutoff
>\M N A MN

21\ 2 T3
~ =" Ayun\ B ~ —q )\M)\MNAN\/_g

A slight correction to the version presented during the talk



Non-reciprocal model

Numerical data for system size - 2048 Averaged over 5000 initial conditions

All possible initial states weighted equally

Pseudo-energy correlations staggered magnatization correlations

w— 15
e
— \
32 | —
146 oS
. T |, -
UL \
= ) DA
cc N\
an
- ~ 0% ‘ ’
~ oD 4
—— b — 0000 4 - - —— - - ‘ ‘
£ 2 0 10!
ccl ats t
- f “'
| i
ccl j
/\_\
f I‘
‘(—- q
K1
o /I |'\
1)
{1\
:"“ “ . | l‘|."\
' ’,‘ | | I. \
/' / 1' LA
7’2 YA
_ / e R
0 — S o s

=L

Staggered magnetisation and staggered energy display diffusion



Magnetisation relaxes to zero
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The magnetisation relaxes to zero at long times starting from different initial conditions
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Heisenberg model (Fully reciprocal model)

Enurgy correlations
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Both energy and magnetisation display diffusion



Decorrelator (Non-reciprocal and Heisenberg)
D(xz,t) =1— (Sq(x,t).Sp(x, 1))
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Non-reciprocal model Heisenberg model

Light cone spreading of perturbations in both systems

D(:E, t) ~ €XP [Cvt (1 — (ZC/UBt)2)} close to the front

Different butterfly velocities U B and Lyapunov exponents (¢ for the two models



Quantum model

. = S, X (S’H—l — Si—l) Also, non-Hamiltonian

Consider two sites 1 and 2 dil =S X SQ d3y _ S1XSo

+ i5jkeo‘57§z(t # 0)
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Non-unitary evolution

Can the evolution be described in terms of a non-Hermitian Hamiltonian?



Summary

We have studied the dynamics of a non-reciprocal classical spin chain.
The dynamics conserves the staggered magnetisation and a pseudo-energy.

A hydrodynamic treatment can self-consistently yield diffusion for the staggered
magnetisation and relaxation for the magnetisation.

We have numerically confirmed the presence of diffusion for the conserved
quantities and relaxation for the magnetisation.

The model also exhibits the spreading of chaos like its reciprocal counterpart in
the form of a ballistic spread of an appropriately defined decorrelator.

The reciprocal model thus exhibits an analogue of the thermal behaviour of its
reciprocal counterpart.



Thanks for your attention



