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a b s t r a c t

For one-dimensional PT -symmetric systems, it is observed that
the non-local product ψ∗(−x, t)ψ(x, t), obtained from the conti-
nuity equation can be interpreted as a conserved correlation func-
tion. This leads to physical conclusions regarding both discrete and
continuum states of such systems. Asymptotic states are shown to
have necessarily broken PT -symmetry, leading to modified scat-
tering and transfer matrices. This yields restricted boundary con-
ditions, e.g., incidence from both sides, analogous to that of the
proposed PT CPA laser (Longhi, 2010) [4]. The interpretation of
‘left’ and ‘right’ states leads to a Hermitian S-matrix, resulting in
the non-conservation of the ‘flux’. This further satisfies a ‘dual-
ity’ condition, identical to the optical analogues (Paasschens et al.,
1996) [17]. However, the non-local conserved scalar implements
alternate boundary conditions in terms of ‘in’ and ‘out’ states, lead-
ing to the pseudo-Hermiticity condition in terms of the scattering
matrix. Interestingly, when PT -symmetry is preserved, it leads to
stationary states with real energy, naturally interpretable as bound
states. The broken PT -symmetric phase is also captured by this
correlation, with complex-conjugate pair of energies, interpreted
as resonances.

© 2013 Elsevier Inc. All rights reserved.

0. Introduction

A number of non-Hermitian Hamiltonians are known to have real spectra for certain range of
parameter values. In a different parameter regime, there exist complex conjugate pairs of energy,
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owing to their inherent parity-time (PT )-symmetry [1]. Experimental realization of PT -symmetric
optical systems [2] has prompted several proposals [3], one of which is the proposed Coherent Perfect
Absorber (CPA),with only time reversal (T ) symmetry. It showsperfect absorption of two laser beams,
incident from two opposite directions, with definite phase and amplitude relationships. This has been
further generalized by involving non-linear systems [4], wherein the CPA emerges as a special case
of the PT CPA laser. This system can exhibit spontaneous emission of two laser beams in opposite
directions, physical realization of which can be useful as very sensitive optical switches and sensors
[4,3]. Very recently, suggestion that CPA can be realized without PT -symmetry has been made [5],
although the PT -symmetric version is still useful to understand the quantummechanical analogues.

Optical systems and their quantum mechanical counterparts differ at a fundamental level, in
the sense that, conditions like square integrability and the nature of the Hilbert space, come into
play in the later case. Existence of a well-defined inner-product is an additional necessity for
quantum mechanical systems. As an example, the PT CPA laser can be studied in terms of various
matrix elements, corresponding to reflection and transmission coefficients, which is not possible
for the quantum mechanical analogue. The absence of a positive semi-definite inner-product for
PT -symmetric systems, under the usual Dirac–von-Neumann construction of Hilbert space, has led
to the re-definitions of the same [6]. Mostafazadeh showed that [7], under certain conditions, these
Hamiltonians can be pseudo-Hermitian, spanned on a bi-orthonormal basis. A complete prescription
to obtain a positive semi-definite inner-product for pseudo-Hermitian systems was finally given
by Das and Greenwood [8]. However, a general proof of equivalence of pseudo-Hermiticity and
PT -symmetry is still lacking, even for bounded spectrum-generating operators, as has been shown
for more general cases [9].

The anti-linear nature of the time-reversal operation is the root of the difficulty in constructing
a L2 norm for PT -symmetric systems. The corresponding anti-unitary evolution of the system
prevents the existence of a dual vector space, necessary for constructing a Hilbert space, with
a positive semi-definite norm leading to the quantum mechanical probability density. However,
as parity is an unambiguous discrete symmetry in one-dimension, it is possible to generate a
conserved ‘scalar product ’, bypassing the inconvenience due to anti-linearity. This is not the case for
one-dimensional systems, obtained from higher-dimensional systems under symmetry reduction.
Further, the aforementioned scalar product does not correspond to a conserved probability, which
interestingly can be interpreted as a conserved correlation, given by ψ∗(−x)ψ(x) [10]. It is obtained
through the use of equation of motion for PT -symmetric systems, connecting two parity-opposite
spatial locations. This non-local correlation, when integrated over all space, yields a conserved
charge of the theory. This explains somewhat different asymptotic behaviour reported in Ref. [2] and
proposed in Refs. [4,3].

In the present paper, we systematically explore the implications of this non-local correlation
in PT -symmetric systems. In case of scattering [11], this scalar can be viewed as a correlation
between states at two asymptotes (x = ±∞), requiring non-local boundary conditions. The time-
evolution of the system needs to be of the form exp(−iHt), with the Hamiltonian being complex. It
is observed that PT -symmetry is necessarily broken for asymptotic states. The real energy phase
(unbroken PT -symmetry) of these systems corresponds to stationarity of the correlation scalar,
with the aforementioned temporal exponent being unitary. Here, the eigenfunctions are stationary,
with discrete eigenvalues, as evaluated directly in numerous examples [12], admitting ‘bound state’
interpretation. The broken PT -symmetric phase has also been captured with complex-conjugate
pairs of energies [1], with corresponding eigenfunctions related through PT -transformation. The
spatial part of the ‘current’ is not conserved in this case, due to the presence of gain/loss, which can
be interpreted as resonance.

The paper has been organized as follows. In Section 1, we study a generic 1-D quantummechanical
PT -symmetric system, wherein the corresponding equation of motion is utilized to arrive at the
conserved non-local scalar. Its implication towards the norm for the PT -symmetric systems is
pointed out. Further, the symmetry structure of the scattering process is shown to be different from
that of Hermitian systems. New conditions are shown to be satisfied by the S-matrix, with pseudo-
Hermiticity being achieved through the incorporation of non-locality into the boundary conditions.
In Section 2, the properties of the wave-functions of a PT -symmetric system through the continuity
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equation are analyzed. Stationary states are shown to have real eigenvalues and unitary temporal
evolution, with PT -symmetry being necessarily preserved. It is also shown that spontaneous
breaking of PT -symmetry leads to complex-conjugate pairs of eigenvalues, with corresponding
eigenfunctions related through PT -transformation. The PT -symmetric boundary conditions for
scattering are obtained, which are more constrained. Transmission, and also complete absorption, are
possible only if plane-waves are incident fromboth directions, analogous to the observations reported
in Ref. [4]. In Section 3, for the purpose of demonstration, we analyze the complexified 1-D Scarf-II
potential, which is PT -symmetric. It is asymptotically constant, yielding scattering states which are
plane-waves. The corresponding probability flux is not conserved, under the Hermitian norm. The
asymptotic coefficients are shown to satisfy the non-local boundary conditions, following the non-
local conserved scalar. Finally, we conclude with remarks on possible implications of our results and
subsequent uses.

1. Continuity equation for PT -symmetric systems: implication for the S-matrix

1.1. The non-local scalar and the norm

As is known, operator action in quantum mechanics can be defined without the help of a well-
defined norm [13], so long as expectation values are not summoned into the picture, given a right-
operation (or left, but obviously not both) is defined. Although the matrix elements can be evaluated
only after fixing a norm, algebraic conditions can still be obtained, from the equation of motion. For a
PT -symmetric system, characterized by a potential V ∗(−x) = V (x), the 1-D Schrödinger equation:
−

h̄2
2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t) = ih̄ ∂

∂tψ(x, t), does not lead to the usual definition of the probability
current. In the Hermitian case, we arrive at the equation of continuity by using the Schrödinger
equation, together with its complex-conjugate counterpart. If the potential is PT -symmetric, one
needs to take a PT -transformation of the equation, in conjunction with complex-conjugation [10],
in order to obtain the equation of continuity:

h̄
2im

∂

∂x


ψ(x, t)

∂

∂x
ψ∗(−x, t)− ψ∗(−x, t)

∂

∂x
ψ(x, t)


=
∂

∂t


ψ∗(−x, t)ψ(x, t)


. (1)

Thus, one arrives at a new definition of flux, which is conserved. This is achieved at the expense of
a real positive-definite norm of the Hermitian theory, as is evident from the time-derivative part of
the above equation. This leads to re-interpretation of the scattering process. It is evident from the
above equation that, the scalar that naturally emerges from the system dynamics is neither local
nor real; and hence, cannot be interpreted as probability density in the line of Hermitian systems.
Instead, it is more suitable to be identified as a correlation function between two parity-opposite
spatial points. This is physically meaningful, as a complex potential can lead to ‘change of state’
through emission or absorption. However, upon integration, it does yield a conserved scalar of the
PT -symmetric system, which suggests towards a modified norm [1]. Furthermore, on identifying
ψ(x, t)ψ∗(−x, t) = ψ(x, t)PTψ(x, t), the general, non-local,PT -symmetric scalar product between
two distinct wave-functions φ(x, t) and ψ(x, t) can be defined as,

∞

−∞

φ(x, t)PTψ(x, t)dx =


∞

−∞

φ(x, t)ψ∗(−x, t)dx

=


∞

−∞

ψ∗(x, t)φ(−x, t)dx

=


∞

−∞

ψ∗(x, t)Pφ(x, t)dx. (2)

The last result appears as a generalization of the Dirac–von Neumann scalar product, which has
already been proposed [14]. The exchange of φ and ψ is due to parity, which is well-defined in one
dimension (1-D). This interchange is in the spirit of anti-unitary operation |α⋆⟩ = Θ|α⟩ [15], leading
to ⟨α⋆|β⋆⟩ = ⟨β|α⟩. The anti-unitary operatorΘ is a generalization of the anti-linear operator T .
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On the other hand, a PT -symmetric Hamiltonian, when treated similar to a pseudo-Hermitian
one [8], leads to,

H = (PT )H(PT )−1
≡ PTHPT = P(THT )P = PH∗P

or,

H = P(HĎ)τP = PτHĎτ−1P = (Pτ)HĎ(Pτ)−1, (3)

where we define τ as the transposition operator, relating a particular matrix to its transpose through
similarity transformation. This depends on the particular matrix and its representation on the basis
of choice and preserves the anti-linear nature of the time-reversal operator. This is identical to the
definition of pseudo-Hermitian Hamiltonian, H = η−1HĎη [8], for (Pτ)−1

= η. Here, τ implies
transposition only for the Hamiltonian operator, hence,

⟨φ|(Pτ)−1
|ψ⟩ = ⟨φ|τ−1P|ψ⟩ = ⟨φ|τP|ψ⟩, (4)

as transposition is idempotent. Using the Schrödinger representation, the relation THT = H∗ can be
realized as:

⟨m|THT |n⟩ =


∞

−∞

dx⟨m|x⟩H(−x)⟨x|n⟩. (5)

As for aPT -symmetric Hamiltonian,H(−x) ≡ H∗(x), the last term of the above equation is ⟨m|H∗
|n⟩.

It is evident that, construction of a pseudo-Hermitian norm for PT -symmetric systems,
necessarily incorporates anti-linearity through τ . That such an operator is representation-dependent
is physically justified, as the form of η always depends on the pseudo-Hermitian system itself.
However, the fact that transposition necessarily requires a predefined scalar product, actually makes
the norm in the second prescription ill-defined. The first prescription yields a well-defined conserved
scalar product, however it does not qualify as the norm, as positive definiteness is not ensured. Also,
which state is to be chosen for right-operation is not clear if one naively starts with this prescription,
which further emphasizes the inherent non-locality.

These inadequacies extend to the earlier difficulty for calculating the scattered ‘flux’ for a PT -
symmetric system. There have been prescriptions to make the above conserved scalar product
positive-definite [14], for systemswith finite Hilbert spaces. Unbounded systems are yet to be tackled,
not to mention the already stated difficulty of generic bounded spectral operators [9]. In case of
asymptotically Hermitian systems, the second prescription appears more suitable of the two, as it
requires generalization of τP to obtain a proper pseudo-Hermitian norm, corresponding to η(x →

±∞) −→ I .

1.2. The scattering properties

The above conserved correlation imposes novel boundary conditions for PT -symmetric systems.
They impose additional constraints on the system than their Hermitian counterparts, yielding unique
algebraic structure and clear distinctions between bound, resonance and asymptotic states. Analysis
of the generic scattering by such systems enables one to obtain the same. For comparative clarity,
we consider a generic one-dimensional PT -symmetric potential, which is asymptotically Hermitian
(converges to a unique real constant as x −→ ±∞), admitting scattering states which are plane-
waves. Then the general asymptotic solution can be written as,

ψ(x) −→


Aeikx + Be−ikx, when x −→ −∞,

Ceikx + De−ikx, when x −→ ∞,
(6)

with A, B, C,D being complex (C) numbers.
For a Hermitian potential which is asymptotically well-behaved, the asymptotic coefficients are

linked as,
C
D


= M


A
B


and


B
C


= S


A
D


, (7)
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where M and S are transfer and scattering matrices respectively, linking left–right and incoming–
outgoing states. In the Hermitian case, the form of the conserved current: j(x, t) =

h̄
2im


ψ∗(x, t) ∂

∂x
ψ(x, t) − ψ(x, t) ∂

∂xψ
∗(x, t)


, leads to the unitarity of the S-matrix belonging to SU(2), and transfer

matrix satisfies the condition,

MĎ


1 0
0 −1


M =


1 0
0 −1


, (8)

which is an element of the pseudo-unitary group SU(1, 1). It is crucial to note that, though the notions
of ‘incoming’ and ‘outgoing’ are represented by the pairs (A,D) and (B, C) respectively, the quantum
state ψ appearing in the expression for probability flux can also be classified as ‘left-asymptotic’ (at
−∞) and ‘right-asymptotic’ (at∞), represented by pairs (A, B) and (C,D) respectively [16].We follow
both the notions for the PT -symmetric case.
The left–right interpretation: Following the left–right asymptotic state convention, i.e.,ψL = Aeikx +
Be−ikx and ψR = Ceikx + De−ikx respectively, conservation of the PT -symmetric ‘current’ leads to,

AB∗
− BA∗

= CD∗
− DC∗. (9)

The transfer matrix then obeys,

MĎ


0 −1
1 0


M =


0 −1
1 0


. (10)

Further, the S-matrix is Hermitian, instead of being unitary. This is not surprising, since a conserved
‘probability flux’ cannot be constructed under the standard prescription of scalar product, which
requires the S-matrix to be unitary. Further, a localized flux cannot be interpreted from Eq. (9),
which can be attributed to the non-local character of the ‘charge’ ψ∗(−x)ψ(x). Despite of this fact,
unique additional conditions on scattering states will be concluded in the following section, which
are necessary for explaining known physical cases. Wewould like to add that, the notion of Hermitian
conjugation used here is purely mathematical. Hermitian conjugate of any matrix Λ is taken to be
the matrix that results into the dual of any vector Y = ΛX by left-operating on the dual of vector
X . The structure of Eq. (9) allows this construction, and there is no attempt to extract any physical
interpretation for this Hermitian conjugation, unlike in usual quantummechanics. But even then, the
defining meanings ofM and S holds, owing to boundary conditions. A re-defined physical normmust
only affect the elements of these matrices, but not their definitions.

As mentioned earlier, a PT -symmetric potential has the general form,

V±(x) = Veven(x)± iVodd(x), (11)

where the suffixes mention respective parity of the functional parts of the potential, which are real.
Then, clearly, H∗(V+(x)) = H(V−(x)). Let ψ±(x, t) be solutions to the time-dependent Schrödinger
equation corresponding toH(V±(x)). The corresponding S-matrices, S±, areHermitian. On considering
the time-independent scenario, if Vodd(x → ∞) −→ 0 and if Veven(x) is a constant asymptotically,
the eigenfunctions of H (Veven(x),±Vodd(x)) will be plane-waves, corresponding to definite real
momenta k±, related as k∗

±
= k∓. It is clearly seen that, ψ∗

+
(x) and ψ−(x) are the time-independent

eigenfunctions to H(V−(x)), whereas ψ∗
−
(x) and ψ+(x) are the eigenfunctions to H(V+(x)) at the

two asymptotes. As both the Hamiltonians asymptotically converge to that of a free particle, these
solutions must be the same, as there is no degeneracy in the 1-D case. Same can be argued about the
corresponding eigenvalues; the asymptotic coefficients for both the systems then satisfy,

A∗

+
= B−, B∗

+
= A−,

C∗

+
= D− and G∗

+
= F−.

The definition of S-matrix leads to,
B∗

+
C∗

+


=


A∗

+
D∗

+


SĎ+

or,

B∗

+
C∗

+

 
B−

C−


=


A∗

+
D∗

+


SĎ+


B−

C−
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or,

A− D−

 
B−

C−


=


B− C−


SĎ+S+


A−

D−


and hence, SĎ+S− = I, (12)

where the relation between the coefficients has been used. The final result is the Duality condition
already well-appreciated in the optical analogues of PT -symmetric systems [17]. Hermiticity, and
subsequent unitarity, of the system is ensured for Vodd → 0. This result is linked with the fact
that Vodd → −Vodd, essentially is the complex conjugation. In the above derivation, the asymptotic
behaviour of the PT -symmetric system being Hermitian, has been utilized extensively. Also, the free
particle solutionhaving a uniquemomentum is a key fact here. It is to be noted that in deriving Eq. (12),
nowhere the fact was utilized that the system is PT -symmetric. The above is true for any complex
potential. However, relations obtained in Ref. [17] for elements of the S-matrix cannot be obtained
here due to the aforementioned lack of a suitable inner product, particularly when PT -symmetry is
preserved.
The in–out interpretation: Till now in this section, the usual asymptotic treatment for scattering has
been carried out in terms of left and right asymptotic states. However, in view of the non-locality of
the scalar product, an alternate but natural description can be in terms of initial/final states, which
are two incoming/outgoing plane waves from/to asymptotes on both sides of the potential. This is
further supported by the physical definition of S-matrix, yielding the final scattering state by acting
upon the initial one, as in Eq. (7). The identification that these are the allowed boundary conditions
for scattering states, under PT -symmetry, will be made in the next section. With this realization, we
have ψin(x) ≡ Aeikx + De−ikx and ψout(x) ≡ Ceikx + Be−ikx respectively. Now, by equating the fluxes
(Eq. (1)), we have the S-matrix satisfying,

SĎ

0 −1
1 0


S =


0 −1
1 0


, (13)

which is precisely the pseudo-Hermiticity condition SĎη = S−1η [8], with the norm operator iden-
tified as η =


0 −1
1 0


. Theunitarity of the S-matrix is restored for η = 1, expectedly, yielding back

the Hermitian system and corresponding norm. It is to be noted that the pseudo-Hermiticity obtained
here is only for the asymptotic states, and is not established for all the states, and hence for the system
itself. However, incorporating the physical meaning of the non-local scalar for the choice of the scat-
tering states leads to definite conclusions, which will result in specific boundary conditions, obtained
in the next section.

The in/out states defined above naturally appear as in the context of hidden bosonized supersym-
metry [18], wherein non-locality is inherent, as parity operator P being the ‘grading operator’ of the
corresponding symmetry algebra. They necessarily appear as scattering states of such systems [19].
These Hamiltonians have P as a conserved charge, with in/out states being connected by the grading
operator, whereas a similar role is played by the PT -operation in the present context. This clarifies
further the point that the inherent non-locality in both the cases owes to the parity operation.

Interestingly, in Hermitian quantum mechanics both left–right and in–out labelling of scattering
states leads to same properties of the S-matrix and related boundary conditions [16], though the
second one is more physical. This is because asymptotic states have definite energy corresponding
to a unitary time evolution, which does not appear in the local stationary scalar ψ∗(x, t)ψ(x, t).
Thus, whether or not a state is made out of simultaneous plane-wave components, does not make
any difference. On the other hand, in PT -symmetric systems, the scalar ψ∗(−x, t)ψ(x, t) is both
non-stationary (for scattering states) and non-local, imposing physical difference between the two
aforementioned labellings, picking out the in–out labelling for scattering states to be the observable
one. This non-locality is the central physical feature of such systems, leading to specific boundary
conditions for scattering, which have been observed in physical systems. It also leads to pseudo-
Hermiticity, suggesting towards a proper norm. However, the left–right choice can still be considered
for mathematical purposes, especially for comparison with classical analogues of PT -symmetric
systems which are asymptotically Hermitian.
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2. Constrained boundary conditions: bound and scattering states

The equation of continuity can also be utilized to study PT -symmetric systems, as the inherent
symmetry of the system is incorporated within it. From Eq. (1), if PT -symmetry is unbroken, i.e., if
PTψ(x, t) = ψ∗(−x, t) ≡ ψ(x, t), the ‘current’ itself vanishes:

∂

∂t
ψ2(x, t) = 0. (14)

This is not the case for non-PT -symmetric solutions, as the ‘current’ does not vanish. For PT -
symmetric solutions, although the wave-function can still be complex in general, it is explicitly time-
independent, and hence, physically corresponds to a stationary state. This contradicts with the fact
that PT -symmetric states have real finite energy eigenvalues [1,2]. In Hermitian systems, a state
is stationary modulo the unitary time evolution exp(−iEt). Similarly, PT -symmetry of an energy
eigenfunction is to be defined modulo the same factor. When E is real, then ψ∗(−x, t)ψ(x, t) ≡

ψ∗(−x)ψ(x). Further, as the ‘current’ identically vanishes for PT -symmetric states, they also are
the bound states.

When E is complex, the continuity equation becomes,

h̄2

2m
∂

∂x


ψ(x, t)

∂

∂x
ψ∗(−x, t)− ψ∗(−x, t)

∂

∂x
ψ(x, t)


= 2Eim


ψ∗(−x, t)ψ(x, t)


, (15)

yielding a non-vanishing current. This is the case of spontaneously broken PT -symmetry, with
complex-conjugate pairs of eigenvalues [1]. Upon PT -transformation of the time-independent
Schrödinger equation, it is seen that if the energy eigenvalue is complex, then its complex-conjugate
is also an eigenvalue. The corresponding eigenfunctions are related through PT -transformation, as
there is no degeneracy in low dimension. Following the earlier arguments, these states are non-
stationary, and physically correspond to gain/decay [2].

We now point out the constraints on boundary conditions, imposed by the conserved correlation.
The critical observation from Eq. (9) is that, as A and D are the respective amplitudes of the fluxes
from ∓∞, the absence of either, to begin with, makes the two amplitudes on the other side complex-
conjugates. The outgoing/incoming flux actually vanishes, if either of the concerned coefficients is
zero. Moreover, as only the cross-terms appear in Eq. (9), incident, reflected or transmitted fluxes are
not intuitively separable. Further, the norm operator η for such systems is necessarily stationary [20].
Therefore, on physical grounds, the non-local scalar for scattering states cannot be stationary, as the
corresponding ‘current’ must not vanish. Thus, from Eq. (1), the corresponding eigenfunction must be
non-trivially time-dependent, in addition to the ‘energy exponent’. Also, it cannot be PT -symmetric,
or of any other formwhichmakes the current vanish. This conclusion excludes scattering solutions like
superpositions of pure PT -symmetric/anti-symmetric functions, specifically plane waves with real
or pure imaginary coefficients. It also cannot be a single plane wave. Therefore, particular boundary
conditions, e.g., only incoming flux in any one side (left or right) of the potential, are automatically
ruled out. One can have a situation like incidence from left, resulting into reflection back, but
no transmission. Additionally, as the scattering states are not PT -symmetric, the corresponding
eigenvalues cannot be real, and this physically means absorption/emission.

The allowed scattering states correspond to incidence from and emission to both directions,
which is precisely the case for arriving at Eq. (13), satisfying pseudo-Hermiticity in the process,
with complex amplitudes. As the ‘current’ vanishes, wave-function only in one side cannot exist,
thereby cannot be a scattering state. This condition was recently realized experimentally in the
CPA, or anti-laser [3]. Two coherent beams of laser were incident on a sample with an optical
profile respecting T -symmetry, which when unbroken, both reflection (ℜ) and transmission (ℑ)
amplitudes were observed to vanish. This was later shown to be a special case of the PT CPA
laser [4], which can generate stimulated emission, while shonewith coherent radiation under suitable
boundary conditions. It can also completely absorb that radiation for appropriate amplitude and phase
relationship, which precisely is the CPA system. As coherent radiation is essentially classical in nature,
the evaluation ofℜ andℑ is straightforward. Here, we have a quantummechanical analogue, utilizing
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plane waves instead of coherent radiation. This is analogous to the treatment of [4], where plane
waves are considered, representing individual Fourier components of laser. PT -symmetry results
in specific relations between the transfer matrix (M) elements, subsequently making the material a
perfect absorber or emitter for suitable boundary conditions. For quantum systems, an extra input,
the well-defined norm, is necessary to physically deal with matrix elements. Still, from our study, the
equivalence is obvious between the boundary conditions. As is evident, the experimental realization
of the PT CPA laser will shed much light on the structure of an appropriate inner product for
PT -symmetric systems.

3. Example: scattering by PT -symmetric Scarf-II potential

As a demonstration of the above conclusions, we considerPT -symmetric complexified 1-D Scarf-II
potential,

V (x) = A2
−


A(A + α)+ B2 1

cosh2(αx)
+ iB(2A + α)

tanh(αx)
cosh(αx)

, (16)

obtained from the real counterpart, by suitable complexification [21]. It asymptotically approaches
a real constant, allowing the scattering states to be plane-waves. This potential is exactly solvable,
allowing an algebraic treatment under supersymmetric (SUSY) quantum mechanics [22], with the
superpotential,W (x) = A tanh(αx)+ iB/ cosh(αx). This is a specific example of systems with hidden
supersymmetry incorporating spectral singularities [23], resulting into finite-gap singly periodic
spectrum.

The asymptotic analysis leads to the transmission and reflection coefficients, respectively, as,

ℑ


k,

A
α
,
iB
α


=
Γ [−A/α − ik/α]Γ [1 + A/α − ik/α]Γ

 1
2 − B/α − ik/α


Γ

 1
2 + B/α − ik/α


Γ (−ik/α)Γ [1 + ik/α]Γ 2

 1
2 − ik/α

 and,

ℜ


k,

A
α
,
iB
α


= iℑ


k,

A
α
,
iB
α

 
cos(πA/α) sin(πB/α)

cosh(πk/α)
+

sinh(πA/α) cos(πB/α)
sinh(πk/α)


. (17)

Here k =
α
i (n − A/α) is the asymptotic momentum and n is the label of the corresponding

normalized eigenstate. Subsequently, under the Dirac–von-Neumann scalar product,

|ℜ|
2
+ |ℑ|

2

= 1 +


2 cos2(πA/α) sin2(πB/α) sinh2(πk/α)+ sin(2πA/α) sin(2πB/α) sinh(2πk/α)

sinh2(πk/α)+ sin2(πA/α) cos2(πB/α)

cosh2(πk/α)− cos2(πA/α) sin2(πB/α) sinh2(πk/α)


. (18)

The flux is not conserved, owing to the imaginary part of the potential, causing absorption or emission.
This fails to incorporate the unbroken PT -symmetry phase, which has been experimentally estab-
lished [2]. The deviation term in the square bracket does not vanish for preservedPT -symmetry [21],
which was also known earlier [24]. It does vanish for B → ±iB, yielding back the Hermitian system.

In absence of a definite norm, the direct verification of flux conservation for a generic PT -
symmetric system is ambiguous, and |ℑ|

2 and |ℜ|
2 need to be re-defined suitably. Owing to the

realness of the discrete spectrum for unbroken PT -symmetry, it is expected that the modified
norm can be conserved. However, we have demonstrated that the characteristic scalar product of
such systems is subjected to a natural non-local interpretation, thus altering the allowed boundary
conditions altogether. We verify them explicitly in this example, following the treatment for its real
counterpart [25]. The corresponding Schrödinger equation has two independent solutions, which
asymptotically have the forms,

F1,2(x; A, B, α, k) −→


A1,2 exp(ikx)+ B1,2 exp(−ikx) if x −→ −∞

C1,2 exp(ikx)+ D1,2 exp(−ikx) if x −→ ∞
, (19)
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where,

A1 =
Γ


−B/α − A/α +

1
2


Γ (−2ik/α)

Γ (−A/α − ik/α)Γ

−B/α +

1
2 − ik/α

 eπ(k/α+iB/α+iA/α)
− A/α + 2ik/α,

B1 =
Γ


−B/α − A/α +

1
2


Γ (2ik/α)

Γ (−A/α + ik/α)Γ

−B/α +

1
2 + ik/α

 eπ(−k/α+iB/α+iA/α)
− A/α − 2ik/α,

C1 =
Γ


−B/α − A/α +

1
2


Γ (2ik/α)

Γ (−A/α + ik/α)Γ

−B/α +

1
2 + ik/α

 e π2 (k/α−iB/α−iA/α)
− A/α − 2ik/α,

D1 =
Γ


−B/α − A/α +

1
2


Γ (−2ik/α)

Γ (−A/α − ik/α)Γ

−B/α +

1
2 − ik/α

 e π2 (−k/α−iB/α−iA/α)
− A/α + 2ik/α,

A2 = −i
Γ

 3
2 + A/α + B/α


Γ (−2ik/α)

Γ
 1
2 + B/α + ik/α


Γ (1 + A/α − 1k/α)

eπ(k/α−iB/α−iA/α)
− A/α + 2ik/α,

B2 = −i
Γ

 3
2 + A/α + B/α


Γ (−2ik/α)

Γ
 1
2 + B/α + ik/α


Γ (1 + A/α + 1k/α)

eπ(k/α+iB/α+iA/α)
− A/α − 2ik/α,

C2 = i
Γ

 3
2 + A/α + B/α


Γ (−2ik/α)

Γ
 1
2 + B/α + ik/α


Γ (1 + A/α + 1k/α)

e
π
2 (−k/α+iB/α+iA/α)

− A/α − 2ik/α,

D2 = i
Γ

 3
2 + A/α + B/α


Γ (−2ik/α)

Γ
 1
2 + B/α + ik/α


Γ (1 + A/α − 1k/α)

e
π
2 (−k/α+iB/α+iA/α)

− A/α + 2ik/α. (20)

These coefficients are all complex for arbitrary momentum k, and do not vanish in general. The
phase factor in each of them carries a term linear in iB, the parameter signifying PT -symmetry,
ensuring the overall complexity of the coefficients. This is in accordancewith the boundary conditions
obtained in the previous section for scattering states, that plane waves from both x = ±∞ with
complex coefficients must constitute asymptotic states. A very recent study of PT -symmetric Scarf-
II potential [26] agrees with the same.

Clearly, the system is asymptotically Hermitian, and the flux attenuation/enhancement takes place
locally. Thus the conclusion fromEq. (18),which is asymptotically valid, is justified. Despite the system
being asymptotically Hermitian, the scattered particle ‘carries’ the memory of the local symmetry of
theHamiltonian in terms of the constraints on the coefficients, which restricts our choice. Thuswe can
justify Eq. (9), and interpret the asymptotic behaviour of aPT -symmetric systemas themanifestation
of non-stationarity of a scattering state, subjected to the intrinsic symmetry of the system.

4. Conclusion

In conclusion, suitable continuity equation can be constructed and utilized for PT -symmetric
systems to obtain information about the nature of scattering and bound states. It results in a conserved
non-local scalar product, necessitating the presence of both incoming and outgoing states for the
asymptotic case of scattering. Further, instead of a local probability density, non-local correlation
dictates the structure of bound, resonance and scattering states. Corresponding boundary conditions
have exact analogues for PT CPA laser and other optical systems. The lack of a local norm for the
generic scattering restricts the proper extraction of reflection and transmission coefficients, further
illuminating the inherent non-locality of such systems. However, classical analogues of such systems
are understood, especially optical ones [4], which bypass these difficulties, and can have various
practical uses as switches and detectors. Further, non-linear quantum mechanical PT -symmetric
systems [27] can yield novel conditions for stability of solutions in light of the unique boundary
conditions proposed here.



K. Abhinav et al. / Annals of Physics 331 (2013) 110–119 119

References

[1] C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243–5246;
C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201–2229;
C.M. Bender, S. Boettcher, H.F. Jones, V.M. Savage, J. Phys. A: Math. Gen. 32 (1999) 6771–6781.

[2] A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Phys.
Rev. Lett. 103 (2009) 093902.

[3] Y.D. Chong, Li Ge, Hui Cao, A.D. Stone, Phys. Rev. Lett. 105 (2010) 053910;
W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Science 331 (2011) 889;
Shourya Dutta-Gupta, Rahul Deshmukh, Achanta Venu Gopal, Olivier J.F. Martin, S. Dutta Gupta, Optim. Lett. 37 (2012)
4452.

[4] S. Longhi, Phys. Rev. A 82 (2010) 031801(R);
S. Longhi, Physics 3 (2010) 61.

[5] A. Mostafazadeh, J. Phys. A: Math. Theor. 45 (2012) 444024;
A. Mostafazadeh, M. Sarisaman, Proc. R. Soc. A 468 (2012) 3224–3246.

[6] C.M. Bender, F. Cooper, P.N. Meisinger, V.M. Savage, Phys. Lett. A 259 (1999) 224;
A. Mostafazadeh, Nuclear Phys. B 640 (2002) 419;
C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89 (2002) 270401;
C.M. Bender, D.C. Brody, H.F. Jones, Amer. J. Phys. 71 (2003) 1095;
G.S. Japaridze, J. Phys. A: Math. Gen. 35 (2003) 1709;
Z. Ahmed, J. Phys. A: Math. Gen. 36 (2003) 9711–9719.

[7] A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944–3951;
G. Scolarici, L. Solombrino, quant-ph/0211161, 2002;
L. Solombrino, quant-ph/0203101, 2002.

[8] A. Das, L. Greenwood, Phys. Lett. B 678 (2009) 504–507.
[9] P. Siegl, Pramana 73 (2009) 279–286.

[10] B. Bagchi, C. Quesne, M. Znojil, Modern Phys. Lett. A 16 (2001) 2047–2057.
[11] G. Ĺevai, F. Cannata, A. Ventura, J. Phys. A: Math. Gen. 34 (2001) 839;

G. Ĺevai, F. Cannata, A. Ventura, J. Phys. A: Math. Gen. 35 (2002) 5041;
Z. Ahmed, Phys. Lett. A 324 (2004) 152;
G. Ĺevai, E. Magyari, J. Phys. A 42 (2009) 195302;
F. Cannata, J-P. Dedonder, A. Ventura, Ann. Phys. (N. Y.) 322 (2007) 397;
A. Mostafazadeh, Phys. Rev. A 80 (2009) 032711;
H. Schomerus, Phys. Rev. Lett. 104 (2010) 233601.

[12] C.M. Bender, S. Boettcher, J. Phys. A: Math. Gen. 31 (1998) L273;
A. Khare, B.P. Mandal, Phys. Lett. A 272 (2000) 5;
B. Bagchi, S. Mallik, C. Quesne, R. Roychoudhury, Phys. Lett. A 289 (2001) 34;
Z. Ahmed, Phys. Lett. A 282 (2001) 343–348;
M. Znojil, G. Levai, Modern Phys. Lett. A 16 (2001) 2273;
C.M. Bender, M. Monou, J. Phys. A: Math. Gen. 38 (2005) 2179.

[13] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, third ed., Pergamon Press, 1991. Reprint
(Chapter I).

[14] C.M. Bender, D.C. Brody, S.F. Jones, Phys. Rev. Lett. 89 (2002) 270401; Amer. J. Phys. 71 (2003) 1095;
A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944.

[15] J.J. Sakurai, J. Nipolitano, Modern QuantumMechanics, Addison-Wesley, 2010, pp. 266–275.
[16] E. Merzbacher, Quantum Mechanics, third ed., John Wiley & Sons, Inc, 1988, pp. 99–102.
[17] J.C.J. Paasschens, T.Sh. Misirpashaev, C.W.J. Beenakker, Phys. Rev. B 54 (1996) 11887–11890.
[18] F. Correa, M.S. Plyushchay, Ann. Phys. (N. Y.) 322 (2007) 2493–2500;

F. Correa, V. Jakubsky, L.-M. Nieto, M.S. Plyushchay, Phys. Rev. Lett. 101 (2008) 030403.
[19] F. Correa, L.-M. Nieto, M.S. Plyushchay, Phys. Lett. B 659 (2008) 746–753;

M.S. Plyushchay, L.-M. Nieto, Phys. Rev. D 82 (2010) 065022.
[20] R.J. Rivers, Internat. J. Theoret. Phys. 50 (2011) 1081–1096.
[21] K. Abhinav, P.K. Panigrahi, Ann. Phys. (N. Y.) 325 (2010) 1198–1206;

K. Abhinav, P.K. Panigrahi, Ann. Phys. (N. Y.) 326 (2011) 538–539.
[22] F. Cooper, A. Khare, U.P. Sukhatme, Super Symmetry in Quantum Mechanics, World Scientific, Singapore, 2001 and

references therein.
[23] F. Correa, M.S. Plyushchay, Phys. Rev. D 86 (2012) 085028 and references therein.
[24] A. Mostafazadeh, Pramana 73 (2009) 269–277.
[25] A. Khare, U.P. Sukhatme, J. Phys. A: Math. Gen. 21 (1988) L501–L508.
[26] F. Correa, M.S. Plyushchay, Ann. Phys. 327 (2012) 1761–1783 and references therein.
[27] H. Cartarius, G. Wunner, Phys. Rev. A 86 (2012) 013612.

http://arxiv.org/quant-ph/0211161
http://arxiv.org/quant-ph/0203101

	Conserved correlation in  PT -symmetric systems: Scattering and bound states
	Introduction
	Continuity equation for  PT -symmetric systems: implication for the  S -matrix
	The non-local scalar and the norm
	The scattering properties

	Constrained boundary conditions: bound and scattering states
	Example: scattering by  PT -symmetric Scarf-II potential
	Conclusion
	References


