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We demonstrate that large class of PT-symmetric complex potentials,
which can have isospectral real partner potentials, possess two
different superpotentials. In the parameter domain, where the
superpotential is unique, the spectrum is real and shape-invariant,
leading to translational shift in a suitable parameter by real units. The
case of two different superpotentials, leading to same potential, yields
broken PT-symmetry, the energy spectra in the two phases being
separated by a bifurcation. Interestingly, these two superpotentials
generate the two disjoint sectors of the Hilbert space. In the broken
case, shape invariance produces complex parametric shifts.
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parametrization, can be isospectral to real potentials [7]. A generalized Pöschl-Teller-type complex
1. Introduction

The fact that two different superpotentials can give rise to same potential in supersymmetric quantum
mechanics (SUSY-QM) is well known [1]. The superpotential is deformed by an additive function, which
leads to the construction of isospectral Hamiltonians having a number of physical applications. Complex
potentials, particularly the ones having parity (P) and time reversal (T) invariance have attracted
significant attention in the recent literature [2]. Appearance of real eigenvalues in certain parameter
domain for these complex PT-symmetric potentials has led to considerable interest in this class of not so
well-studied spectral problems. It has been found that the spectrum is real, when the wavefunction
respects PT-symmetry, whereas complex eigenvalues, paired by complex conjugation are realized when
the wavefunctions do not respect the above symmetry. As a function of certain potential parameter(s), the
energy eigenvalues show bifurcation, when the spectra transits from real to complex values. Detailed
discussions and the progress in this field can be found in the following references [3] and [4]. A number of
models have been studied, both numerically and analytically for illustrating the above structure in [5], and
subsequently utilised in [6]. It was observed that complex PT-symmetric potentials, under suitable
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potential, of the above form, has been constructed by Ahmed [8], which reveals all the above-mentioned
features explicitly. Interestingly, it was found that SUSY only yields the real spectra, where wave-functions
respect PT-symmetry. Explicit solutions of differential equation led to the complex branch of the spectra
under different parametric conditions, where the solutions do not respect PT-symmetry. It is then natural
to ask, what is the precise relationship between SUSY and PT-symmetry and if the aforementioned result is
generic.

In this paper, it is shown that the presence of complex parameters in the superpotential can lead to the
realization of the PT-symmetric complex potential through two different superpotentials. As compared to
the case of isospectral deformation, in the present case the superpotentials do not differ by an additive
function. The difference in superpotentials appears through the complex constant parameters. In the
broken PT phase, two superpotentials are present leading to the same potential, whereas in the unbroken
phase the correspondence between the potential and superpotential is unique. This is possible only for
complex potentials and does notmanifest in the case of the real ones. The two different parameter domains
explain the observed bifurcation separating the unbroken PT case from the broken one. In the latter phase,
shape-invariance leads to complex translational shifts in the relevant parameters, whereas in the former
case the translation is in real units [9]. Very interestingly, in case of complex eigenvalues, half of the Hilbert
space is generated by one superpotential, whereas the other one generates the remaining part of the
wavefunctions.

The paper is organized as follows. In the following, we provide a brief introduction to SUSY-QM and
proceed to construct the potentials from a general superpotential, in Section 3, starting from Ahmed's
potential. After illustrating the nature of PT-symmetry in the broken sector, we derive the spectra, in both
broken and unbroken phases, through shape-invariance.We then list examples of a large class of potentials
exhibiting the above characteristics. In Section 4, a number of solvable complex potentials are constructed
through the above procedure, which are not PT-symmetric. These shape-invariant potentials constitute
complexified Pöschl-Teller-type [20] and Coulomb-type potentials, which undergo complex translation in
the appropriate parameter domain. Finally, we conclude after pointing out a number of interesting
directions in which the present investigation can be advanced.

2. Supersymmetric Quantum Mechanics

Supersymmetric quantum mechanics [1,10–12] interrelates the spectra of two different Hamiltonians,
H±, which can be written in the factorized form [13], where H−(x)=K†K and H+(x)=KK† (ℏ=1=2 m):
here,

and W
HFðxÞ = − ∂2

∂x2
+ VFðxÞ:
In terms of the superpotential W(x), the potentials are
VF = W2ðxÞF ∂WðxÞ
∂x ; ð1Þ

K† = − ∂
∂x + WðxÞ

� �
;

K =
∂
∂x + WðxÞ
� �

;

ðxÞ = − 1
ψ0ðxÞ

∂ψ0ðxÞ
∂x ;

being the ground-state eigenfunction of H−(x).
ψ0(x)
It can be straightforwardly shown that, if ψn

−(x) is an eigenfunction of H−, Kψn
−(x) is an eigenfunction of

H+ with the same eigenvalue, except for the ground state of H− defined as Kψ0(x)=0. Similarly if ψn
+(x) is
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an eigenfunction of H+, then K†ψn
−(x) is an eigenfunction of H−. Taking into account the unpaired ground

state ψ0(x), the respective eigenvalues are related as,
with g
Eþn = E−n + 1:
The corresponding eigenfunctions satisfy,
ψþ
n ðxÞ = ½E−n + 1�−

1
2Kψ−

n + 1;

and ψ−
n + 1ðxÞ = ½Eþn �−

1
2K†ψ−

n :
It was shown by Gendenshtein [14] that if two isospectral potentials satisfy the relation
Vþðx; a0Þ = V−ðx; a1Þ + Rða1Þ; ð2Þ

a0 is a set of parameters for a given pair V±, a1= f(a0), and R(a1) is independent of x, then one can
where
construct a hierarchy of Hamiltonians,
Hs = − ∂2

∂x2
+ V−ðx; asÞ + ∑

s

k=1
RðakÞ

= − ∂2

∂x2
+ Vþðx; as−1Þ + ∑

s−1

k=1
RðakÞ

round state energy

Es0 = ∑
s

k=1
RðakÞ:
On identifying that H1=H+ and H0=H−, it is found that the spectrum of H− is given as
En0 = ∑
n

k=1
RðakÞ: ð3Þ
Isospectral potentials satisfying Eq. (2) are called shape-invariant [14]. Using the relation
ψ−
n ðx; a0Þ∝K†ðx; a0Þψ−

n ðx; a1Þ it can be shown that
ψ−
n ðx; a0Þ∝K†ðx; a0ÞK†ðx; a1Þ::::::::::::::K†ðx; an−1Þψ−

0 ðx; anÞ:
Therefore for shape-invariant potentials, one can solve the eigenvalue problem purely algebraically and
obtain the spectrum and corresponding eigenfunctions. Detailed analysis of the properties of PT-symmetric
quantum mechanical systems exhibiting supersymmetry has been carried out by Mostafazadeh [15] and
Plyushchay et al. [16], including the construction of appropriate norm [15]. The question of norm in general
pseudo-Hermitian Hamiltonian systems has been answered recently [17].

3. Construction of complex PT-symmetric potentials

Complex PT-symmetric potentials are known to have real eigenvalues, despite not being Hermitian in
the usual sense. Further, this realness of spectra survives only over a specific range of parameter values,
beyondwhich PT-symmetry is broken. In the broken PT range one observes complex conjugate spectra, as a
function of certain potential parameters, with the corresponding states connected by PT-operation. If such
a potential is shape-invariant, SUSY can be applied to algebrically obtain the spectra and corresponding
eigenfunctions.

Here, we start with a general superpotential, which leads to both real and complex spectra. Under
certain parametrization, the superpotential is unique, leading to real eigenvalues and corresponding wave-
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functions. For a different parametrization, two different superpotentials yield the same potential, leading to
complex conjugate eigenvalues with corresponding eigenfunctions related by PT-operation. As a result, we
arrive at the supersymmetric parameter condition for phase-transition of the spectrum from real to
complex conjugate values owing to spontaneous breaking of PT-symmetry. The experimental observation
of phase-transition in a PT-symmetric system has recently been reported by Guo et al. [18].

To start with, we consider Ahmed's potential [8], which is given as,
which

modu

using
VðxÞ = −V1sech
2ðαxÞ−iV2sechðαxÞtanhðαxÞ: ð4Þ
Explicit solution of the Schrödinger equation shows that it has both real and complex-conjugate
spectra, depending upon the relation among the real parameters V1 and V2, given as jV2 j≤V1 + 1

4
and

jV2 j N V1 + 1
4
, respectively [8].

In order to see the role of supersymmetry and PT-symmetry, we start with the complex superpotentials
WF
PT = ðAFiCPT ÞtanhðαxÞ + ðFCPT + iBÞsechðαxÞ; ð5Þ

A, B, CPT are real constant parameters. Instead of repeating CPT in both the coefficients above, in
where
general, one can start with different parameters. We have chosen them to be same to arrive at Ahmed's
potential. The general case will be discussed afterwards. The V−(x) corresponding to Eq. (5) is,
VF
−ðxÞ = − ðAFiCPT ÞðAFiCPT + αÞ−ðFCPT + iBÞ2

h i
sech2ðαxÞ

−iðFiCPT−BÞ 2ðAFiCPT Þ + α
h i

sechðαxÞtanhðαxÞ;
ð6Þ

in general may not be PT symmetric. To be PT-symmetric, the coefficient of the first term must be
which
real and that of the second termmust be purely imaginary. Implementing these conditions, one arrives at a
unique relation:
CPT 2ðA−BÞ + α½ � = 0: ð7Þ
This is the most important result of the present paper, which we now study in more detail.

Condition. 1. If CPT=0, then
WPTðxÞ≡WrealðxÞ = AtanhðαxÞ + iBsechðαxÞ; ð8Þ

gives

VF
−ðxÞ≡V−ðxÞ = − AðA + αÞ + B2

� �
sech2ðαxÞ + i Bð2A + αÞð ÞsechðαxÞtanhðαxÞ: ð9Þ
This matches with Ahmed's potential, with the identifications,
V1 = AðA + αÞ + B2
;

and V2 = −Bð2A + αÞ;

tisfy the reality condition jV2 j≤V1 + 1
4
. From Eqs. (1), (2), (3) and (9) we get the corresponding
and sa

known spectrum [11],
En = −ðnα−AÞ2; ð10Þ

le a constant term. One can also obtain the corresponding eigenfunctions:

ψnðxÞ∝ sechðαxÞð Þ
A
αexp½−i

B
α
tan−1 sinhðαxÞð Þ�P−A

α
−B

α
−1

2
;−A

α
+ B

α
−1

2
n isinhðαxÞright�;½ ð11Þ

Eq. (4) as per the prescription in [9], which matches with those given in [8] for real spectrum.
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Condition. 2. For CPT≠0, from Eq. (7), one gets A = B−α
2
, which when substituted in Eqs. (5) and (6)

yields
and
WF
PTðxÞ≡WF

c ðxÞ = AFiCPT
� �

tanhðαxÞ + FCPT + i A +
α
2

� �h i
sechðαxÞ ð12Þ

VF
−ðxÞ≡Vc

−ðxÞ = − 2AðA + αÞ−2ðCPT Þ2 +
α2

4

" #
sech2ðαxÞ

+ i 2AðA + αÞ + 2ðCPT Þ2 +
α2

2

" #
sechðαxÞtanhðαxÞ:

ð13Þ
From the above we get
V1 = 2AðA + αÞ−2ðCPT Þ2 +
α2

4
;

and V2 = − 2AðA + αÞ + 2ðCPT Þ2 +
α2

2

" #
;

satisfy the condition jV2 j N V1 + 1
4
. It needs to be emphasized that both the superpotentials in
which

Eq. (5) leads to the same PT-symmetric complex potential, corresponding to broken PT symmetry. We can
obtain their spectrum through shape-invariance,
EFn = 2n AFiCPT
� �

α + ðnαÞ2; ð14Þ

has complex conjugate pairs and each member of a complex conjugate pair can be connected to
which
one of the two superpotentials in Eq. (12). Same can be said about the corresponding eigenfunctions,
ψF
n ðxÞ∝ sechðαxÞð Þ

1
α

AFiCPT
� �

exp − i
α

A +
α
2

� �
∓CPT

α

 !
tan−1 sinhðαxÞð Þ

" #

P
∓i2C

PT

α
;2A

α
+ 1

2
n isinhðαxÞ½ �;

ð15Þ

match with the previous results [8], under SUSY parametrization. They are related to each-other
which

through PT transformation. Here, P
∓i2c

PT

α
;2A

α
+ 1

2
n isinhðαxÞ½ � is the nth order Jacobi's Polynomial [19] with the

general expression,
Pp;q
n ðiξÞ = 1

2n ∑
n

m=0

n + p
m

� �
n + q
n−m

� �
iξ−1ð Þn−m iξ + 1ð Þm: ð16Þ
Here, ξ=sinh(αx) and n is positive. Asymptotically, as x→±∞, one has jPp;q
n ðiξÞ j∼ð1 + ξ2Þ

n
2≡ coshðαxÞð Þn, which

becomes singular unless A
α
N n; A

α
being the real power of sech(αx) in Eq. (15). Thus the spectrum in Eq. (14) is

physically bounded from above by this constraint.
As mentioned earlier, one can start with two different parameters, say CPT and DPT. Then we arrive at

two conditions,
DPT =
2BCPT

2A + α
;

and ð2A + αÞ2−ð2BÞ2
h i

CPT = 0;

potential to be PT-symmetric. Then if CPT≠0, we have ± (2A+α)=2B and DPT=±CPT, which
for the
leads to the same results for the broken PT case. If CPT=0, then A and B are unrestricted, giving the same
results as in the unbroken PT case.
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The key observation about the potentials obeying the above property is that the odd parity part of the
potential must have a purely imaginary coefficient and the even part must have a purely real one. With
these constraints, one can construct a large class of PT-symmetric potentials, which are shape-invariant,
starting from the known real shape-invariant potentials. Below, in Table 1, we list the superpotentials, the
condition for which spectral bifurcation takes place leading from a PT-symmetric ground state to one
which does not respect the same.

The complex conjugate spectra appear due to spontaneous breaking of PT-symmetry, the specific
parametrization condition CPT≠0 can be identified as the SUSY criteria for broken PT. This is different from
the analytic parameter criterion, where PT is unbroken over a range of parameters. In contrast, here we
have a discreet condition CPT=0 for the same. Furthermore, broken PT results in the bifurcation of the
corresponding Hilbert space in terms of two distinct superpotentials; the corresponding eigenfunctions
map into each-other under PT operation. They correspond to a unique complex potential V−

c (x), which is
still PT-symmetric as required. Apart from α, the Ahmed potential has two independent parameters owing
to the conditionA = B−α

2
, just like the corresponding potential for unbroken PT following CPT=0. Same

can be seen in case of all the potentials listed above. As mentioned earlier, the non-uniqueness of the
superpotential is well known from isospectral deformation, which incorporates an additional function
obeying Bernoulli's equation [11]. Here, the non-uniqueness arises parametrically.
Table 1
List of shape-invariant PT-symmetric potentials, with their respective superpotentials and parametric conditions for spectral
bifurcation. The corresponding energies and ground state wave-functions are also shown. (Here we have taken CPT=C for
simplicity.).

W(x; A, B, C) Condition Cases V−(x) Energy(En) Ground-state

(A± iC)
× tanh(αx)
+ i B

ðAFiCÞ

C(2A+α) =0 C=0 −A(A+α)sec2(αx)
+2iBtanh(αx)

A2−(A−nα)2

−B2

A2 + B2

ðA−nαÞ2
sechðαxÞð Þ

A
αexpð−iB

A
xÞ;

AN0

C≠0, A = −α
2

(A2+C2)sec2(αx)
+2iBtanh(αx)

(A± iC)2

−(A± iC−nα)2

− B2

ðAFiCÞ2

+ B2

ðAFiC−nαÞ2

sechðαxÞð Þ
1
α
ðAFiCÞ

× exp − B
A2 + C2ðiAFCÞx

� �
AN0

−(A± iC)
×coth(αx)
+ i B

ðAFiCÞ

C(2A−α) =0 C=0 A(A−α)csch2(αx)
−2iBcoth(αx)

A2−(A+nα)2

−B2

A2 + B2

ðA + nαÞ2

sinhðαxÞð Þ
A
αexp −iB

A
x

� �
;

− 1
2α

≤Ab0

C≠0, A = α
2

−(A2+C2)csch2(αx)
−2iBcoth(αx)

(A± iC)2

−(A± iC+nα)2

− B2

ðAFiCÞ2

+ B2

ðAFiC + nαÞ2

sinhðαxÞð Þ
1
α
ðAFiCÞ

× exp − B
A2 + C2ðiAFCÞx

� �
;

− 1
2α

≤Ab0

(A± iC)
× tan(αx)
+ i B

ðAFiCÞ

C(2A−α) =0 C=0 A(A−α)sec2(αx)
+2iBtan(αx)

−A2+(A+nα)2

−B2

A2 + B2

ðA + nαÞ2

cosðαxÞð Þ
A
αexp −iB

A
x

� �

C≠0, A = α
2

−(A2+C2)sec2(αx)
+2iBtan(αx)

−(A± iC)2

+(A± iC+nα)2

− B2

ðAFiCÞ2

+ B2

ðAFiC + nαÞ2

cosðαxÞð Þ
1
α
ðAFiCÞ

× exp − B
A2 + C2ðiAFCÞx

� �

(A± iC)
×cot(αx)
+ i B

ðAFiCÞ

C(2A+α) =0 C=0 A(A+α)csc2(αx)
+2iBcot(αx) −A2+(A−nα)

2

−B2

A2 + B2

ðA−nαÞ2

sinðαxÞð Þ−
A
αexp −iB

A
x

� �
;

0bA≤ 1
2α

C≠0, A = −α
2

−(A2+C2)csc2(αx)

+2iBcot(αx)

−(A± iC)2 +(A± iC−nα)2

− B2

ðAFiCÞ2
+ B2

ðAFiC−nαÞ2

sinðαxÞð Þ−
1
α
ðAFiCÞ

× exp − B
A2 + C2ðiAFCÞx

� �
;

0bA≤ 1
2α
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4. Non-PT-symmetric potentials

In the previous section, we have seen how a generic isospectral complex potential, under certain
parametric constraints, can demonstrate a link between PT-symmetry and SUSY-QM. We now study
shape-invariant complex potentials which need not have PT-symmetry. Since these potentials are shape-
invariant, one can obtain their spectra analytically.

We start with a minimal complexification of the well-known Pöschl–Teller [20] potential:
by con

and

and

and

and

and

and
UðxÞ = Uasech
2ðαxÞ + Ubcsch

2ðαxÞ; ð17Þ
sidering two superpotentials

W1ðxÞ = AtanhðαxÞ + iBcothðαxÞ;
W2ðxÞ = iAtanhðαxÞ + BcothðαxÞ: ð18Þ
The respective isospectral potentials are,
UF
1 ðx;A;BÞ = −AðA∓αÞsech2ðαxÞ−BðBFiαÞcsch2ðαxÞ;

UF
2 ðx;A;BÞ = AðAFiαÞsech2ðαxÞ + BðB∓αÞcsch2ðαxÞ:

ð19Þ
Both of them are shape-invariant since,
Uþ
1 ðx;A;BÞ = U−

1 ðx;A−α;B + iαÞ + ðA + iBÞ2−ðA + iB−2Þ2;
Uþ
2 ðx;A;BÞ = U−

2 ðx;A + iα;B−αÞ + ðiA + BÞ2−ðiA + B−2Þ2:
ð20Þ
This immediately yields their respective spectra:
E1n = 4nαðA−nαÞ + i4Bnα;

E2n = 4nαðB−nαÞ + i4Anα:
ð21Þ
The separations between two successive energy levels Δ En=En−En−1 are given respectively as
E1n = −4αðA−2nα−αÞ + i2Bα;

E2n = −4αðB−2nα−αÞ + i2Aα:
ð22Þ
The corresponding eigenfunctions are,
ψ1
nðxÞ∝ coshðαxÞ½ �−

A
α sinhðαxÞ½ �−iB

αP
ð−iB

α
−1

2
;−A

α
−1

2
Þ

n sinhðαxÞð Þ;

ψ2
nðxÞ∝ coshðαxÞ½ �−iA

α sinhðαxÞ½ �−
B
αP

ð−B
α
−1

2
;−iA

α
−1

2
Þ

n sinhðαxÞð Þ:
ð23Þ
It is straightforward to check that, when the above potential is real, one finds the corresponding
energies to be En

real=4nα(A+B−nα), with energy spacings ▵En
real=−4α(A+B−2nα−α). The

corresponding eigenfunctions are ψreal
n ðxÞ∝ coshðαxÞ½ �−

A
α sinhðαxÞ½ �−

B
αP

ð−B
α
−1

2
;−A

α
−1

2
Þ

n sinhðαxÞð Þ.
Due to the minimal complexification the original real spectra turns into a complex spectra with the real

part mimicking the original spectra. Interestingly, the imaginary part of the energy displays equispaced
harmonic oscillator-like spectra. The non-uniqueness of the original spectra arising from infinite possible
combinations of parameters A and B, giving the same (A+B), is also removed. As in both the examples of
complexification, only the parameter that got multiplied with i appears in the equispaced imaginary
spectra, the complexification process does not differentiate between the two functions appearing in the
superpotential.
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As we have seen earlier, the asymptotic behavior of Jacobi's polynomials, |Pnp,q|∼(sinh(αx))n, constrains

the n values. For ψn
1(x), the constraint on spectra is nbA

α
, with−A

α
being the power of cosh(αx) in ψn

1(x). On

the same ground, the corresponding constraint on spectra for ψn
2(x) is nbB

α
,−B

α
being the power of sinh(αx)

in ψn
2(x).
From Eq. (23), we see that the powers appearing in the wave-functions become imaginary. In case of

the first wave-function in Eq. (23), this completely removes the singularities of the function sinh(αx) for
the whole range of B. Similarly, the singularity of the function cosh(αx) is removed in the second case for
the whole range of A. Thus wave-functions for these complexified potentials are normalizable over a greater
range of parameters than those belonging to their real counterpart [21].

One can construct a complex Coulomb type potential starting with the superpotential,
which

where

is sati
WðrÞ = iα
r

+ β; ð24Þ

results in the potentials

VFðr;α;βÞ = −αðαFiÞ
r2

+
i2αβ
r

+ β2
:

If the coefficient of 1
r
, αβ is constant(say e), then one can compare V− with the radial Coulomb potential
VCðrÞ =
lðl + 1Þ

r2
− e

r
;

l and e carry the conventional meanings. The shape-invariance condition,

Vþðr;αÞ = V−ðr;α + iÞ + γ2 1
α2 −

1
ðα + iÞ2

� �
;

sfied and one finds,

En = γ2 1
α2 −

1
ðα + inÞ2

� �
; ð25Þ

is similar to the Hydrogen spectra. Starting from the superpotential in Eq. (23), the complex
which
eigenfunctions can be obtained [11]. For example the ground-state wavefunction is given by
ψ0ðrÞ∝riαexp−βr
; ð26Þ

is well-behaved over the whole range of the real parameter α, unlike the well known real
which
counterpart.

5. Conclusions

In conclusion, for a large class of potentials, it is found that a given PT-symmetric complex potential can
be realized from two parametrically different superpotentials. In the parameter domain, where the
superpotential is unique, the Hamiltonians yield real eigenvalues and the latter leads to the broken PT
phase. In this case, the two superpotentials yield two disjoint parts of the Hilbert space of the Hamiltonian
and shape-invariance leads to complex shifts in the appropriate potential parameters. Higher-order
supersymmetry has been applied to construct new classes of PT-symmetric potentials [22], whichmay also
reveal the features found here. Our procedure also yields non-PT-symmetric potentials with complex
eigenvalues, which can be obtained through shape-invariance. This feature may manifest in many-body
systems of the Calogero–Sutherland type [23–25]. This dynamical system is currently under investigation.
Finally, we have studied here translation-type shape-invariance. It is worth investigating, through our
method complex supersymmetric potentials where shape invariance arises through scaling of the
parameters.
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