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Abstract. We demonstrate the existence of complex solitary wave and periodic solutions of the Korteweg-
de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations. The solutions of the KdV (mKdV)
equation appear in complex-conjugate pairs and are even (odd) under the simultaneous actions of parity
(P) and time-reversal (T ) operations. The corresponding localized solitons are hydrodynamic analogs of
Bloch soliton in magnetic system, with asymptotically vanishing intensity. The PT -odd complex soliton
solution is shown to be iso-spectrally connected to the fundamental sech2 solution through supersymmetry.
Physically, these complex solutions are analogous to the experimentally observed grey solitons of non-liner
Schrödinger equation, governing the dynamics of shallow water waves and hence may also find physical
verification.

1 Introduction

The celebrated Korteweg-de Vries (KdV) equation is a
well-studied non-linear dynamical system, first evoked for
the description of solitary waves [1] in shallow water [2].
It has, since then, found much applications [3]. An inte-
grable model [4], it arises from the compatibility condi-
tion of two linear equations, the well-known Lax-pair [5].
The fact that one of them is the linear Schrödinger op-
erator, connects this non-linear equation to quantum me-
chanical eigenvalue problem of the reflectionless poten-
tial [6,7]. It has both localized and periodic cnoidal wave
solutions, which appear in the Lax equation as poten-
tials, giving rise to bound states [8] and band struc-
ture [9], respectively. A number of methods, viz., inverse
scattering [10], Hirota bilinear [11], Bäcklund transforma-
tion [12–15] etc., have been developed to find the general
multi-soliton solutions of the KdV hierarchy. The KdV so-
lutions are connected by the Miura transformation [16] to
the modified KdV (mKdV) equation [17], which also has
found diverse physical applications. It appears in the de-
scription of van Alfvén waves in collisionless plasma [18],
cosmic plasma [19], phonons in anharmonic lattice [20],
interfacial waves in two-layer liquid with gradually vary-
ing depth [21], water waves [22,23], transmission lines in
Schottky barrier [24] and ion acoustic solitons [25–27], to
mention a few.

In addition to the fundamental localized soliton so-
lution: −2α2sech2[α(x − 4α2t)] and its periodic counter-
part, −2mα2cn2[α(x − 4(2m − 1)α2t)], recently real su-
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perposed solutions have been found to satisfy the KdV
equation [28,29]. Here, we show that KdV equation pos-
sesses PT -symmetric, localized and cnoidal wave solu-
tions, which appear in complex conjugate pairs. Interest-
ingly, the sum of the paired solution is also a solution of
the KdV equation, whereas the difference is not. The ex-
istence of these solutions can be traced to the fact that,
there are two distinct mKdV equations,

v1,t − 6v2
1v1,x + v1,xxx = 0

and
v2,t + 6v2

2v2,x + v2,xxx = 0,

whose solutions are related through v → iv. The Miura
transformation for the solution of KdV, u = v2 ± vx,
then implies that, u = −v2 ± ivx, is also a solution. We
find complex PT -odd solutions for the mKdV equation,
where the sum and the differences of the pair are also
solutions. These solutions have not been observed ear-
lier, and reported here for the first time. Our solutions,
in turn, generate more general complex superposed solu-
tions for the KdV equation. The complex soliton solutions
are analogs of Bloch solitons in magnetic systems [30]. The
PT -symmetric soliton solution is shown to be isospectrally
related to the fundamental solution sech2x, in the Lax
equation. These complex solutions of KdV and mKdV are
analogous to the complex grey solitons of NLSE. The fact
that KdV also describe water waves indicate that com-
plex soliton may find experimental observation. As mKdV
is connected with NLSE, it may provide physical obser-
vation of grey soliton in shallow water waves and BEC.
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Fig. 1. Plots of real (solid) and imaginary (dashed) parts of
u(ζ) = cn2(ζ) + isn(ζ)dn(ζ), for m = 1 (purple) and m =
0.25 (green). The inset shows intensities of superposed (red)
and fundamental (blue) soliton solutions, with the latter being
larger. For all the cases, α = 1.

Interestingly, the solutions of NLSE correspond to spin
excitation in magnetic systems [31,32].

2 Complex superposed solutions

We start here with the KdV equation,

ut − 6uux + uxxx = 0,

where, u = u(x, t), ut = ∂u
∂t , ux = ∂u

∂x and uxxx = ∂3u
∂x3 .

2.1 cn2 ± isndn type solution

It is straightforward to check that, the following pair of
complex periodic solutions satisfy the KdV equation:

u(x, t) = Acn2(ζ,m) + iBsn(ζ,m)dn(ζ,m),

where ζ = α(x−cα2t), provided A = −mα2, B = ±
√
mα2

and c = (2m − 1), m being the modulus parameter.
Evidently, velocity c exhibits two disjoint domains: for
1
2 < m ≤ 1, the solution is right moving, while for the
remaining half, 0 < m < 1

2 , it is left moving. It is inter-
esting to note that, the sum of the complex pair is the
well-known cnoidal wave solution, with c = 4(2m − 1)
and A = −2mα2, whereas the difference of the pair is no
longer a solution. The real (uR) and imaginary parts (uI)
of the solutions are plotted in Figure 1, which are even
and odd functions of the argument, respectively. The fun-
damental soliton has higher intensity in comparison to the
superposed solution.

2.2 cn2 ± isncn type solutions

The following factorizable, superposed solution also satis-
fies KdV equation:

u(x, t) = Acn2(ζ,m) + iBsn(ζ,m)cn(ζ,m) + βα2,

Fig. 2. Plots of real (solid) and imaginary (dashed) parts of
u(ζ) = cn2(ζ) + isn(ζ)cn(ζ), for m = 1 (purple) and m = 0.25
(green). The real parts are symmetric, whereas the imaginary
ones are antisymmetric about ζ. For α = 1, the inset shows
intensities of superposed (red) and fundamental (blue) soliton
solutions, with the latter being larger.

provided A = −mα2, B = ±A and c = (5m − 4) − 6β.
As in the previous case, here also, oppositely propagating
modes occupy two different domains of m. The real and
imaginary parts of the solutions are plotted in Figure 2.
Here also, addition of the paired localized solutions (m =
1) yields the fundamental soliton with higher intensity.

2.3 Remarks and observations

For m = 1, superposed pairs reduce to PT -symmetric
complex form: u(x; t) = sech2ζ ± isechζtanhζ. Use of the
Cole-Hopf transformation: v = Ψx

ψ , in one of the Miura
route: u = v2+vx, yields u = ψxx

ψ . The Galilean invariance
of the KdV equation [33] allows a constant shift in u,
leading to

−ψxx + [λ+ u(x, t)]ψ = 0,
the one dimensional Schrödinger equation with a Scarf-
type PT -symmetric potential [34–36]. Soliton solutions
can be generated through iso-spectral deformation of the
potential [37,38], wherein both the wave function and the
potential can change, leaving the spectrum invariant. De-
pending on the number of bound states, this iso-spectral
flow introduces parameters, suitably interpretable as time
variables [39]. The complex Scarf potential is known to be
iso-spectral to the real sech2x potential [40], explaining
the common real eigenvalues for both these potentials.

KdV also possesses real superposed singular [41] solu-
tion: u(x, t) = A cosech2ζ +Bcosechζcothζ, with A = α2,
B = ±α2 and c = 1.

3 Complex superposition solutions

For the mKdV equation,

vt − 6v2vx + vxxx = 0,

there exist solutions in the form of complex superposition.

http://www.epj.org
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Fig. 3. Plots of real (solid) and imaginary (dashed) parts of
u(ζ) = sn(ζ)+icn(ζ), for m = 1 (purple) and m = 0.25 (green).
The real parts are antisymmetric, whereas the imaginary ones
are symmetric about ζ. The inset shows intensities of individual
(black), added (red) and subtracted (blue) fundamental soliton
solutions, with α = 1.

3.1 sn ± icn type solutions

The following parity odd superposition solution solves
mKdV equation:

v = Aαsn(ζ,m) + iBαcn(ζ,m),

provided A = B = ±
√
m
2 and c = m

2 − 1. Unlike KdV,
the sum of the pair, as well as their difference, simulta-
neously satisfy the mKdV dynamics. In case of the sum,
v = 2Aαsn(ζ,m) is an exact solution, when c = 5(m− 5)
and A = ±

√
m
2 , while for the difference, v = 2iBαcn(ζ,m)

is also an exact solution, provided c = (2m − 1) and
B = ±

√
m
2 . These form of solutions generate more gen-

eral superposed solutions for KdV equation. The real and
imaginary parts of the paired solutions are plotted in
Figure 3, which are odd and even functions of the ar-
gument, respectively. The corresponding intensity is con-
stant, I = mα2

4 .

3.2 sn ± idn type solutions

Another form of complex periodic pair will satisfy the
mKdV equation:

v = Aαsn(ζ,m) + iBαdn(ζ,m),

provided A = ±
√
m
2 , B = ± 1

2 and c = 1
2 −m. In case of

m = 1, one obtains v(x, t) = 1
2 (tanhζ ± isechζ), which is

odd under PT operation. It is interesting to note that, the
velocity of the pair, sn ± icn is −1/2 times the velocity
of dn solution and the velocity of the pair, sn ± idn is
−1/2 times the velocity of cn solution. Figure 4 plots the
real and imaginary parts of the paired solutions, which
again are odd and even functions, respectively. Intensity
associated with the excitation is constant, I = α2

4 and

Fig. 4. Plots of real (solid) and imaginary (dashed) parts of
u(ζ) = sn(ζ) + idn(ζ), for m = 1 (purple) and m = 0.25
(green). The real parts are antisymmetric, whereas the imagi-
nary ones are symmetric about ζ. The inset shows intensities
of individual (black), added (red) and subtracted (blue) fun-
damental soliton solutions, with α = 1.

is independent of the modulus parameter. Real, singular
superposition solutions of the form v(x, t) = A cosechζ +
B cothζ, also satisfy mKdV dynamics, with B = A = ±α

2
and c = −1/2.

4 Conclusion

In conclusion, trivially PT -symmetric KdV equation is
shown to possess PT -symmetric complex solutions, with
asymptotically vanishing intensity for the solitons. In the
corresponding Lax equation, the PT -symmetric potential
supports real eigenvalues and is iso-spectrally connected to
the real potential sech2x, the fundamental soliton solution.
Iso-spectral deformation [38] has been useful in generating
the multi-soliton solution for the KdV equation. The real-
ization of the same in the case of complex PT -symmetric
potentials needs careful investigation. The fact that in the
PT -symmetric phase, an inner product [42] is defined,
may facilitate in obtaining these multi-soliton solutions
through iso-spectral deformation. For the mKdV equation,
PT -odd solutions have been found to be exact solutions,
which generate general PT -symmetric potentials for the
KdV equation, through Miura transformation. The KdV
and other integrable systems, like Boussinesq hierarchy,
manifest in two-dimensional induced gravity [43–45] and
conformal field theory [46]. The implication of the complex
PT -symmetric solutions in the context of two-dimensional
gravity is worth exploring. Here, we have not studied the
KdV and mKdV equations with time dependent coeffi-
cients [47], which needs further study. Under certain con-
dition these equations are integrable and exhibit solitary
waves solution. The other non-linear equations like NLSE
also admits complex solitons known as grey solitons. Soli-
tons of NLSE and mKdV are connected. Hence it is worth
exploring the connection of complex grey soliton in BEC
with [48] and without external potential. However, being
PT -invariant complex solutions, they could have some
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physical significance including in coupled optical waveg-
uides [49,50] and multi-front wave collisions [51].
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49. B. Peng, S.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,

G.L. Long, S. Fan, F. Nori, C.M. Bender, L. Young, Nat.
Phys. 10, 394 (2014)
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