Prova scritta di statistica avanzata per l'analisi dei dati Laurea magistrale in Fisica, U. di Trieste – A.A. 2018-2019 (D. Tonelli)

Questions

- 1. What does the 1σ statistical uncertainty in the outcome of a counting experiment represent? Is one uncertain on the number of counts observed? If in one experiment I observe zero, what is the uncertainty I should assign? Comment.
- 2. Is it correct to state that if two random variables are uncorrelated they are also statistically independent? Why?
- 3. Given two continuous random variables *x* and *y*, write out in symbolic form the corresponding joint and conditional pdfs.
- Discuss briefly the essential conceptual difference between the frequentist and Bayesian meanings of probability.
- 5. Expose the formulation of the Bayes theorem discussing briefly the various components.
- 6. Do frequentist statisticians use the Bayes theorem? Comment.
- 7. Is the special role of flat priors in Bayesian inference justified? Why?
- 8. What is a likelihood function and what does it express?
- 9. How does a likelihood function differs from a pdf?
- 10. What is an estimator? What is the bias of an estimator? What is the statistical uncertainty of an estimate in terms of estimator properties?
- 11. What is coverage?
- 12. What is the ordering principle and why is it relevant in frequentist interval estimation.
- 13. Is the 'highest probability' ordering in constructing confidence intervals a good choice? Why?
- 14. What is the systematic uncertainty?
- 15. How systematic uncertainties are incorporated in Bayesian inference?
- 16. Enunciate and briefly discuss the "likelihood principle"
- 17. Discuss the basic building blocks of hypothesis testing and define what a p-value is.
- 18. What is the goodness of fit and how is that related with hypothesis testing? How can gof be achieved in unbinned maximum likelihood fits?
- 19. What is multiple-testing (or look-elsewhere effect) and why is it important to account for it while evaluating p-values?
- 20. Discuss briefly the Kolmogorov-Smirnov or the run test.

Exercises A particle-identification detector uses specific-ionization for identifying charged pions and kaons. When subjected to a calibration beam of only pions, the output distribution in the dimensionless variable x has a Gaussian shape centered at 2.2 with standard deviation 0.2. When subjected to a calibration beam of kaons, the x distribution is Gaussian, centered at 2.6 with the same standard deviation of 0.2.

A beam solely composed of charged pions and kaons (in unknown proportions) is sent to the detector and a fit is done on the observed x distribution with the goal of estimating the fraction of kaons f_K in the beam

- 1. Write the kaon pdf and the pion pdfs.
- 2. Write the full likelihood for a single measurement x_0 and the likelihood for N measurements x_i

If, instead of a fit, I just want to apply a cut to enrich the sample in kaons.

- 1. What is the optimal quantity to cut on?
- 2. I set my cut value on that quantity to be 95% efficient on kaons. After sending a beam of charged kaons and pions on the detector, one observed value x_0 passes the cut. What can I say about the probability for the particle that generated the x_0 value to be a kaon?
- 3. How does the reply above change if I know that the composition of the impinging beam is 90% pions and 10% kaons?

July 15, 2019

Prova scritta di statistica avanzata per l'analisi dei dati Laurea magistrale in Fisica, U. di Trieste – A.A. 2018-2019 (D. Tonelli)

Complete at least one exercise and as many questions as possible.

Ouestions

- 1. What is a random variable? Where does the randomness come from?
- 2. What does the 1- σ statistical uncertainty in the outcome of a counting experiment represent? (e.g., one is uncertain on the number of counts observed?)
- 3. Is it correct to state that if two random variables are correlated they are also statistically dependent? Why?
- 4. Discuss what the probability density function f(x) of a continuous random variable x is.
- 5. Given two continuous random variables *x* and *y*, write out in symbolic form the corresponding joint and marginal pdfs.
- 6. Discuss the essential building blocks needed to perform an inference common to the frequentist and Bayesian approaches.
- 7. Expose the formulation of the Bayes theorem discussing briefly the various components.
- 8. How does a likelihood function differs from a pdf?
- 9. What is an estimator? What is the bias of an estimator?
- 10. What are the attractive properties of the maximum likelihood estimator? Under which conditions they hold?
- 11. What is coverage?
- 12. Discuss some of the shortcomings of the classic Neyman construction and popular options to circumvent them.
- 13. What is the systematic uncertainty?
- 14. Discuss the standard way of incorporating systematic uncertainties in Bayesian inference.
- 15. Enunciate the Wilks' theorem and discuss its merits.
- 16. What a p-value is and what does it express?
- 17. What is multiple-testing (or look-elsewhere effect) and why is it important to account for it while evaluating p-values?
- 18. Discuss the goodness-of-fit properties of at least one incarnation of the χ^2 statistic and the conditions needed for them to hold.
- 19. What is the ROC curve in classification problems?
- 20. What is the statistical bootstrap method? Discuss briefly implementation and pros/cons.

Exercises

- 1. In a silicon microstrip detector, large arrays of parallel sensing strips are spaced 100 micron apart on the detector plane. When a charged particle hits and traverses the interstrip region, the corresponding pair of neighboring strips sense a signal. The signal allows a determination of the position of the incident point (along the direction perpendicular to the strips). If the position of the detector is well known and the strip-width is negligible with respect to the interstrip spacing, what is the one-standard-deviation statistical uncertainty on the estimated position of the incident point?
- 2. In a particle-collider experiment, 10 events are selected as being of a certain type, say, having a high value of some property *x*. Out of the 10 high-*x* events, 2 are found to contain muons.
 - a) Write the likelihood function $L_n(p)$ for the parameter p that expresses the probability that n high-x events contain muons.
 - b) Find the 90% CL upper limit for the parameter *p* using the statistical calculator provided
 - c) Find the 68.3% CL central confidence interval for the same parameter *p* similarly.
 - d) Suppose that to produce the events in the previous exercise, the total amount of data collected corresponded to an integrated luminosity of 1 pb^{-1} (known with negligible uncertainty).
 - e) What is the appropriate distribution to model the total number of events of a given type (high-x events produced with cross section σ_x and high-x events with muons, produced with cross-section $\sigma_{x\mu}$) in the above data set? Write the likelihood function $L_n(p)$ for he parameter p that expresses the probability that n high-x events contain muons.
 - f) Does the likelihood function for parameter *p* changes with respect to the previous exercise? How?

January 10, 2019

Prova scritta di statistica avanzata per l'analisi dei dati Laurea magistrale in Fisica, U. di Trieste – A.A. 2018-2019 (D. Tonelli)

Questions

- 1. Is the pdf f(x) of random variable x a probability?
- 2. Discuss the additional building blocks needed to perform Bayesian inference with respect to frequentist inference.
- 3. A 1975 measurement of the charged kaon mass yielded the value $493.76 \pm 0.04 \, \text{MeV}/c^2$ where the systematic uncertainty is negligible. Subsequent measurements by other collaborations determined today's value at about $493.664 \, \text{MeV}/c^2$ with negligible uncertainty. What can one say about the coverage of the 1975 result?
- 4. Discuss briefly the essential conceptual difference between the frequentist and Bayesian meanings of probability.
- 5. What is a likelihood function and what does it express?
- 6. Given a set of data x, the likelhood $L_x(m)$ for parameter m is maximum at $m = m_0$. Discuss the value m that maximizes the likelihood $L_x'[\exp(m)]$, function of $\exp(m)$, on the same data.
- 7. What is the statistical uncertainty of a measurement in terms of estimator properties?
- 8. Discuss pros/cons of maximum likelihood estimators compared with least-squares estimators.
- 9. Discuss some of the advantages of interval estimation over point estimation.
- 10. What is the ordering principle and why is it relevant in frequentist interval estimation.
- 11. I perform Bayesian inference on a problem where the prior isn't known. How could I reassure my frequentist colleagues that the results are sound?
- 12. Given a likelihood L(m) used to estimate the parameter m using a set of N observations, can the statistical precision on the estimate be arbitrarily good? Discuss the reply.
- 13. Discuss at least one method for incorporating systematic uncertainties in a frequentist confidence region construction.
- 14. Enunciate and briefly discuss the "likelihood principle"
- 15. What is flip-flopping? Why that could be problematic in frequentist inferences?
- 16. Enunciate the Neyman-Pearson lemma and briefly discuss its merits.
- 17. Express the meaning, in plain words, of the statement "Our colleague Frank Zappa reports an observation with 5σ significance with respect to the standard-model hypothesis"? Is the statement "Because the p-value with respect to the standard-model hypothesis is 3×10^{-7} , there is 0.9999997 probability that the signal exists" sound? Discuss.
- 18. Discuss briefly the Kolmogorov-Smirnov and/or the run(s) test.
- 19. Discuss briefly the bias-variance tradeoff in statistical-learning classification problems
- 20. Discuss the Von-Neumann accept-reject method for generating pseudorandom numbers

Exercises

- 1. A single decay of a new particle is observed within an emulsion-stack detector array exposed to a neutrino beam. It is determined that, in this particular event, the particle lived 3×10^{-13} s (with negligible uncertainty) in its rest system before decaying.
 - a) Derive a central 90% confidence-level interval for the lifetime of such a particle.
- 2. A straight-line fit drawn through 20 data points gives a χ^2 of 36.3. A parabolic fit yields a χ^2 of 20.1, and a cubic fit a χ^2 of 19.5. The functional-form parameters are determined in the fit.
 - a) Discuss and justify which of the three models is favored better by the data.

TABLE 8.1. CRITICAL χ^2 VALUES

CRITICAL A TABOLO				
	P = 10%	= 5%	= 2%	= 1%
n = 1	2.71	3.84	5.41	6.63
2	4.61	5.99	7.82	9.21
3	6.25	7.82	9.84	11.34
4	7.78	9.49	11.67	13.28
5	9.24	11.07	13.39	15.09
5 6	10.64	12.59	15.03	16.81
7	12.02	14.07	16.62	18.47
8	13.36	15.51	18.17	20.09
9	14.68	16.92	19.68	21.67
10	15.99	18.31	21.16	23.21
11	17.27	19.68	22.62	24.72
12	18.55	21.03	24.05	26.22
13	19.81	22.36	25.47	27.69
14	21.06	23.68	26.87	29.14
15	22.31	25.00	28.26	30.58
16	23.54	26.30	29.63	32.00
17	24.77	27.59	31.00	33.41
18	25.99	28.87	32.35	34.81
19	27.20	30.14	33.69	36.19
20	28.41	31.41	35.02	37.57
21	29.62	32.67	36.34	38.93
22	30.81	33.92	37.66	40.29
23	32.01	35.17	38.97	41.64
24	33.20	36.42	40.27	42.98
25	34.38	37.65	41.57	44.31
26	35.56	38.89	42.86	45.64
27	36.74	40.11	44.14	46.96
28	37.92	41.34	45.42	48.28
29	39.09	42.56	46.69	49.59
30	40.26	43,77	47.96	50.89