
  

Surprises in Slow Spheroid Sedimentation

Sriram Ramaswamy
Centre for Condensed Matter Theory

Department of Physics 
Indian Institute of Science

Bengaluru

₹:J C Bose Fellowship, SERB, India
Homi Bhabha Chair, Tata Edu & Dev Trust
Thanks: TCIS, TIFR Hyderabad

Chajwa, Menon, SR, Govindarajan, Phys Rev X 10, 041016 (2020)
Chajwa, Menon, SR PRL 122, 224501 (2019)



OUTLINE

● Background 
– instability and fluctuations in slow sedimentation

● Two discs: Kepler orbits and more
– inertia from gravity; gravity from fluid mechanics  

● The delicate dynamics of disc arrays
– phantom springs and “stable sedimentation
– non-normal dynamics and transient algebraic growth

● Summary



  

BACKGROUND

density ρ, viscosity μ, velocity U, size a, Re = ρUa/μ << 1

Ignore inertia: velocity field u(x) obeys the Stokes equation

www.damtp.cam.ac.uk/user/hinch/teaching/CISMejh12handout.pdf

pressure forces

Stoked about Stokes: Nat Rev Phys 2019

13 August 1819 - 1 February 1903

incompressibility

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=14&ved=2ahUKEwiWmdaw_qriAhUIJhoKHYK9BnU4ChAWMAN6BAgAEAI&url=http%3A%2F%2Fwww.damtp.cam.ac.uk%2Fuser%2Fhinch%2Fteaching%2FCISMejh12handout.pdf&usg=AOvVaw3-oG6W5fL0Ry3dIhg14MzY
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Guazzelli & Morris (& Pic)
A Physical Introduction to 
Suspension Dynamics

Flow around one sedimenting particle

www.damtp.cam.ac.uk/user/hinch/teaching/CISMejh12handout.pdf

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=14&ved=2ahUKEwiWmdaw_qriAhUIJhoKHYK9BnU4ChAWMAN6BAgAEAI&url=http%3A%2F%2Fwww.damtp.cam.ac.uk%2Fuser%2Fhinch%2Fteaching%2FCISMejh12handout.pdf&usg=AOvVaw3-oG6W5fL0Ry3dIhg14MzY


Two settling spheres: the line-of-centres force

Russel, Savile & Showalter 1989
K Vijay Kumar, IISc PhD thesis 2010

Mutual drag reduction Line-of-centres force

a

d



Three-particle Stokesian sedimentation 
is chaotic

Janosi et al. 
Phys Rev E 1997

three discs

3_discs.avi


CROWLEY'S INSTABILITY

K Vijay Kumar, IISc PhD thesis 2010

Rahul Chajwa, unpublished Pair dynamics is the building block

Strong phase separation: Lahiri, Barma, SR 1997-2000

J.M. Crowley, JFM 45, 151-159 (1971); Phys Fluids 19, 1296 (1976)

Sphere array: Crowley instability 1

Sphere array: Crowley instability 2

../Presentation/Crowley.avi
chajwa_movies/crowley/Crowley___2013-07-09_11-30-05-5313+05-30.wmv
chajwa_movies/crowley/Crowley___2013-07-10_19-02-44-8259+05-30.wmv


  

Sedimentation 
many-body long-range statistical mechanics 

K Vijay Kumar, IISc PhD thesis 2010, modified from 
https://upload.wikimedia.org/wikipedia/commons/9/96/FluidisedBed.svg

Batch settling

Fluidised bed
The velocity fluctuations problem
Caflisch-Luke 1985
Koch & Shaqfeh
Levine et al 1998; SR Adv Phys 2001
Ladd, Guazzelli, Hinch...



A stably settling array 

9Waves in a purely dissipative drifting flux lattice
Simha/SR PRL 1999



Waves vs phase separation: exceptional point

10

#Lahiri-SR 1997; Lahiri, Barma, SR 2000; Barma, Das, Basu, SR 2002
*Das & Barma PRL 2000; Das, Barma & Majumdar PRE 2001

fluctuation-dominated phase separation*

strong
phase separation#

KPZ + waves
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TWO DISCS
Kepler orbits and more

R. Chajwa et al. Phys. Rev. Lett. 122, 224501 (2019)
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Time reversal symmetry ensures 
conservation of  R

12
 and K 
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Isotropic pair Oriented apolar Oriented apolar pair

1

2

Much richer possibilities!

Stokesian settling

Role of shape: Witten 
& Diamant 
arXiv:2003.03698
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Settling pair of disks

Experiments

Fluid : silicone oil
60,000 cSt,  0.97 gm/cc

Disk: aluminium
Diameter 2a=12mm
Thickness t=1mm
Density 2.7m/cc

Re ~ 10 -4

System size:
Height 50 cm ~ 80a
Width 30 cm ~ 48 a
Thickness 5 cm ~ 7a 

Control
 
Initial separation d and Orientation θ

cf. S. Jung et al. PRE (2006) symmetric movie

Supplementary_video_1_symmetric_bound.avi
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● Quantify the transition 
from bound to scattering 

● Demarcate the phase 
boundary in (Ri, θi) plane, i 
= 1,2

● A theory based on 
hydrodynamic interactions

Bound period orbits (1-3) and scattering (4-6)
We observe

Our focus

Rich behaviour of pairs
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Symmetric settling

symmetric bound to scattering movie

Perp: bound to scattering movie Rocking movie

Supplementary_video_1_symmetric_bound_&_scattering.avi
Supplementary_video_2_perpendicular_bound_&_scattering.avi
Supplementary_video_5_rocking_orbits.avi
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Symmetric settling

symmetric bound to scattering movie

Perp: bound to scattering movie Rocking movie

Amplitude A

Wavelength λ

Bound-to-scattering transition? 
A, λ diverge at threshold min-sep? 

Supplementary_video_1_symmetric_bound_&_scattering.avi
Supplementary_video_2_perpendicular_bound_&_scattering.avi
Supplementary_video_5_rocking_orbits.avi
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Mapping to Kepler orbits: effective Hamiltonian

Far-field equations   
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Mapping to Kepler orbits

Effective Hamiltonian

Kepler orbits

Kepler’s 3rd Law
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Effective Hamiltonian for tilted pairs too

Effective Hamiltonian in (S, θ- ) plane

Keplerian limit: θ+      0, π Orientation θ- mimics momentum
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Richer than Kepler
θ+        π/2, Bound to scattering

Perp: bound to scattering movie
period ~ amplitude3 

Supplementary_video_2_perpendicular_bound_&_scattering.avi
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Rocking dynamics

Rocking movie

Supplementary_video_5_rocking_orbits.avi


Summary of two-disc problem

● Under gravity, tilt ~ horizontal motility: “active” 

● Emergent inertia and Hamiltonian 

● Kepler and non-Kepler orbits

● Many discs, uniform: noisy

●
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II. Sedimenting disk lattices

R Chajwa, N Menon, SR, R Govindarajan, Phys Rev X 10, 041016 (2020)
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Recall Crowley's sphere array instability

F d

2a d
θ

Reduced drag Lateral drift 

Locally dense region fall faster due to 
reduced drag, making a valley

Local valley compresses the 
lattice, via lateral drift

Crowley_mechanism

J.M. Crowley, JFM 45, 151-159 (1971); Phys Fluids 19, 1296 (1976)

video1_crowley_mechanism.avi


Challenge: stably sedimenting array 

25Change sign of line-of-centres drift? Compete with it? Discs instead of spheres?
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Disc-array hydrodynamics from symmetry

Displacement field u, orientation field K
Only hydrodynamic interactions. 
No pair potential, no elasticity

● Stokesian time reversal: velocities & forces

● Translational invariance

● Rotational invariance in perp subspace

● Symmetry under inversion of orientations 

Linearize about standing discs

u
K
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Disc-array hydrodynamics from symmetry

Displacement field u, orientation field K
Only hydrodynamic interactions. 
No pair potential, no elasticity

● Stokesian time reversal: velocities & forces

● Translational invariance

● Rotational invariance in perp subspace

Linearize about standing discs

u
K

Stokes time-reversibility + apolar: 
no restoring torque in K equation for uniform or nonuniform K



28

Ingredients of lattice dynamics

S. Wakiya,  J. Phys. Soc. Jpn. 20, 1502 (1965)
S. Kim,  Int. J. Multiphase Flow 11, 699 (1985) 
S. Jung et. al. , Phys. Rev. E 74, 035302(R) (2006).
R. Chajwa et. al., , PRL. 122, 224501 (2019) 

1

2

Competing mechanism
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Ingredients of lattice dynamics

S. Wakiya,  J. Phys. Soc. Jpn. 20, 1502 (1965)
S. Kim,  Int. J. Multiphase Flow 11, 699 (1985) 
S. Jung et. al. , Phys. Rev. E 74, 035302(R) (2006).
R. Chajwa et. al., , PRL. 122, 224501 (2019) 

● Orientational drift:
● Reduced drag:

● Line of centres drift:

● Mutual rotation:

1

2

Competing mechanism

depends on shape
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From pair to collective dynamics

n-1 n+1
n

n-2
n+2

θn

uz
n

ux
n

0
-π
2

 π
2

Kn

Tilt Orientation glide

Reduced drag

Rotational coupling

Lattice of masses and 
springs 

No damping of “momentum” at zero 
or nonzero wavenumber (apolar + 
Stokes T-reversibility)
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Experiments
Control:
 
Lattice spacing, d
Perturbation wavelength, λ

Fluid:  silicone oil, 5,000 cSt, 0.97 gm/cc

Disc: 3D printed with resin
Diameter   2a = 8 mm
Thickness   t = 1mm
Density   1.12 gm/cc

Typical Re ~ 10‐4

System size: Height 45 cm = 112.5 a , 
Width 90 cm  = 225 a Depth 5cm = 12.5 a
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Two dynamical regimes in (q,d) plane
Wavelike modes Clumping instability

Unstable mode moviewavelike mode movie

video4_linearly_unstable_mode.mp4
video2_linearly_stable_wavelike_mode.mp4
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Two dynamical regimes in (q,d) plane
Wavelike modes Clumping instability

wavelike mode movie Unstable mode movie

video2_linearly_stable_wavelike_mode.mp4
video4_linearly_unstable_mode.mp4
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A universal instability boundary

Dynamical matrix in fourier space

Inset: overlap of time-displaced concentration fields
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A universal instability boundary

● α depends on geometry of apolar shape

● Known for oblate and prolate spheroids

Dynamical matrix in fourier space

Rescaling lattice spacing, 

Universal linear stability condition
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u
x
: “broken-symmetry” mode

 κ= 6πa2/d2
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u
x
: “broken-symmetry” mode

 κ= 6πa2/d2

So: large-spacing disc arrays are stable??
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Non-linearly unstable wave

Sim wave movieLate times movie

P
er

tu
rb

at
i

on
s

video6_numerical_study_of_wavelike_regime.avi
video3_disruption_of_waves_at_late_times.avi
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uz=0 sector: emergent Hamiltonian dynamics 

Mass = 1/α(e) Conserved momentum =
Hookean spring stiffness = 3a3/2d3
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Rescaling to obtain a natural energy norm

Crowley elastic modes

|Uq|2 + |Θq|2 = H
Hermitian + real antisymmetric
Each is normal
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Rescaling to obtain a natural energy norm

Crowley elastic modes

● Perturbation energy not conserved
● Modal analysis insufficient
● Expect algebraic growth

|Uq|2 + |Θq|2 = H
non-normal
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Maximally growing mode 
(red curve)

Algebraic growth
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● Amplitude grows algebraically even 
in the stable regime.

● Transient growth pushes the 
system to non-linear regime.

● Noise amplification.
● Numerics with tiny amplitude: 

algebraic growth without 
nonlinearity.

Non-normal dynamics

Late times movie

Noisy movie
Clumping at late times movie

P J Schmid, Annu Rev Fluid Mech 2007
Bale & Govindarajan Resonance 2010

video3_disruption_of_waves_at_late_times.avi
video7_numerical_study_of_wavelike_regime_with_noisy_initial_conditions.avi
video5_clumping_dynamics_at_late_times.avi


Summary 

● Collective sedimentation: shape matters

● Emergent inertia and Hamiltonian 

● Disc arrays: “energy conservation” suppresses linear instability

– elasticity from viscous hydro, waves in theory and expt

● Beware non-normality

– eigenvalues are deceptive, transient algebraic growth beats linear stability  

●

Challenge: in-plane polar particles, effectively motile system?
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