The allure of active matter

Sriram Ramaswamy

Centre for Condensed Matter Theory Department of Physics Indian Institute of Science Bangalore

Outline

- Lecture 1: a self-contained tour
- early results \& link to the latest
- Lecture 2: active dynamics in a fluid
- and a connection to sedimentation
- Lecture 3: non-reciprocal dynamics
- flocking without moving, odd mechanics, oscillation without inertia

Lecture 1

- Introduction
- origins \& prehistory; fundamentals
- Dry active matter
- active nematics; motility in granular layers; chemotactic colloids
- Wet active matter
- rheology, instability, active turbulence
- Summary

Lecture 2

- Active fluids with inertia
- outswimming the instability
- Many-particle sedimentation
- Kepler orbits; emergent elasticity
- non-normal dynamics

Lecture 3

- Non-reciprocal dynamics: fundamentals
- a world out of (detailed) balance
- Flocking without moving
- order and defects; spontaneous waves on curved surfaces
- Chiral active matter
- odd and odder elasticity
- Summary and prospect

Nisarg Bhat (with Subroto Mukerjee)

Raushan Kant (with AK Sood)

Ramita Mondal (UG, w/ M Barma)

Karnpriya Pandey (with Ambarish Ghosh)

Pankaj Popli

Group

 (with C Dasgupta \& S Mukerjee)

Cnitrak Bhowmik (MS IISER Bpr --> Brandei

Alumni

- Rahul Gupta: Sankhya Sutra Technologies

- Lokrshi Prawar Dadhichi: postdoc, U Leipzig
- Rahul Chajwa (w/ Rama Govindarajan and Narayanan Menon): postdoc, Stanford
- Rayan Chatterjee (w/ Prasad Perlekar): postdoc, Stanford
- Kuipou William (visitor): Univ of Yaounde, Cameroon
- Sabiha Majumder (w/ V Guttal): ING Group, Risk Management, Amsterdam
- Ranjan Krishna Modak (w/ Subroto Mukerjee): IIT Tiru
- Nitin Kumar (w/ AK Sood): IIT Bombay
- Harsh Soni: IIT Mandi
- Ananyo Maitra: CNRS, Cergy Univ Paris

- Suropriya Saha: group leader, MPI-DS Goettingen
- Tapan Chandra Adhyapak: IISER Tirupati

SJ Kole Cambridge

R Aditi Simha: IIT Madras

Rangan Lahiri: TIFR Mumbai
Sujan Kumar Dhar (w/ Rahul Pandit): Abexome Technologies

A V Indrani (w/ Chandan Dasgupta): Bruges, Belgium

- Sebastian Fuerthauer (p): TU Wien
- Saroj Kumar Nandi: TIFR Hyderabad
- K Vijay Kumar: ICTS-TIFR Bangalore
- Shradha Mishra: IIT-BHU
- Sumithra Sankararaman (p): Washington U St Louis
- Norio Kikuchi (p): Ibasei Ltd, Ibaraki, Japan
- Vijay Narayan (w/ N Menon): Evonetix, Cambridge
- Moumita Das (w/ G Ananthakrishna): Rochester Inst Tech
- Ronojoy Adhikari: DAMTP, Cambridge

Yashodhan Hatwalne: Raman Research Institute

- Yatin Marathe (w/ N Kumar)

INTRODUCTION

- Active particles:
- living creatures; their powered components; gadgets
- Time's Arrow at particle scale: free-energy --> work
- collectively: active matter

The many kinds of active matter

$\longrightarrow \varepsilon_{\mathrm{s}}=0.3$

How do these differ structurally \& dynamically?

https://www.sciencedirect.com/topics/chemistry/hard-sphere-model

http://franklin.chem.colostate.edu/szamel/group/sbrown/figs/melt.html
https://t3.ftcdn.net/jpg/02/39/58/76/240_F_239587680_TmqOkl8wT5OVOyhBBJD4drE9ADmnnQZ6.jpg

https://www.nytimes.com/2016/05/07/science/narcisse-snake-pits.html

Dynamical regimes

Wet*: suspended in a fluid

Dry*: with a passive momentum sink

DARIUSZ PACIOREK/GETTY https://www.wired.com/2013/03/powers-of-swarms/

J Bertsch http://www.thalassagraphics.com/blog/?p=167

* not Feynman's wet \& dry, sorry

Why should you care?

- A grand challenge
- the emergent laws governing (self-)driven matter
- Understand living matter as a physical material
- the role of mechanics in cell, tissue, organism and beyond
- Imitate the functionalities of living matter
- smart active matter: motility, signalling, sensing

Prehistory and history

self-electrophoresis 1956 fluids with energy sources 1969 hydrodynamics of swimmers 1975

 animals/animation 1982/87 living LCs 1990s dry flocks 1995 active membranes '96 motile polymers, cytoskeleton 2001 flocks in fluid theory ‘02-04 dry active nematics: theory 2003 vibrated grains 2003 active colloids 04-05 Dry active nem sim/expt 06/07 rheo 2007+ bands '08 starling flocks '08 Dense active, tissue 2009+ microswimmers '11 MIPS '12 wet active nem expts 2012 Quinke expts 2013 pressure 2014 defect dynamics (wet) thermo, entropy production morphogenesis turbulence active baths Command and control non-reciprocal interactions interfaces chirality
Convective instability by active stress

By B. A. Finlayson \dagger and L. E. Scriven
Proc. R. Soc. Lond. A 310, 183-189 (1969)

Motion that sets in suddenly and spontaneously in a previously still material, without the intervention of outside forces, is a dramatic kind of conversion of internal energy to kinetic energy. When the ensuing motion is smoothly circulatory and the material itself appears to be homogeneous, devoid of structure on the scale of the motion, the nature of the engine at work challenges understanding. There are indications that such engines operate at the cellular level in living systems, if not yet anywhere else. We are launching here a search for the types of material behaviour required for self-starting, continuous mechanochemistry in mechanically isolated

Before its time ... broken-symmetry hydrodynamics as yet unavailable ... Still largely ignored in the literature

Mitchell: self-electrophoresis

A

P Mitchell, FEBS Lett 28 (1972) 1
see also Proc R Phys Soc Edin 25 (1956) 32

Fig. 1. Suggested mechanisms of self-electrophoretic bacterial locomotion. Protons are translocated outwards through the plasma membrane by the respiratory chain or ATPase system. The micro-tubular flagellum has a negative surface charge. In A and B , the flagellum is a specific H^{+}conductor. In C , proton translocation is transformed to Na^{+}translocation by an $\mathrm{H}^{+} / \mathrm{Na}^{+}$antiporter system in the plasma membrane, and the flagellum is a specific Na^{+}conductor. The organism is driven to the left by the stream of water pulled to the right over the flagellum by the H^{+}or Na^{+}ions moving down their electrochemical potential gradient to the right.

Not a theory of bacterial swimming, but see
Lammert, Prost, Bruinsma J Theor Biol 178 (1996) 387-391

Not quite self-phoresis

J LAnderson, Annu Rev Fluid Mech 21 (1989) 61-99

Says: "... microfields established by active processes within a particle ... could self-propel ..."
Does: small external gradient --> electric field --> slip velocity --> phoretic propulsion

$$
U=-\frac{1}{3}\left(\frac{\varepsilon \zeta}{4 \pi \eta}\right) \frac{\chi}{k_{c}} \nabla C_{\infty}
$$

For true self-phoresis see Golestanian, Liverpool, Ajdari PRL 94, 220801(2005)

Membranes with active "force centres"

with a relaxation rate $\tau(q)^{-1}$

$$
\tau^{-1}(q)=\frac{\kappa}{4 \eta} q^{3}+\kappa \lambda_{\mathrm{p}} q^{4}
$$

Enormous fluctuations if coupling one way. Story changes if membrane acts back on pumps. SR, Toner, Prost PRL 84 (2000) 3494

Microbial hydrodynamics

Pedley \& Kessler, Annu Rev Fluid Mech 24313 (1992)

- Coarse-graining: PDEs for concentration, orientation
- Gravity, imposed flow: bioconvection, focusing
- Don't discuss instability of aligned swimmers

From equilibrium Langevin equations to active dynamics

From equilibrium Langevin equations to active dynamics
"physical" position, momentum q, p chemical X Hamiltonian $H(p, q, X)$, temperature T

$$
\dot{q}=\partial_{p} H
$$

$$
\begin{array}{cl}
\dot{p}+\Gamma \partial_{p} H-\Omega(q) \partial_{X} H=-\partial_{q} H+f & \langle f f\rangle \propto 2 k_{B} T \Gamma \\
\dot{X}+\Omega(q) \partial_{p} H=-\mathcal{M} \partial_{X} H+\xi & \langle\xi \xi\rangle \propto 2 k_{B} T \mathcal{M}
\end{array}
$$

$\Omega(q)$: chemomechanical coupling

From equilibrium Langevin equations to active dynamics
"physical" position, momentum q, p chemical X Hamiltonian $H(p, q, X)$, temperature T

$$
\dot{q}=\partial_{p} H
$$

$$
\begin{array}{ll}
\dot{p}+\Gamma \partial_{p} H-\Omega(q) \partial_{X} H=-\partial_{q} H+f & \langle f f\rangle \propto 2 k_{B} T \Gamma \\
\dot{X}+\Omega(q) \partial_{p} H=-\mathcal{M} \partial_{X} H+\xi & \langle\xi \xi\rangle \propto 2 k_{B} T \mathcal{M}
\end{array}
$$

Active? Hold chemical force $\quad-\partial_{X} H \equiv \Delta \mu=$ constant

From equilibrium Langevin equations to active dynamics

$$
\begin{gathered}
\dot{q}=\partial_{p} H \\
\dot{p}+\Gamma \partial_{p} H+\Delta \mu \Omega(q)=-\partial_{q} H+f \\
\Omega(q): \text { "new term" in equation of motion }
\end{gathered}
$$

Elastic properties of nematoid arrangements formed by amoeboid cells

R. Kemkemer ${ }^{1}$, D. Kling ${ }^{1}$, D. Kaufmann ${ }^{2}$, and H. Gruler ${ }^{1, a}$ Eur. Phys. J. E 1, 215-225 (2000)

Strength one-half defects: living proof of nematic nature

DRY ACTIVE MATTER the nematic phase

Apolar ordering: no macroscopic velocity
On substrate: forget momentum
Slow variables: concentration $c(\boldsymbol{x}, t)$
traceless symmetric order parameter $\boldsymbol{Q}_{i j}$
SR, Simha, Toner EPL 2003; Mishra, Simha, SR JSTAT 2010

Giant density fluctuations in active nematics

SR, Simha, Toner 2003
Langevin PDEs for concentration c (conserved) and angle θ (Nambu-Goldstone) fields

div n

$$
\delta \mathbf{n} \perp \mathbf{n}_{0}
$$

Computer experiments

Ngo et al 2014
Vicsek-style model $\Delta n \sim n^{\mathrm{a}}, 1 / 2<\mathrm{a}<1$ Linear theory inadequate?

Shankar et al 2018

Active current $\sim \operatorname{div}$ Q
Magnitude of $Q \sim L^{-\eta(\Delta)}$
Number fluctuations non-universal, weakened by quasi-long-range order?

Topological defects in a nematic

$m=1, \quad \phi_{0}=\frac{\pi}{2}$
Ker冋Rdmer, R., Teichgräber, V., Schrank-Kaufmann, S. et al. Eur. Phys. J. E 3101 (2000)

Self-propulsion of $+1 / 2$ defects in active nematics

 prediction \& observation

The symmetry of the field around the strength $-1 / 2$ defect will result in no net motion, while the curvature around the $+1 / 2$ defect has a well-defined polarity and hence should move in the direction of its "nose" as shown in the figure.
V Narayan et al., Science 317 (2007) 105
motile $+1 / 2$ defect, static $-1 / 2$ defect

Defects as particles:
$+1 / 2$ motile, $-1 / 2$ not
$+1 / 2$ velocity ~ divQ
Giomi, Bowick, Ma, Marchetti PRL 2013
Thampi, Golestanian, Yeomans PRL 2014
DeCamp et al NMat 2015
Defect-unbinding theory: Suraj Shankar, M C Marchetti, SR, MJ Bowick

Defect unbinding in active nematics

Shankar

et al. PRL 2018

Recall equil BKT transition:
but $+1 / 2$ defect is motile!
Like insulator in a field? Finite barrier?
Active nematic order always destroy\&d?

But active nematics exist!
Bertin et al. NJP 2013
NGO et al. PRL 2014
Shi et al NJP 2014

Langevin equations for $+/-1 / 2$ defects: positions and polarization

Shankar et al. 2018:

From active nematic dynamics
$+1 / 2$ self-velocity \propto polarization

$$
\begin{aligned}
& \dot{\mathbf{r}}_{i}^{+}=\mathbf{v e}_{i}-\mu \nabla_{\mathbf{r}_{i}} \mathcal{U}+\sqrt{2 \mu T} \xi_{i}(t) \\
& \dot{\mathbf{r}}_{i}^{-}=-\mu \nabla_{\mathbf{r}_{i}} \mathcal{U}+\sqrt{2 \mu T} \boldsymbol{\xi}_{i}(t)
\end{aligned}
$$

$$
\mathcal{U}=-2 \pi K \sum_{i \neq j} q_{i} q_{j} \ln \left|\frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{a}\right|
$$

Langevin equations for $+/-1 / 2$ defects: positions and polarization

Shankar et al. 2018:

$$
\mathbf{e}_{i}=\left|\mathbf{e}_{i}\right|\left(\cos \theta_{i}, \sin \theta_{i}\right)
$$

$\mathbf{F}_{i} \equiv-\nabla_{i} \mathcal{U}=\left|\mathbf{F}_{i}\right|\left(\cos \psi_{i}, \sin \psi_{i}\right)$
$\partial_{t} \theta_{i}=v\left|\mathbf{F}_{i}\right| \times$ const. $\sin \left(\theta_{i}-\psi_{i}\right)$

+ angular noise

Re-entrance!

Shankar et al. 2018:
Threshold activity

$$
\frac{\left|v_{c}(T)\right|}{v_{*}}=\sqrt{\frac{16 \tilde{T}(1-\tilde{T})}{\pi[1+(3 \pi / 32) \mu \gamma \tilde{T}]}}
$$

At low enough T, D_{R} goes to zero, i.e., persistence length grows Directed motion of $+1 / 2$ wins, defects liberated, order destroyed (A Maitra)

Defect ordering:
Shankar \& Marchetti
PRX 2019

Flocking at a distance

Horizontal motility from vertical shaking

sphere

First look at a fluid bead-layer

1-particle rendition of Kumar, Soni, SR, Sood Nature Comm 2014

$$
\dot{\mathbf{R}}(t)=v_{0} \mathbf{n}(t) \quad \text { motility }
$$

$$
\partial_{t}(\rho \mathbf{v})+\left(\zeta-\eta \nabla^{2}\right) \mathbf{v}=f \mathbf{n}(\mathbf{t}) \delta[\mathbf{r}-\mathbf{R}(t)]-\nabla P
$$

Substrate drag, viscosity Motile rod pushes beads pressure

$$
\dot{\mathbf{n}}=(\mathbf{I}-\mathbf{n n}) \cdot(\mathbf{v}+\nabla \mathbf{v} \cdot \mathbf{n}+\ldots) \quad \text { (schematically) }
$$

flow reorients \mathbf{n} parallel to \mathbf{V}

Flow-field around a mover in a fluid layer

Kumar, Soni, SR, Sood 2014

An emergent aligning interaction

Nonuniform drag: flow reorients \mathbf{n} parallel to \mathbf{v} The weathercock effect

A granular flock at very low concentration

Kumar, Soni, Sood, SR Nature Communications 2014; arXiv:1402.4262

Nitin Kumar (student of A K Sood, IISc)
/home/sriram/talks/activemattertalks/current/Video1.avi

Confined quasi-2d geometry

Granular dynamics simulation: Harsh Soni /home/sriram/talks/activemattertalks/current/Video3.avi /home/sriram/talks/activemattertalks/current/Video4.avi /home/sriram/talks/activemattertalks/current/Video5.avi /home/sriram/talks/activemattertalks/current/Video6.avi
cf Deseigne et al PRL 2010 Weber et al PRL 2013

Phase diagram

Flocking by increasing inert-particle concentration

A phase transition

Amount of order as function of inert-particle concentration

Experiment
Simulation

The mechanism: moving polar rod creates flow

Simulation: H Soni

Screened monopole cf Brotto et al. PRL 2013

Increase Φ_{b}--> increase decay length of velocity

The mechanism: flow orients polar rod

Flow rotates polar particles to point the right way: the weathercock effect Need a substrate

/home/sriram/talks/activemattertalks/current/Video7.avi

Could have been either way Design problem

qualitatively similar to Bricard et al. colloidal rollers Nature 2013
-flow field simpler, medium compressible
-single-rod motility from solid contact mechanics
-Crucial difference: non-motile-bead concentration is control parameter -purely 2d system

Theory of flocking at a distance

Kumar, Soni, Sood, SR arXiv:1402.4262, Nat Comm 2014
continuity
$\partial_{t} \rho+\nabla \cdot(\rho \mathbf{v})=0$

$\partial_{t} \mathbf{P}=\lambda \mathbf{v}-\left(a-K \nabla^{2}\right) \mathbf{P}-A \nabla \rho+\ldots$
Flow coupling
Transition determined by effective coupling

$$
\bar{a}=a-\lambda \alpha / \Gamma
$$

- Independent measurements in simulation (H Soni) - $\alpha>0, \lambda>0$ and increases with ρ
- So: increase ρ : get transition to ordered state of P

Estimating mean-field critical point from simulation

Side-by-side: rotation by vorticity

negative taxis: "repulsion"

Dense bead layer: crystalline

Increase bead packing, transition to crystal Long-range 6 -fold order as proxy

Onset of rigidity

Single-particle microrheology in real and numerical experiments

Comparison: crystal vs fluid

fluid
fluid phase: motile rod drags beads

crystal
crystal: no dragging

Crawling through a crystal: theory?

- Safran et al: force dipoles in elastic medium
- motility ignored
cell/tissue mechanics
- Henkes et al. 2020: elastic medium made of ABPs
- active forcing + repulsive pair potential, no reorienting by medium
- This work: coupled dynamics
- motile particles strain medium, strain reorients particles
- naturally non-reciprocal dynamics

Rahul Gupta, Raushan Kant, Harsh Soni, Ajay Sood, SR PRE 2022

Motile particles in elastic medium on substrate

Particle position $\mathbf{R}(\mathrm{t})$, orientation $\mathbf{n}(\mathrm{t})$
Displacement field of medium $\mathbf{u}(\mathbf{r}, \mathrm{t})$
Lamé elastic free energy F
Friction ζ, self-prop force f , speed v_{0}

$$
\dot{\mathbf{R}}(t)=v_{0} \mathbf{n}(t)
$$

$$
\zeta \partial_{t} \mathbf{u}=-\delta F / \delta \mathbf{u}+f \mathbf{n}(\mathbf{t}) \delta(\mathbf{r}-\mathbf{R}(t)
$$

driving through a crystal

Strain field of a motile particle

$\mathbf{U}=$ displacement field in frame comoving and corotating with particle

Screening

$$
\left[-\zeta v_{0} \partial_{x}-\left(\mu \nabla^{2}+\lambda \nabla \nabla \cdot\right)\right] \mathbf{U}=f \delta(\mathbf{r}) \hat{\mathbf{x}}
$$

$\alpha=\zeta v_{0} / \mu$

$$
U_{x}=\frac{f}{4 \pi \mu}\left\{\left[K_{0}\left(\frac{\alpha r}{2}\right)-\frac{x}{r} K_{1}\left(\frac{\alpha r}{2}\right)\right] e^{-\frac{\alpha x}{2}}\right.
$$

$\beta=\zeta v_{0} / \lambda$

$$
\left.+\frac{\beta}{\alpha}\left[K_{0}\left(\frac{\beta r}{2}\right)+\frac{x}{r} K_{1}\left(\frac{\beta r}{2}\right)\right] e^{-\frac{\beta x}{2}}\right\}
$$

and similarly U_{y}
Crucial: asymp forms of $K_{0} \Rightarrow$ exponential decay for $x>0,|x|^{-1 / 2}$ for $x<0$
Overdamped elastic wake

Comparison with measured fields

Numerical experiment on vibrated layer of grains Inelasticity, static friction, base, lid all included

Profiles, strong fore-aft asymmetry, Sign-change of U_{y},
$\mathrm{x}^{-1 / 2}$ tail confirmed

Capture in experiment and simulation

$$
\frac{d \mathbf{n}}{d t}=(\mathbf{I}-\mathbf{n n}) \cdot\left(\gamma_{1} \nabla^{2} \mathbf{u}+\gamma_{2} \nabla \nabla \cdot \mathbf{u}+\kappa \varepsilon \cdot \mathbf{n}\right)^{\text {fraction } \phi_{b}}
$$

Repel when bead are fluid

Non-reciprocal interaction

Chemotactic colloids*

*not "dry" exactly, but ...

Paxton et al. JACS 2004
Golestanian, Liverpool, Ajdari PRL 2005 Howse Golestanian PRL 2007

Force-free chemical self-propulsion

Sphere with enzyme coat $\sigma(\theta, \phi)$ in a reactant bath
Particle makes its own gradient Asymmetric distribution of reaction products Asymmetric stresses
Flow
Propulsion

Properties of motile organisms

- Directed force-free motion
- Flocking
- Gradient-sensing
- Signalling

- Clumping
- Patterns

Suropriya Saha, Ramin Golestanian, SR Phys Rev E 2014

VIEW FROM OUTER REGION

Phoresis:
field-driven force-free propulsion

J.L. Anderson

Annu Rev Fluid Mech 1989

VIEW FROM INNER REGION

Apparent slip velocity v_{s}

Imitate chemotaxis?

Suropriya Saha, R Golestanian, SR Phys Rev E 2014
-Polar profile of reactivity, uniform medium --> motion
-Can particle orient in response to gradient?
-Yes! Can design chemotactic or antichemotactic particles
Need $l=1$ in interaction with surface and $l=2$ in reactivity or v.v.
MORE FUEL

LESS FUEL

Interaction range from MM

$$
\xi_{s}=\left[N \rho_{0} \kappa^{\prime}\left(s_{0}\right) / D_{s}\right]^{-1 / 2}
$$

Abundant reactant: long-range Sparse reactant; screened

Interactions between active colloids

-Active colloid modifies cloud

-Another senses the resulting gradient -Reorients, moves towards or away -Diffusion: $1 / r$ interaction, long ranged

Collective behaviour

Signs of coefficients gravity-like or Coulomb-like Oscillations seen in computer expts - Stark et al

DIffusion-limited
Fuel scarce
screening

Scattering or trapping, pair dances

More recent: Saha, SR, Golestanian NJP 2019
Pairing, waltzing Non-reciprocality

WET ACTIVE MATTER

flock in fluid

Comoving co-rotating derivative Extensional flow orients δF Thermodynamic relaxation orientation

$$
\mathcal{D}_{t} \boldsymbol{p}=\lambda \boldsymbol{S} \cdot \boldsymbol{p}-\Gamma \frac{\delta F}{\delta \boldsymbol{p}}
$$

$$
\text { flow }-\mu \nabla^{2} \mathbf{u}=-\sigma_{a} \nabla \cdot(\boldsymbol{p} \boldsymbol{p})+\text { elasticity }+ \text { pressure }
$$

Viscosity

Active stress $\propto p p$

$F=$ free energy favouring alignment; $\mathbf{u}=$ incompressible velocity field $\boldsymbol{p}=$ orientation (* not quite, but $\boldsymbol{p} \rightarrow-\boldsymbol{p}$ invariant), $\boldsymbol{S}=$ deformation rate

Swimmers are force dipoles

viscous hydrodynamics, neglect inertia: unstable without threshold

$$
\sigma_{a}>0
$$

Growth-rate $\rightarrow \sigma_{a} / \mu$ for length scales $>\xi=\left(K / \sigma_{a}\right)^{1 / 2}, \mathrm{~K}=$ Frank constt viscosity/active stress: a single timescale

A single timescale, direction dependent

$$
\begin{gathered}
\omega=i \frac{\sigma_{a}}{\mu} \cos 2 \theta(1+\lambda \cos 2 \theta) \quad \text { bend-splay } \\
\omega=i \frac{\sigma_{a}}{\mu} \cos ^{2} \theta(1+\lambda) \quad \text { bend-twist }
\end{gathered}
$$

Bend-Twist not mitigated by interpolation to splay; should dominate in 3D extensile
see Shendruk, Thijssen, Yeomans, Doostmohammadi, PRE 2018

Detailed confirmation: active nematic of microtubules + motors + ATP Martínez-Prat, Ignés-Mullol, Casademunt \& Sagués, Nat Phys 2019

(c) $t=2.0$

(b) $t=1.0$

(d) $t=25.0$

Swimming affects viscosity: theory and experiment

Hatwalne et al. PRL 2004
more viscous alive than dead
less viscous alive than dead

Bulk active LCs are unstable, turbulent

Simha \& SR PRL 2002

Sanchez et al 2012 (Dogic group)

Strength $1 / 2$ defects take over; active turbulence (Yeomans, Marenduzzo, Cates, Marchetti, Dunkel, Giomi Experiments: Sagues Also in systems on substrate: epithelia (Sano, Silberzan....); bacteria (Dombrowski, Shuang, Aranson, Lavrentovich....); surprises in confined active nematic \& polar systems: Maitra et al PNAS 2018, PRL 2019...

But large fast flocks in fluid are stable

J Bertsch http://www.thalassagraphics.com/blog/?p=167

Chisholm, Legendre, Lauga, Khair JFM 2016
Wang and Ardekani JFM 2012; Li, Ostace, Ardekani PRE 2016 Dombrowski, Jones, Katsikis, Bhalla, Griffith, Klotsa PR Fluids 2019 Klotsa, Baldwin, Hill, Bowley, Swift, PRL 2015

How much inertia do you need to stabilise a flock in fluid?

With inertia: outswim the viscous instability?

velocity

$$
\underline{\rho\left(\partial_{t} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right)}=-\nabla P+\mu \nabla^{2} \boldsymbol{u}+\nabla \cdot\left(\boldsymbol{\Sigma}^{a}+\boldsymbol{\Sigma}^{r}\right)
$$

pressure viscosity

Active and passive order-parameter stresses
orientation

$$
\boldsymbol{\Sigma}^{a} \equiv-\sigma_{a} \boldsymbol{p} \boldsymbol{p}
$$

$$
\nabla \cdot \boldsymbol{u}=0
$$

F free-energy functional

$$
\underset{\text { han }}{\boldsymbol{h}=}-\delta F / \delta \boldsymbol{p}
$$ favouring nonzero $<p>$

$$
\begin{aligned}
& \partial_{t} \boldsymbol{p}+\left(\boldsymbol{u}+v_{0} \boldsymbol{p}\right) \cdot \nabla \boldsymbol{p}=\lambda \mathbf{S} \cdot \boldsymbol{p}+\boldsymbol{\Omega} \cdot \boldsymbol{p}+\Gamma \boldsymbol{h} \\
& \text { Advection shear-alignment rotation relaxation }
\end{aligned}
$$

The key dimensionless number

$$
R=\rho v_{0}^{2} / 2 \sigma_{a}
$$

self-propulsion speed $v_{0} \quad$ instability invasion speed $\sqrt{\sigma_{a} / \rho}$

What's that?

Recall Stokesian limit: scale-independent growth rate σ_{a} / μ

Include inertia (linearised Navier-Stokes) growth rate linear in wavenumber q

$$
\omega \propto q\left(v_{0}^{2}-2 \sigma_{a} \frac{1+\lambda}{\rho}\right)^{1 / 2}
$$

growth/decay of twist-bend mode

$$
\begin{gathered}
R \equiv \rho v_{0}^{2} / 2 \sigma_{0} \\
\omega \propto q\left(v_{0}^{2}-2 \sigma_{a} \frac{1+\lambda}{\rho}\right)^{1 / 2} \\
+i q^{2} \frac{\mu}{2 \rho} \frac{v_{0}}{\left(v_{0}^{2}-2 \sigma_{a} \frac{1+\lambda}{\rho}\right)^{1 / 2}} \\
\text { for } R \gtrsim 1+\lambda \\
q \ll \rho v_{0} / \mu, \sqrt{\rho \sigma_{a}} / \mu
\end{gathered}
$$

Inertia: outrun Stokesian instability

defect to phase turbulence: disorder to flock

Rayan Chatterjee, Navdeep Rana, R. Aditi Simha, Prasad Perlekar, and Sriram Ramaswamy
$\beta \equiv \rho \Gamma K / \mu$
Orientational diffusion / vorticity diffusion

From defect turbulence to phase turbulence

defect turbulence in the $\mathrm{O}(\mathrm{q})$ growth regime
Polar system: defects are hedgehogs (normal and hyperbolic)
phase turbulence in the $\mathrm{O}\left(\mathrm{q}^{\wedge} 2\right)$ growth regime
Phase turbulence: ordered state

Inertial flocking transition

- Order parameter $|<\mathbf{p}>|=\left\langle\sqrt{\left\langle p_{x}\right\rangle^{2}+\left\langle p_{y}\right\rangle^{2}+\left\langle p_{z}\right\rangle^{2}}\right\rangle_{t}$ onset near $R_{I} \simeq 1$.
- correlation fn. $C(r)=\frac{<p(\mathbf{x}) \cdot p(\mathbf{x}+\mathbf{r})\rangle}{\left\langle p(\mathbf{x})^{2}>\right.}$ shows scaling collapse.

Chatterjee et al. Phys. Rev. X 11, 031063 (2021)

- Correl length \sim inter-defect distance ξ grows near $R_{I} \simeq 1$

SUMMARY

- General framework for "powered" matter
- Phase diagram depends on dynamical regime
- Imitations of motility; complex media
- Active turbulence and escaping it

EXPERIMENTAL SYSTEM?

