Confined active matter

Sriram Ramaswamy

Centre for Condensed Matter Theory Department of Physics Indian Institute of Science Bangalore

TATA TRUSTS

Active matter in complex environments: ICTS Nov 2023

1: Fundamentals

- Systems, symmetries, dynamical regimes
- From equilibrium Langevin to active dynamics
- Active broken-symmetry hydrodynamics

2: Flocks in fluid

- Slow flocks in bulk fluid and in fluid films
- Fast flocks in fluid
 - flocking driven by fluid inertia
 - ordered and disordered "turbulence"

3: Motility in a medium of obstacles

- Interacting crawlers in a bead fluid
- Interacting crawlers in an elastic medium
- Trapping active particles

Fundamentals and dry flocks

INTRODUCTION DRIVEN, ACTIVE, LIVING

How to drive

shear: from boundary

How to drive

electric field, etc - "phoresis": driven in bulk

Force (co-ion + counterions) =0

Force-free Externally directed Nonzero drift

How to drive

bound orbit

scattering orbit

sedimentation: in bulk

tumbling orbit

rocking orbit

sedimenting disc array

Chajwa, Menon, SR PRL 2018 Chajwa, Menon, SR, Govindarajan PRX 2020

Body force Externally directed Nonzero drift

How to drive

Thermal equilibrium: "closed" systems

E = constt

E + E' = constt Temperature of subsystem = const

Know the rules Isolated: probability uniform on constant-energy states Almost isolated: probability ~ $exp(-E/k_BT)$

Thermal equilibrium: "closed" systems

- thermal equilibrium
 - isolated: max entropy; E, N fixed
 - almost: fix <E> and <N>
- temperature T, chem potl $\boldsymbol{\mu}$
- prob(C) ~ exp[-(E + μ N)/k_BT]

High density: order to *increase* entropy Distortion lowers S: restoring force Fluctuations: $Prob(C) = exp[\Delta S(C)]$ Dynamics: derivatives of S --> ``forces''

Driven, active, living open systems & open questions

What kinds of states can form? Don't know the general rules

Active matter

- Active particles are alive, or "alive"
 - living systems; their components; artificial realisations
 - Time's Arrow at particle scale
 - steadily dissipate energy and produce work
 - collectively: active matter

Hydrodynamic description

- Slow variables
 - timescale $\rightarrow \infty$ as lengthscale $\rightarrow \infty$
 - densities of conserved quantities: k=0 mode is the conserved qty
 - Nambu-Goldstone modes*: restoring force = 0 at zero wavenumber
 - order parameter near onset if continuous (strictly), or in coarsening

* includes height field of interface, Rouse modes of polymer or membrane

Examples

- Simple fluid/suspension
 - mass, momentum, energy densities (+ species concentrations)
- Orientationally ordered fluid, e.g., nematic
 - and director field
- Density wave (solid, smectic, columnar)
 - and displacement field
- Heisenberg antiferromagnet
 - magnetisation (conserved), staggered magnetisation

Spatial variation of density of conserved quantity

That's "hydrodynamic"

Hydrodynamic description of a simple fluid

Mass density
$$\partial_t \rho = -\nabla \cdot \mathbf{g}$$

Momentum density
$$\partial_t g_j = -\nabla_i \Pi_{ij}$$

energy density
$$\partial_t \varepsilon = -\nabla \cdot \mathbf{J}_{\varepsilon}$$

Express RHS in terms of variables on LHS by: microscopic theory or general principles

Broken-symmetry modes

In ordered phase: rotor angle field "hydrodynamic"

Rotate all by same amount: no restoring torque

Relaxation rate \rightarrow 0 as wavelength $\rightarrow \infty$

SYSTEMS, SYMMETRIES, DYNAMICAL REGIMES

- Active particles are alive, or "alive"
 - each component powered; not wire + battery
 - each constituent carries dissipative Arrow of Time
 - steadily transduce free energy to movement
 - collectively: active matter

Scalar active matter Chemically propelled droplets S Thutupalli NCBS

a motile dimer: noise turned into directed movement

Extracts from a cell Senoussi et al 2019

Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures

Ramesh G. Mani*†, Jürgen H. Smet†, Klaus von Klitzing†, Venkatesh Narayanamurti*‡, William B. Johnson§ & Vladimir Umansky||

R.G. Mani et al. 2002 quantum Alicea et al. PRB 2005: "... connection of our work to the well-studied phenomenon of 'flocking'"

broken equipartition -- Vijay Narayan 2007

Magnetic nanopropellors: Ambarish Ghosh, IISc

Broken symmetries: orientational

Polar and apolar uniaxial Particles and phases

Broken symmetries: translational

1D crystal in 3D Chaikin & Lubensky 1994

2D crystal in 3D Chandrasekhar, Sadashiva & Suresh 1977

Chiral 1D crystal in 3D Whitfield et al. 2017

Moving 1D crystal in 2D Solon et al. 2015

active amorp

Active amorphous solid in 2D Nitin Kumar 2014

FROM EQUILIBRIUM LANGEVIN TO ACTIVE DYNAMICS

Motor: catalyst for fuel breakdown Include chemical direction in configuration space Driving force $\Delta \mu = \mu_{reactant} - \mu_{product}$ in *chemical* direction Mobility nondiagonal: vel = Mob*Force has *spatial* component

Formalise this: build active dynamics; discover "new" terms

Temperature *T*; effective Hamiltonian $H(q, p, X, \Pi)$

noises

SR JSTAT 2017 Dadhichi, Maitra, SR JSTAT 2018

q (time-rev even), p (odd); X, Π : extra coord, momentum

Off-diagonal *q*-dependent Onsager coefficients

$$\dot{q} = \partial_p H$$

$$\dot{p} + \Gamma_{11}\partial_{p}H + \Gamma_{12}(q)\partial_{\Pi}H = -\partial_{q}H + \eta$$
$$\dot{\Pi} + \Gamma_{21}(q)\partial_{p}H + \Gamma_{22}\partial_{\Pi}H = -\partial_{X}H + \xi$$
$$\eta, \xi \qquad \qquad \dot{X} = \partial_{\Pi}H$$

 $\langle \eta(0)\xi(t)\rangle = 2k_B T \Gamma_{12}(q)\delta(t)$ eliminate \dot{X} from the *p* equation

- Temperature *T*; effective Hamiltonian $H(q, p, X, \Pi)$
- q (time-rev even), p (odd); X, Π : extra coord, momentum

Off-diagonal q-dependent Onsager coefficients

$$\begin{split} \dot{q} &= \partial_p H \\ \dot{p} + \Gamma_{11} \partial_p H + \Gamma_{12}(q) \partial_{\Pi} H &= -\partial_q H + \eta \\ \dot{\Pi} + \Gamma_{21}(q) \partial_p H + \Gamma_{22} \partial_{\Pi} H &= -\partial_X H + \xi \\ \text{eliminate } \dot{X} \text{ from the } p \text{ equation } \dot{X} &= \partial_{\Pi} H \\ _{\text{SR JSTAT 2017}} & \text{noises } \eta, \xi & \langle \eta(0)\xi(t) \rangle = 2k_B T \Gamma_{12}(q) \delta \end{split}$$

t

$$\dot{q} = \partial_p H$$

$$\dot{p} + \Gamma \partial_p H - \frac{\Gamma_{12}(q)}{\Gamma_{22}} \partial_X H = -\partial_q H + f$$

$$\dot{X} + \frac{\Gamma_{12}(q)}{\Gamma_{22}} \partial_p H = -\frac{1}{\Gamma_{22}} \partial_X H + \frac{\xi}{\Gamma_{22}}$$

$$f \equiv \eta - (\Gamma_{12}/\Gamma_{22})\xi \text{ has variance } \sim \Gamma \equiv \Gamma_{11} - \Gamma_{12}^2(q)/\Gamma_{22}$$
Equilibrium: $\partial_X H = 0$ simplest

Active? Hold $-\partial_X H \equiv -\Delta \mu \neq 0$ fixed

$$\dot{q} = \partial_p H$$
$$\dot{p} + \Gamma \partial_p H - \frac{\Gamma_{12}(q)}{\Gamma_{22}} \Delta \mu = -\partial_q H + f$$

"New" terms, ruled out in equilibrium dynamics. In general can't hide by redefining H, temperature....

$$\dot{q} + \Gamma^{-1}\partial_q H = \frac{\Delta\mu}{\Gamma_{22}\Gamma}\Gamma_{12}(q) + \Gamma^{-1}f$$

No inertia: q-only equation of motion

Build all(?) active-matter dynamics this way (SR JSTAT 2017, Dadhichi, Maitra, SR 2018)

Active Brownian or active Ornstein-Uhlenbeck from dimers

$$\begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \end{array} \\
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array} \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array}
 \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array}
 \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array}
 \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array}
 \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array}
 \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \begin{array}{c}
 & \end{array} \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}
 \\
 & \end{array}$$

$$P + \Gamma_{11} \partial_P H = -\partial_Q H + \bar{\eta}$$

Active Brownian or active OU* from dimers

$$\begin{array}{l} & \overbrace{Q} \\ & \overbrace{Q} \\ \\ & \text{Joint \& relative } (q,p) \& (Q,P); \text{ ``chemical" } (X,\Pi) \\ & \dot{p} + \gamma_{11}\partial_p H + \gamma_{12}(Q)\partial_{\Pi} H = -\partial_q H + \eta \\ & \dot{\Pi} + \gamma_{21}(Q)\partial_p H + \gamma_{22}\partial_{\Pi} H = -\partial_X H + \xi \\ & \dot{P} + \Gamma_{11}\partial_P H = -\partial_Q H + \bar{\eta} \end{array}$$

*Ornstein-Uhlenbeck

Active Brownian or active OU from dimers

$$\dot{q} + \frac{\gamma_{22}}{\mathcal{D}} \partial_q H = \frac{\gamma_{12}(Q)}{\mathcal{D}} \Delta \mu + \frac{\gamma_{22}}{\mathcal{D}} \eta - \frac{\gamma_{12}(Q)}{\mathcal{D}} \xi$$
$$\dot{Q} + \frac{1}{\Gamma_{11}} \partial_Q H = \bar{\eta} / \Gamma_{11} \qquad \qquad \mathcal{D} = \gamma_{11} \gamma_{22} - \gamma_{12} (Q)^2$$

$\gamma_{12}(Q) \propto Q$ propels particle Active Brownian: $H \sim -Q \cdot Q + (Q \cdot Q)^2$ Active OU: *H* harmonically binds *Q*

Additive white noise in q dynamics inevitable.

Apply to a simple field theory

Order-parameter field $p = (p_x, p_y)$ Free-energy functional F[p] favours order at a < 0"Model A" dynamics: passive

$$\partial_t \mathbf{p} = -\Gamma^{-1} \frac{\delta F}{\delta \mathbf{p}} + \sqrt{2k_B T/\Gamma} \mathbf{f}$$
Unit strength
spacetime white
noise

$$F = \int d^{d}x \left[\frac{a}{2}|\mathbf{p}|^{2} + \frac{b}{4}|\mathbf{p}|^{4} + \frac{c}{2}|\nabla\mathbf{p}|^{2}\right]$$

Apply to a simple field theory

Order-parameter field $p = (p_x, p_y)$ Free-energy functional F[p] favours order at a < 0"Model A" dynamics: active

$$\begin{split} \partial_t \mathbf{p} &= -\Gamma^{-1} \frac{\delta F}{\delta \mathbf{p}} + \sqrt{2k_B T/\Gamma} \mathbf{f} \\ & + \frac{\Delta \mu}{\Gamma_{22} \Gamma} \Gamma_{12}(\mathbf{p}, \nabla \mathbf{p}, \ldots) \end{split} \quad \begin{array}{l} \text{Unit strength} \\ \text{spacetime white} \\ \text{noise} \end{split}$$

Apply to a simple field theory

Order-parameter field ($p = p_x, p_y$) Free-energy functional F[p]"Model A" dynamics: active, simplest "new term"

So: planar rotors out of equilibrium self-advect

broader context -->

Broken-symmetry hydrodynamics slow variables (passive)

• Conserved, broken symmetry, critical

timescale --> infinity as length-scale --> infinity

• e.g., rotor lattice: p, θ , energy density, "spin" ang mom S

Chaikin & Lubensky

ch. 8

Time-independent Hamiltonian *H* so energy conserved Rotations commute with *H* so S conserved

Broken-symmetry hydrodynamics slow variables (active)

Chaikin & Lubensky

ch. 8

- Conserved, broken symmetry, critical
 - timescale --> infinity as length-scale --> infinity
- e.g., rotor lattice: p, θ

Sustained energy throughput, not conservation Rotation invariance but no H so S not conserved

Flock = active polar liquid crystal

Reynolds 1987: movie stampedes Vicsek et al 1995: agent-based simulations each particle: an arrow orient parallel to neighbours + noise move in direction of arrow Toner-Tu 1998: field theory long-range order in d = 2
Interacting agents and flocking models

Each agent has position and direction Aligns with mean of neighbours + noise

Reynolds 1987 Vicsek *et al.* 1995

Interacting agents and flocking models

Low noise, high density: ordered flock High noise, low density: isotropic state Reynolds 1987 Vicsek *et al.* 1995

Coarse-grain \rightarrow

Continuum field theory: Toner-Tu 1995

Chimera of fluid and magnet

$$\partial_t \boldsymbol{p} + v_0 \boldsymbol{p} \cdot \nabla \boldsymbol{p} = \Gamma \boldsymbol{h} + \boldsymbol{f}$$

 $\boldsymbol{h} = -\delta F / \delta \boldsymbol{p}$
 $E = \int d^3 r [\frac{1}{(m - m - 1)^2} + \frac{K}{(\nabla r)^2} - E r \cdot \nabla c]$

$$F = \int d^3r \left[\frac{1}{4} (\mathbf{p} \cdot \mathbf{p} - 1)^2 + \frac{\pi}{2} (\nabla \mathbf{p})^2 - E\mathbf{p} \cdot \nabla c\right]_{\text{Gradients orient } p}$$

$$\partial_t c + \nabla \cdot (v_1 \boldsymbol{p} c) = 0$$

LRO in d=2, anomalous density fluctuations, wavelike excitations But no real fluid, no momentum conservation What does fluid do? Simha & SR 2002

Flocks in fluid

SLOW FLOCKS IN BULK FLUID

Simha-SR 2002 Hatwalne et al 2004

The active particles of a bulk living liquid crystal orientable objects with permanent force dipoles

Build nematic or polar hydrodynamics from these Work with orientation tensor **Q** or polar order parameter *p*, and velocity field **u** or momentum density $\mathbf{g} = \rho \mathbf{u}$

Apply our general approach

Liquid crystal Viscous Active force
elastic torques damping from "chemistry"
$$\partial_t g = [g, p] \frac{\delta H}{\delta p} - \hat{\eta} \frac{\delta H}{\delta g} + \frac{\Delta \mu}{\Gamma_{22} \Gamma} \Gamma_{12} + \text{noise}$$
$$\Gamma_{12} = \nabla \cdot (pp)$$

Stokesian active nematic* hydrodynamics

Comoving co-rotating derivative

Viscosity

Extensional flow orients $\mathcal{D}_t \boldsymbol{p} = \lambda \boldsymbol{S} \cdot \boldsymbol{p} - \Gamma \frac{\delta F}{\delta \boldsymbol{p}}$

Thermodynamic relaxation

$$-\mu \nabla^2 \mathbf{u} = -\sigma_a \nabla \cdot (\boldsymbol{p}\boldsymbol{p}) + \text{elasticity} + \text{pressure}$$

Active stress $\propto pp$

F = free energy favouring alignment; $\mathbf{u} =$ incompressible velocity field p = orientation (*not quite, but $p \rightarrow -p$ invariant), S = deformation rate

Simha and SR PRL 2002; Hatwalne, SR, Rao, Simha PRL 2004 Kruse, Juelicher, Joanny, Prost, Voituriez, Sekimoto PRL 2004 – cvtoskeleton

Stokesian active nematic hydrodynamics

$$\mathcal{D}_t \boldsymbol{p} = \lambda \boldsymbol{S} \cdot \boldsymbol{p} - \Gamma \frac{\delta F}{\delta \boldsymbol{p}}$$

$$-\mu \nabla^2 \mathbf{u} = -\sigma_a \nabla \cdot (\mathbf{p}\mathbf{p}) + \text{elasticity} + \text{pressure}$$

Frank constant

Solve Stokes for u in terms of p, perturb at wavevector q about mean aligned state p_0

$$\partial_t \delta p = \frac{\sigma_a}{\mu} \cos 2\theta (1 + \lambda \cos 2\theta) \delta p - K \left(\Gamma + \frac{1}{\mu}\right) q^2 \delta p$$

$$\theta = \text{angle between } q \text{ and } p_0$$

$$\sigma > 0; \text{ extensile, bend unstable } (0 < \theta < \pi/4)$$
Splay-bend mode

 $\sigma_a > 0$: extensile, bend unstable ($0 < \theta < \pi/4$) $\sigma_a < 0$: contractile, splay unstable ($\pi/4 < \theta < \pi/2$)

Consequence: bulk active nematic/polar always unstable

Growth-rate $\rightarrow \sigma_a/\mu$ for length scales > $\xi = (K/\sigma_a)^{1/2}$, K = Frank constt viscosity/active stress: a single timescale

Simha & SR PRL 2002, Voituriez et al 2005, SR & Rao NJP 2007; polar: Giomi, Marchetti, Liverpool 2008 Active turbulence: Saintillan-Shelley/Yeomans/Dogic/Bausch/Sagues/Doostmohammadi Stable Stokesian flocks A Maitra arXiv: 2110.15633

3D: bend-splay and bend-twist

$$\omega = i \frac{\sigma_a}{\mu} \cos 2\theta (1 + \lambda \cos 2\theta) \qquad \qquad \text{bend-splay}$$

$$\omega = i \frac{\sigma_a}{\mu} \cos^2 \theta (1+\lambda) \qquad \qquad \text{bend-twist}$$

Bend-Twist not mitigated by interpolation to splay; should dominate in 3D extensile

see Shendruk, Thijssen, Yeomans, Doostmohammadi, PRE 2018

Detailed confirmation: active nematic of microtubules + motors + ATP Martínez-Prat, Ignés-Mullol, Casademunt & Sagués, Nat Phys 2019

Other evidence, e.g. nuclear rotation in cell: Kumar, Maitra, Sumit, SR, Shivashankar 2014

450 sec

a

Slow flocks in fluid films apolar

Maitra et al. PNAS 2018

Degenerate planar alignment on both walls

K = Frank elastic constant of underlying liq crystal Length scale $\xi = (K/\sigma_a)^{1/2}$; stable if h < ξ Fix h, increase activity σ_a : diffusive instability? No: much more interesting

confined active nematics

confined active nematics

Need force densities f^p, f^a

Force densities

not momentum-conserving that's OK: walls can derive from 3D hydro

active

cf flexoelectricity: Lavrentovich, Prost & Marcerou, Meyer

 f_x^a $= -(\zeta_1 + \zeta_2)\Delta\mu\,\partial_y\theta$ f_y^a $= -(\zeta_1 - \zeta_2)\Delta\mu\,\partial_x\theta$

 $\mathbf{n}(\nabla \cdot \mathbf{n})$ Splay ≠ bend $\mathbf{n} \cdot \nabla \mathbf{n}$

Higher multipole for bulk hydrodynamics, but competes on substrate. Can stabilise for all activity levels!

Consequence: effective θ dynamics

$$\partial_t \theta_{\mathbf{q}} = -D(\phi) q^2 \theta_{\mathbf{q}}$$

$$D(\phi) = \Gamma_{\theta} K + \frac{\Delta \mu}{2\Gamma} (1 - \lambda \cos 2\phi) (-\zeta_1 \cos 2\phi + \zeta_2)$$

Without ζ_2 instability inevitable at large $\Delta \mu$ Not any more!

 $|\lambda| < 1$ (flow-tumbling): large +ve ζ_2 always stable. Stability diagram -->

FIG. 2: Regions of stability of the ordered phase as a function of the flow-alignment parameter λ , the ratio ζ_1/ζ_2 of the old and new active forces and the overall magnitude of activity relative to passive friction $\Delta \tilde{\mu} = \zeta_2 \Delta \mu / 2K\Gamma\Gamma_{\theta}$. (a) For $\Delta \tilde{\mu} > 0$, the region of linear stability of the ordered phase (shades of blue) shrinks with increasing activity, yet the central dark blue square is stable for arbitrary high activity. (b) For $\Delta \tilde{\mu} < 0$, stability is abolished for large enough activity, namely $\Delta \tilde{\mu} < -1$.

Slow flocks in fluid films polar

Extended in XY, confined in z

- base & lid: preferred frame
- forget momentum conservation?
- 2d confined = Toner-Tu model?

NO

Maitra, Srivastava, Marchetti, SR, Lenz PRL 2020

Confinement: fluid velocity irrelevant?

Robust long-range order

$$\partial_t \Theta^q = -\frac{\Lambda \upsilon}{\Gamma} (q_y^2/q^2) \Theta^q$$

Incompressible velocity game-changing For the case $\Lambda > 0$ Nambu-Goldstone gets anisotropic "mass" velocity acts like Coulomb field angle fluctuations *finite* in d=2, LRO Not Toner-Tu If $\Lambda < 0$: inescapable instability

END LECTURE 1

Maitra, Srivastava, Marchetti, SR, Lenz PRL 2020

End lecture 1

CRAWLING THROUGH AN ELASTIC MEDIUM

- What if the medium is elastic, not viscous?
- Strain-rate fields --> strain
- This work: on a substrate
 - velocity field "fast", damped elastodynamics

Rahul Gupta, Raushan Kant, Harsh Soni, Ajay Sood, SR PRE 2022 cell/tissue mechanics

Experimental setup

Horizontal motility from vertical shaking

A motile rod transducing vertical shaking into horizontal motion: Nitin Kumar

static friction \Rightarrow centre of mass moves

Yamada, D., Hondou, T. & Sano, M. Phys. Rev. E 67, 040301 (2003)

First look at a fluid bead-layer

1-particle rendition of Kumar, Soni, SR, Sood Nature Comm 2014

 $\dot{\mathbf{R}}(t) = v_0 \mathbf{n}(t)$ motility

in pictures:

A motile rod transducing vertical shaking into horizontal motion: Nitin Kumar

$$\partial_t(\rho \mathbf{v}) + (\zeta - \eta \nabla^2)\mathbf{v} = f\mathbf{n}(\mathbf{t})\delta[\mathbf{r} - \mathbf{R}(t)] - \nabla P$$

Substrate drag, viscosity

Motile rod pushes beads

pressure

$$\dot{\mathbf{n}} = (\mathbf{I} - \mathbf{nn}) \cdot (\mathbf{v} +
abla \mathbf{v} \cdot \mathbf{n} + \dots)$$
 (schematically)

flow reorients \mathbf{n} parallel to \mathbf{v}

Gradients rotate & align **n**

Flow-field around a mover in a fluid layer

a

Kumar, Soni, SR, Sood 2014

An emergent aligning interaction

a

V

Nonuniform drag: flow reorients \boldsymbol{n} parallel to \boldsymbol{v} The weathercock effect

A granular flock at very low concentration

Kumar, Soni, Sood, SR Nature Communications 2014; arXiv:1402.4262

Nitin Kumar (student of A K Sood, IISc)

/home/sriram/talks/activemattertalks/current/Video1.avi

/home/sriram/talks/activemattertalks/current/Video2.avi

/home/sriram/talks/activemattertalks/current/vdo_liquid.mpg

Confined quasi-2d geometry

Granular dynamics simulation: Harsh Soni /home/sriram/talks/activemattertalks/current/Video3.avi /home/sriram/talks/activemattertalks/current/Video4.avi /home/sriram/talks/activemattertalks/current/Video5.avi /home/sriram/talks/activemattertalks/current/Video6.avi

> cf Deseigne et al PRL 2010 Weber et al PRL 2013

Phase diagram

Flocking by increasing inert-particle concentration

A phase transition

Amount of order as function of inert-particle concentration

Experiment

Simulation

The mechanism: moving polar rod creates flow

Simulation: H Soni

Increase Φ_{b} --> increase decay length of velocity

Screened monopole cf Brotto et al. PRL 2013

The mechanism: flow orients polar rod

Flow rotates polar particles to point the right way: the weathercock effect Need a substrate

/home/sriram/talks/activemattertalks/current/Video7.avi

qualitatively similar to Bricard et al. colloidal rollers Nature 2013
flow field simpler, medium compressible
single-rod motility from solid contact mechanics
Crucial difference: non-motile-bead concentration is control parameter
purely 2d system

Theory of flocking at a distance

Kumar, Soni, Sood, SR arXiv:1402.4262, Nat Comm 2014

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$$

 $\begin{array}{l} \text{Order parameter } P, \\ \text{velocity } v, \\ \text{number density } \rho \end{array}$

$$\rho \partial_t \mathbf{v} = -(\Gamma - \eta \nabla^2) \mathbf{v} + \alpha \mathbf{P} - B \nabla \rho + \dots$$

$$\partial_t \mathbf{P} = \lambda \mathbf{v} - (a - K\nabla^2)\mathbf{P} - A\nabla\rho + \dots$$

Transition determined by effective coupling $\bar{a} = a - \lambda \alpha / \Gamma$

- Independent measurements in simulation (H Soni)
- α >0, λ > 0 and increases with ρ
- So: increase ρ : get transition to ordered state of P

Theory of flocking at a distance

forcing

Kumar, Soni, Sood, SR arXiv:1402.4262, Nat Comm 2014

continuity
$$\partial_t
ho +
abla \cdot (
ho \mathbf{v}) = 0$$

 $\begin{array}{l} \text{Order parameter } P, \\ \text{velocity } v, \\ \text{number density } \rho \end{array}$

$$\rho \partial_t \mathbf{v} = -(\Gamma - \eta \nabla^2) \mathbf{v} + \alpha \mathbf{P} - B \nabla \rho + \dots$$

$$\partial_t \mathbf{P} = \lambda \mathbf{v} - (a - K\nabla^2) \mathbf{P} - A\nabla\rho + \dots$$

Flow coupling Rotational relaxation

damning

Transition determined by effective coupling $\bar{a} = a - \lambda \alpha / \Gamma$

- Independent measurements in simulation (H Soni)
- α >0, λ > 0 and increases with ρ
- So: increase $\rho \colon$ get transition to ordered state of P
Estimating mean-field critical point from simulation

Side-by-side: rotation by vorticity negative taxis: "repulsion"

Dense bead layer: crystalline

Increase bead packing, transition to crystal Long-range 6-fold order as proxy

Onset of rigidity

Single-particle microrheology in real and numerical experiments

Contrast between elastic and fluid media

/home/sriram/talks/activemattertalks/current/Video2.avi

Bead flow promotes flocking at a distance Kumar et al Nat Comm 2014 Increase density, crystallize, what happens?

Comparison: crystal vs fluid

Crawling through a crystal: theory?

- Safran et al: force dipoles in elastic medium
 - motility ignored cell/tissue mechanics
- Henkes et al. 2020: elastic medium made of ABPs
 - active forcing + repulsive pair potential, no reorienting by medium
- This work: coupled dynamics
 - motile particles strain medium, strain reorients particles
 - naturally non-reciprocal dynamics

Rahul Gupta, Raushan Kant, Harsh Soni, Ajay Sood, SR PRE 2022

Motile particles in elastic medium on substrate

Particle position $\mathbf{R}(t)$, orientation $\mathbf{n}(t)$ Displacement field of medium $\mathbf{u}(\mathbf{r},t)$ Lamé elastic free energy F Friction ζ , self-prop force f, speed v_0

$$\dot{\mathbf{R}}(t) = v_0 \mathbf{n}(t)$$

A motile rod transducing vertical shaking into horizontal motion: Nitin Kumar

$$\zeta \partial_t \mathbf{u} = -\delta F / \delta \mathbf{u} + f \mathbf{n}(\mathbf{t}) \delta(\mathbf{r} - \mathbf{R}(t))$$

driving through a crystal

Motile particles in elastic medium on substrate

$$\dot{\mathbf{R}}(t) = v_0 \mathbf{n}(t)$$

$$\zeta \partial_t \mathbf{u} = -\delta F / \delta \mathbf{u} + f \mathbf{n}(\mathbf{t}) \delta(\mathbf{r} - \mathbf{R}(t))$$

$$\frac{d\mathbf{n}}{dt} = (\mathbf{I} - \mathbf{nn}) \cdot \left(\gamma_1 \nabla^2 \mathbf{u} + \gamma_2 \nabla \nabla \cdot \mathbf{u} + \kappa \varepsilon \cdot \mathbf{n}\right)$$

 $\varepsilon = (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})/2$

Curvature: polar orientation Strain: apolar orientation

Strain field of a motile particle

U= displacement field in frame comoving and corotating with particle Screening $\begin{aligned} & \left[-\zeta v_0 \partial_x - (\mu \nabla^2 + \lambda \nabla \nabla \cdot)\right] \mathbf{U} = f \delta(\mathbf{r}) \hat{\mathbf{x}} \\ & \alpha = \zeta v_0 / \mu \\ & U_x = \frac{f}{4\pi\mu} \left\{ \left[K_0 \left(\frac{\alpha r}{2}\right) - \frac{x}{r} K_1 \left(\frac{\alpha r}{2}\right)\right] e^{-\frac{\alpha x}{2}} \right\} \end{aligned}$

$$+\frac{\beta}{\alpha}\left[K_0\left(\frac{\beta r}{2}\right)+\frac{x}{r}K_1\left(\frac{\beta r}{2}\right)\right]e^{-\frac{\beta x}{2}}\Big\}$$

and similarly U_y Crucial: asymp forms of $K_0 \Rightarrow$ exponential decay for x>0, $|x|^{-1/2}$ for x<0 Overdamped elastic wake

Banerjee, Mondal, Banerjee, Thutupalli, Rao arXiv 2109.10438 Same behaviour for density field in a compressible fluid layer

Comparison with measured fields

Numerical experiment on vibrated layer of grains Inelasticity, static friction, base, lid all included

One particle in strain field of other

align with extension axis \Rightarrow "attraction"

Capture in experiment and simulation

Non-reciprocal interaction

Particle in front gets no indication of particle behind Pursuer particle senses distortion field of pursued particle!

pursuit and capture: laboratory experiment

pursuit and capture: numerical experiment

SUMMARY

- General framework for "powered" matter
 - from equilibrium Langevin to active dynamics
 - 1-particle models, broken-symmetry hydrodynamics
- Instability and superstability
 - flocks in fluid unstable without inertia; surprises in confinement
- Motility in dense media fluid and elastic
 - flow and strain as signals; non-reciprocal pursuit and capture