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1: Fundamentals 

● Systems, symmetries, dynamical regimes

● From equilibrium Langevin to active dynamics

● Active broken-symmetry hydrodynamics  



2: Flocks in fluid 

●  Slow flocks in bulk fluid and in fluid films

● Fast flocks in fluid
– flocking driven by fluid inertia

– ordered and disordered “turbulence”



3: Motility in a medium of obstacles

● Interacting crawlers in a bead fluid

● Interacting crawlers in an elastic medium 

● Trapping active particles 



  

Fundamentals and dry flocks 



INTRODUCTION 
DRIVEN, ACTIVE, LIVING

shear: from  boundary

Force-free
Externally directed
No drift

How to drive



electric field, etc – “phoresis”: driven in bulk

Force-free
Externally directed
Nonzero driftForce (co-ion + counterions) =0 

How to drive



sedimentation: in bulk 

Body force
Externally directed
Nonzero drift

g

sedimenting disc array

bound orbit

rocking orbit

tumbling orbit

scattering orbit

Chajwa, Menon, SR PRL 2018 
Chajwa, Menon, SR, Govindarajan PRX 2020

How to drive

chajwa_movies/array/array1.avi
chajwa_movies/bound.avi
chajwa_movies/rocking.avi
chajwa_movies/tumbling.avi
chajwa_movies/scattering.avi


Self-propulsion: in bulk But force-free
Internally directed
Mean drift 
depends on state 
of order

Force (SPPs + medium) =0 
(Newton’s 3rd Law)

Contrast with sedimentation, electrophoresis, shear

Living or active matter

How to drive



Thermal equilibrium: “closed” systems

E E'

E = constt

E = constt

E + E' = constt
Temperature of subsystem = constt

Know the rules 
Isolated: probability uniform on constant-energy states
Almost isolated: probability ~ exp(-E/kBT)

t↔-t 



Thermal equilibrium: “closed” systems

High density: order to increase entropy  
Distortion lowers S: restoring force
Fluctuations: Prob(C) = exp[DS(C)]
Dynamics: derivatives of S --> ``forces''

E E'

E = constt

E = constt

E + E' = constt
Temperature of subsystem = constt

● thermal equilibrium

– isolated: max entropy; E, N fixed

– almost: fix <E> and <N>

● temperature T, chem potl m

● prob(C) ~ exp[-(E + m N)/kBT]



Driven, active, living 
open systems & open questions

E in 

E out

t↔-t What kinds of states can form?
Don’t know the general rules

e.g. Sun

e.g. Earth



Active matter

● Active particles are alive, or “alive” 

– living systems; their components; artificial realisations  

– Time’s Arrow at particle scale

– steadily dissipate energy and produce work  

– collectively: active matter



Hydrodynamic description

● Slow variables

– timescale →∞ as lengthscale →∞ 

– densities of conserved quantities: k=0 mode is the conserved qty 

– Nambu-Goldstone modes*: restoring force = 0 at zero wavenumber

– order parameter near onset if continuous (strictly), or in coarsening 

* includes height field of interface, Rouse modes of polymer or membrane



Examples

● Simple fluid/suspension
– mass, momentum, energy densities (+ species concentrations) 

●  Orientationally ordered fluid, e.g., nematic
– and director field 

● Density wave (solid, smectic, columnar)
– and displacement field 

● Heisenberg antiferromagnet
– magnetisation (conserved), staggered magnetisation



+ + + + + + + + - - - - - - - - 

Spatial variation of density of conserved quantity

excess deficit

That’s “hydrodynamic”



Hydrodynamic description of a simple fluid

Mass density

Momentum density

energy density

Express RHS in terms of variables on LHS by: microscopic theory or general principles



In ordered phase: rotor angle field “hydrodynamic”

Rotate all by same amount: no restoring torque 

Relaxation rate → 0 as wavelength →∞ 

Broken-symmetry modes



SYSTEMS, SYMMETRIES, DYNAMICAL REGIMES

● Active particles are alive, or “alive” 

– each component powered; not wire + battery

– each constituent carries dissipative Arrow of Time

– steadily transduce free energy to movement  

– collectively: active matter



  Extracts from a cell
Senoussi et al 2019

A motile rod transducing vertical shaking into horizontal motion: Nitin Kumar

R.G. Mani et al. 2002
Alicea et al. PRB 2005: “... connection of 
our work to the well-studied phenomenon 
of ‘flocking’”

Magnetic nanopropellors: Ambarish Ghosh, IISc

a motile dimer: noise turned into directed movement

broken equipartition -- Vijay Narayan 2007

Systems

Scalar active matter
Chemically propelled droplets
S Thutupalli NCBS

tensorvector tensor

chiral

quantum

Sahu et al. 2020

Medium.mpg
one_animal.mpg
G7.0_ShortBails.mpg


Marchetti et al., Rev Mod Phys 2013

Broken symmetries: orientational

Polar and apolar uniaxial
Particles and phases



1D crystal in 3D
Chaikin & Lubensky 1994

2D crystal in 3D
Chandrasekhar, Sadashiva & Suresh 1977

2D crystal in 2D
Rahul Gupta 2021 Chiral 1D crystal in 3D

Whitfield et al. 2017

Moving 1D crystal in 2D
Solon et al. 2015

Broken symmetries: translational

Active amorphous solid in 2D
Nitin Kumar 2014

active amorp
h

../../../Dropbox/talks/activemattertalks/current/polar_rod_amorph-backgrd.mpg
../../../Dropbox/talks/activemattertalks/current/polar_rod_amorph-backgrd.mpg


Motor: catalyst for fuel breakdown 
Include chemical direction in configuration space
Driving force Dm = mreactant - mproduct in chemical direction 
Mobility nondiagonal: vel = Mob*Force has spatial component 

Velocity = v

Velocity = r

SR JSTAT 2017
Dadhichi, Maitra, SR JSTAT 2018
Jülicher, Ajdari, Prost RMP Colloq 1993 
Marchetti et al. RMP 2013 

Formalise this: build active dynamics; discover “new” terms 

FROM EQUILIBRIUM LANGEVIN TO ACTIVE DYNAMICS

chemical 
direction

spatial direction

GROOVES:  
NONDIAGONAL 
MOBILITY



Temperature T; effective Hamiltonian H(q,p,X,P)

q (time-rev even), p (odd); X, P: extra coord, momentum

Off-diagonal q-dependent Onsager coefficients

SR JSTAT 2017
Dadhichi, Maitra, SR JSTAT 2018

From Langevin equations to active dynamics



Temperature T; effective Hamiltonian H(q,p,X,P)

q (time-rev even), p (odd); X, P: extra coord, momentum

Off-diagonal q-dependent Onsager coefficients

SR JSTAT 2017 

From Langevin equations to active dynamics



has variance  ∝

From Langevin equations to active dynamics

simplest



No inertia: q-only equation of motion

“New” terms, ruled out in equilibrium dynamics. 
 In general can’t hide by redefining H, temperature....

From Langevin equations to active dynamics

Build all(?) active-matter dynamics this way (SR JSTAT 2017, Dadhichi, Maitra, SR 2018)



Active Brownian or active Ornstein-Uhlenbeck from dimers 

Q

q

Joint & relative (q,p) & (Q,P); “chemical” (X,P) 



Active Brownian or active OU* from dimers 

Q

q

Joint & relative (q,p) & (Q,P); “chemical” (X,P) 

*Ornstein-Uhlenbeck



Active Brownian or active OU from dimers 

Additive white noise in q dynamics inevitable.



Apply to a simple field theory

Order-parameter field p = (px, py)
Free-energy functional F[p] favours order at a<0
“Model A” dynamics: passive

Unit strength 
spacetime white 
noise



Apply to a simple field theory

Order-parameter field p = (px, py)
Free-energy functional F[p] favours order at a<0
“Model A” dynamics: active

Unit strength 
spacetime white 
noise



Apply to a simple field theory

Order-parameter field (p = px, py)
Free-energy functional F[p]
“Model A” dynamics: active, simplest “new term”

So: planar rotors out of equilibrium self-advect

The Toner-Tu model 
for a flock with only orientation 
and no concentration

broader context --> 



Broken-symmetry hydrodynamics
slow variables (passive)

● Conserved, broken symmetry, critical 
– timescale --> infinity as length-scale --> infinity

●  e.g., rotor lattice: p, q, energy density, “spin” ang mom 
S 

Chaikin & Lubensky 
ch. 8

p

Time-independent Hamiltonian H so energy conserved
Rotations commute with H so S conserved



Broken-symmetry hydrodynamics
slow variables (active)

● Conserved, broken symmetry, critical 
– timescale --> infinity as length-scale --> infinity

●  e.g., rotor lattice: p, q

Chaikin & Lubensky 
ch. 8

p

Sustained energy throughput, not conservation
Rotation invariance but no H so S not conserved



Flock = active polar liquid crystal

Reynolds 1987: movie stampedes
Vicsek et al 1995: agent-based simulations

each particle: an arrow
orient parallel to neighbours + noise
move in direction of arrow

Toner-Tu 1998: field theory
long-range order in d = 2



Interacting agents and flocking models

48

Each agent has position  and direction
Aligns with mean of neighbours + noise

Reynolds 1987
Vicsek et al. 1995



Interacting agents and flocking models

49

Each agent has position  and direction
Aligns with mean of neighbours + noise
Follows its nose

Low noise, high density: ordered flock
High noise, low density: isotropic state 
Reynolds 1987
Vicsek et al. 1995

Coarse-grain 



Continuum field theory: Toner-Tu 1995
Chimera of fluid and magnet

noise

Local moment elasticity Gradients orient p

LRO in d=2, anomalous density fluctuations, wavelike excitations
But no real fluid, no momentum conservation
What does fluid do? Simha & SR 2002



  

Flocks in fluid 



SLOW FLOCKS IN BULK FLUID

58

Hatwalne et al. PRL 2004

figure: Saintillan
Annu Rev Fluid Mech 2018

Simha-SR 2002
Hatwalne et al 2004

(extensile) (contractile)

The active particles of a bulk living liquid crystal 
orientable objects with permanent force dipoles 

Build nematic or polar hydrodynamics from these

Work with orientation tensor Q or polar order parameter p, 

and velocity field u or momentum density g = ru



Apply our general approach

Liquid crystal 
elastic torques 

Viscous 
damping

Active force
from “chemistry”



Stokesian active nematic* hydrodynamics

Viscosity

Simha and SR PRL 2002; Hatwalne, SR, Rao, Simha PRL 2004 
Kruse, Juelicher, Joanny, Prost, Voituriez, Sekimoto PRL 2004 – cytoskeleton

Active stress  ∝ pp

F =free energy favouring alignment; u = incompressible velocity field
p =orientation (*not quite, but p → -p invariant), S=deformation rate  

Comoving co-rotating derivative Extensional flow orients Thermodynamic relaxation



Stokesian active nematic hydrodynamics

Solve Stokes for u in terms of p, perturb at wavevector q about mean aligned state p0

Frank constant

q = angle between q and p0 

s
a
 > 0: extensile, bend unstable (0 < q < p/4)

s
a
 < 0: contractile, splay unstable (p/4 < q < p/2)

Simha-SR 
PRL 2002

Splay-bend mode



Consequence: bulk active nematic/polar always unstable

Growth-rate → σa/m for length scales > x=(K/σa)1/2, K = Frank constt 
viscosity/active stress: a single timescale

viscous hydrodynamics, neglect inertia: unstable without threshold

Simha & SR PRL 2002, Voituriez et al 2005, SR & Rao NJP 2007; polar: Giomi, Marchetti, Liverpool 2008
Active turbulence: Saintillan-Shelley/Yeomans/Dogic/Bausch/Sagues/Doostmohammadi ....

Stable Stokesian flocks
A Maitra arXiv: 2110.15633



splay bend

twistChaikin & Lubensky 
1995 



3D: bend-splay and bend-twist

bend-splay

bend-twist

Bend-Twist not mitigated by interpolation to splay; should dominate in 3D extensile

see Shendruk, Thijssen, Yeomans, Doostmohammadi, PRE 2018



  

Detailed confirmation: active nematic of 
microtubules + motors + ATP
Martínez-Prat, Ignés-Mullol, 
Casademunt & Sagués, 
Nat Phys 2019

Other evidence, e.g. nuclear rotation in cell: 
Kumar, Maitra, Sumit, SR, Shivashankar 2014



K = Frank elastic constant of underlying liq crystal 
Length scale x = (K/σa)1/2; stable if h < x 
Fix h, increase activity σa: diffusive instability? 
No: much more interesting 

Maitra et al. PNAS 2018

Slow flocks in fluid films
apolar

Degenerate planar alignment on both walls

h
wall

wall

Active nematic liquid crystal



  

confined active nematics 

Orientation q 
concentration c 
velocity field v

free-energy functional



  

confined active nematics 

|l| > 1 flow-aligning, < 1 flow-tumbling

2d pressure Passive Active 

Solve for v, get effective equations for q
Need force densities fp, fa

G = viscosity/h2



  

Force densities
passive

active

Splay ≠ bend

cf flexoelectricity: 
Lavrentovich, 
Prost & Marcerou, 
Meyer  

  
not momentum-conserving 
that’s OK: walls
can derive from 3D hydro 



  
Higher multipole for bulk hydrodynamics, but competes on substrate.
Can stabilise for all activity levels!



  

Consequence: effective q dynamics

Without z2 instability inevitable at large Dm
Not any more!

|l| < 1 (flow-tumbling): large +ve z2 always stable. Stability diagram -->



  



  

Slow flocks in fluid films
polar

Extended in XY, confined in z
– base & lid: preferred frame

– forget momentum conservation? 

– 2d confined = Toner-Tu model?

Θ

x

y

z
Maitra, Srivastava, Marchetti, SR, Lenz PRL 2020 

NO



  

orientation velocity

● Polar vs apolar: how different?

● Confined geometry
– bounding walls: momentum sink

– velocity field relaxes “fast” 

● But: incompressibility  
– can’t forget velocity field

– “dry” flocking models not enough

Side view

z

x

x

z

y

Confinement: fluid velocity irrelevant?

Brotto et al. PRL 2013
Kumar et al. Nat Comm 2014



  

Robust long-range order 

Θ

x

y

z

Incompressible velocity game-changing

For the case L > 0 

Nambu-Goldstone gets anisotropic “mass” 

velocity acts like Coulomb field

angle fluctuations finite in d=2, LRO

Not Toner-Tu

If L < 0: inescapable instability

Maitra, Srivastava, Marchetti, SR, Lenz PRL 2020 

END LECTURE 1



  

End lecture 1



CRAWLING THROUGH AN ELASTIC MEDIUM

● What if the medium is elastic, not viscous?
● Strain-rate fields --> strain 
● This work: on a substrate

– velocity field “fast”, damped elastodynamics

cell/tissue mechanics

Rahul Gupta, Raushan Kant, 
Harsh Soni, Ajay Sood, SR 
PRE 2022



Experimental setup



Horizontal motility from vertical shaking

static friction  centre of mass moves⇒

A motile rod transducing vertical shaking into horizontal motion: Nitin Kumar

Yamada, D., Hondou, T. & Sano, M. Phys. Rev. E 67, 040301 (2003)

Medium.mpg


First look at a fluid bead-layer

A motile rod transducing vertical shaking into horizontal motion: Nitin Kumar

flow reorients n parallel to v

motility

Motile rod pushes beadsSubstrate drag, viscosity pressure

1-particle rendition of Kumar, Soni, SR, Sood Nature Comm 2014

Gradients rotate & align n in pictures:

(schematically)

Medium.mpg


Flow-field around a mover in a fluid layer

Distance in bead diameters

Kumar, Soni, SR, Sood 2014



An emergent aligning interaction

Distance in bead diameters

n
v

Nonuniform drag: flow reorients n parallel to v
The weathercock effect

R(t)



A granular flock at very low concentration

Granular dynamics simulation: Harsh Soni

Nitin Kumar (student of A K Sood, IISc)

Kumar, Soni, Sood, SR Nature Communications 2014; arXiv:1402.4262

Confined quasi-2d geometry

cf Deseigne et al PRL 2010
Weber et al PRL 2013

/home/sriram/talks/activemattertalks/current/Video1.avi

/home/sriram/talks/activemattertalks/current/Video2.avi

/home/sriram/talks/activemattertalks/current/Video3.avi
/home/sriram/talks/activemattertalks/current/Video4.avi
/home/sriram/talks/activemattertalks/current/Video5.avi

/home/sriram/talks/activemattertalks/current/Video6.avi

/home/sriram/talks/activemattertalks/current/vdo_liquid.mpg

Video1.avi
Video5.avi
Video6.avi
Video1.avi
Video2.avi
Video3.avi
Video4.avi
Video5.avi
Video6.avi
vdo_liquid.mpg


Phase diagram 

Flocking by increasing inert-particle concentration

Experiment Simulation

beads

rods



A phase transition

Amount of order as function of inert-particle concentration

Experiment Simulation



The mechanism: moving polar rod creates flow

Simulation: H Soni

Screened monopole
cf Brotto et al. PRL 2013 

Increase Fb --> increase decay length of velocity



The mechanism: flow orients polar rod

Flow rotates polar particles to point the right way: the weathercock effect 
Need a substrate

qualitatively similar to Bricard et al. colloidal rollers Nature 2013
•flow field simpler, medium compressible
•single-rod motility from solid contact mechanics
•Crucial difference: non-motile-bead concentration is control parameter 
•purely 2d system

Could have been either way
Design problem

/home/sriram/talks/activemattertalks/current/Video7.avi

Video7.avi
Video7.avi


Theory of flocking at a distance
Order parameter P, 
velocity v, 
number density r

● Independent measurements in simulation (H Soni)
● a >0, l > 0 and increases with r
● So: increase r: get transition to ordered state of P 

Kumar, Soni, Sood, SR arXiv:1402.4262, Nat Comm 2014

Transition determined by effective coupling



Theory of flocking at a distance
Order parameter P, 
velocity v, 
number density r

● Independent measurements in simulation (H Soni)
● a >0, l > 0 and increases with r
● So: increase r: get transition to ordered state of P 

Kumar, Soni, Sood, SR arXiv:1402.4262, Nat Comm 2014

Transition determined by effective coupling

continuity

damping forcing

Flow coupling Rotational relaxation



Estimating mean-field critical point from simulation



Side-by-side: rotation by vorticity
negative taxis: “repulsion”

Distance in bead diameters



Dense bead layer: crystalline

Increase bead packing, transition to crystal
Long-range 6-fold order as proxy



Onset of rigidity

Single-particle microrheology in real and numerical experiments



Contrast between elastic and fluid media

fluid crystal

Bead flow promotes flocking at a distance 
Kumar et al Nat Comm 2014
Increase density, crystallize, what happens?

Fluid: bead flow

crystal: no flow

/home/sriram/talks/activemattertalks/current/Video2.avi

Video2.avi


Comparison: crystal vs fluid

fluid crystal

Fluid: bead flow

crystal: no flow
fluid phase: motile rod drags beads crystal: no dragging

particle_wake_0.71.mpg
particle_wake_0.80.mpg


Crawling through a crystal: theory?

● Safran et al: force dipoles in elastic medium
– motility ignored

● Henkes et al. 2020: elastic medium made of ABPs
– active forcing + repulsive pair potential, no reorienting by medium

● This work: coupled dynamics 
– motile particles strain medium, strain reorients particles
– naturally non-reciprocal dynamics

cell/tissue mechanics

Rahul Gupta, Raushan Kant, 
Harsh Soni, Ajay Sood, SR 
PRE 2022



Motile particles in elastic medium on substrate

A motile rod transducing vertical shaking into horizontal motion: Nitin Kumar

Particle position R(t), orientation n(t)
Displacement field of medium u(r,t)
Lamé elastic free energy F
Friction ζ, self-prop force f, speed v0

driving through a crystal

Medium.mpg


Motile particles in elastic medium on substrate

Curvature: polar orientation 
Strain: apolar orientation





Strain field of a motile particle

U= displacement field in frame comoving and corotating with particle

and similarly Uy

Crucial: asymp forms of K0  exponential decay for x>0, |x|⇒ -1/2 for x<0
Overdamped elastic wake Banerjee, Mondal, Banerjee, Thutupalli, Rao arXiv 2109.10438

Same behaviour for density field in a compressible fluid layer 

Screening



Comparison with measured fields

Numerical experiment on vibrated layer of grains
Inelasticity, static friction, base, lid all included

Profiles, strong fore-aft asymmetry, 
Sign-change of Uy, 
x-1/2 tail confirmed



One particle in strain field of other 
align with extension axis ⇒ “attraction” 

Streamline plot of 
lattice curvature

Principal axis 
of strain

Particle trajectories with 
and without effect of strain



Capture in experiment and simulation

Repel when beads 
are fluid



Non-reciprocal interaction

Particle in front gets no indication of particle behind
Pursuer particle senses distortion field of pursued particle!

(arXiv:2007.04860)

pursuit and capture: numerical experiment

pursuit and capture: laboratory experiment

https://arxiv.org/abs/2007.04860
s10_non_mutual_sim.mpg
s9_non_mutual_exp.avi


SUMMARY

● General framework for “powered” matter

– from equilibrium Langevin to active dynamics

– 1-particle models, broken-symmetry hydrodynamics

● Instability and superstability

– flocks in fluid unstable without inertia; surprises in confinement

● Motility in dense media – fluid and elastic

– flow and strain as signals; non-reciprocal pursuit and capture 
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