Stable Mixing in Hawk–Dove Games under Best Experienced Payoff Dynamics

Srinivas Arigapudi ¹ Yuval Heller ²

¹Department of Economics, IIT Kanpur

²Department of Economics, Bar-Ilan University

"ICTS Bangalore (March 11, 2025)"

Hawk-Dove Game: Motivating Example

- A *buyer* and *seller* bargain over the price of an asset (e.g., house)
- Two bargaining strategies: stubborn *hawk* / flexible *dove*
 - Two Doves: Trade with a fair price
 - Two Hawks: Bargaining is likely to fail (low payoff)
 - Hawk vs. Dove: Trade with price favorable to the hawk

Hawk-Dove Game: Motivating Example

- A *buyer* and *seller* bargain over the price of an asset (e.g., house)
- ullet Two bargaining strategies: stubborn hawk / flexible dove
 - Two Doves: Trade with a fair price
 - Two Hawks: Bargaining is likely to fail (low payoff)
 - Hawk vs. Dove: Trade with price favorable to the hawk

		Seller	
		h_2	d_2
Ruvor	h_1	0,0	1 + g, 1 - g
Buyer	$\overline{d_1}$	1-g,1+g	1,1

• $g \in (0,1)$ = hawk's gain against a dovish opponent (=dove's loss; denoted by the ratio $\frac{v}{c}$ in other papers)

Hawk-Dove Applications in the Existing Literature

Hawk-Dove was employed in modeling various strategic situations:

- Provision of public goods (Lipnowski and Maital, 1983)
- Nuclear deterrence (Brams and Kilgour, 1987; Dixit et al., 2019)
- Industrial disputes (Bornstein, Budescu and Zamir, 1997)
- Bargaining problems (Brams and Kilgour, 2001)
- International territorial conflicts (Baliga and Sjostrom, 2020)
- Task allocation problems (Herold and Kuzmics, 2020)

Equilibria in Hawk-Dove Games

	h_2	d_2
h_1	0,0	1 + g, 1 - g
$\overline{d_1}$	1 - g, 1 + g	1,1

- Hawk-Dove game admits **three** Nash equilibria:
 - Two pure (boundary) equilibria (No costly conflicts, payoff inequality)
 - A mixed (interior) equilibrium (Equal, yet relatively low payoff)
- Which outcome is more likely to arise?

Summary of Main Results

Earlier Results: Global convergence to pure equilibria under many evolutionary dynamics (i.e., interior states are unstable)

Summary of Main Results

Earlier Results: Global convergence to pure equilibria under many evolutionary dynamics (i.e., interior states are unstable)

Our Result: Interior states can be stable under certain evolutionary dynamics based on sampling (Best Experienced Payoff Dynamics)

Model (Hawk-Dove Game)

Table 1: Payoff Matrix of a Hawk–Dove Game $g, l \in (0, 1)$

Player 2
$$h_2$$
 d_2

Player 1 d_1 $0,0$ $1+g,1-l$ $1-l,1+g$ $1,1$

Two pure equilibria (h_1, d_2) and (d_1, h_2) and one mixed equilibrium

	h_2	d_2
h_1	0,0	1+g, 1-l
$\overline{d_1}$	1 - l, 1 + g	1,1

A unit-mass continuum of agents in each of two populations

Agents in population 1 are randomly matched with agents in population 2 to play hawk—dove game

Population state $p(t) = (p_1(t), p_2(t)) \in [0, 1]^2$ $p_i(t) = \text{share of agents playing action } h_i \text{ at time } t \text{ in population } i$ $[(0, 0.5) \text{ means everyone in population } 1 \text{ plays } d_1$ and uniform play in population } 2]

Agents die at a constant rate of 1, and are replaced by new agents

Agents die at a constant rate of 1, and are replaced by new agents

New agents play according to $w:[0,1]^2 \to [0,1]^2$

State $p(t) = (p_1(t), p_2(t))$ changes according to

$$\dot{p}_1(t) = w_1(p(t)) - p_1(t)$$

$$\dot{p}_2(t) = w_2(p(t)) - p_2(t)$$

Agents die at a constant rate of 1, and are replaced by new agents

New agents play according to $w:[0,1]^2 \to [0,1]^2$

State $p(t) = (p_1(t), p_2(t))$ changes according to

$$\dot{p}_1(t) = w_1(p(t)) - p_1(t)$$

$$\dot{p}_2(t) = w_2(p(t)) - p_2(t)$$

Goal: Characterize the limit points of the dynamics i.e., $\lim_{t\to\infty} p(t)$ for all initial states p(0)

Definition

 $p^* \in [0,1]^2$ is a stationary state if $w(p^*) = p^*$

Definition

 $p^* \in [0,1]^2$ is a stationary state if $w(p^*) = p^*$

Definition

Stationary state p^* is $Lyapunov\ stable$ if a population near p^* stays close to it

Definition

 $p^* \in [0,1]^2$ is a stationary state if $w(p^*) = p^*$

Definition

Stationary state p^* is Lyapunov stable if a population near p^* stays close to it

Definition

A stationary state is *unstable* if it is not Lyapunov stable

Definition

 p^* is asymptotically stable if it is Lyapunov stable and nearby states converge to p^*

Definition

 p^* is asymptotically stable if it is Lyapunov stable and nearby states converge to p^*

Definition

A set P^* is globally stable if the population converges to P^* starting from any initial interior state

Consider a hawk-dove game:

	h_2	d_2
h_1	0,0	1 + g, 1 - g
d_1	$\boxed{1-g, 1+g}$	1, 1

Best Response Dynamics:

A new agent

- Knows the population state $p = (p_1, p_2)$
- Chooses a myopic best response

Consider a hawk-dove game:

	h_2	d_2
h_1	0,0	$\boxed{1+g,1-g}$
d_1	1 - g, 1 + g	1,1

Best Response Dynamics:

A new agent

- Knows the population state $p = (p_1, p_2)$
- Chooses a myopic best response

Playing
$$h_1$$
 gives $(1+g)(1-p_2)$
Playing d_1 gives $(1-g)p_2 + 1 \cdot (1-p_2)$

Consider a hawk-dove game:

$$egin{array}{c|c} h_2 & d_2 \\ h_1 & 0,0 & 1+g,1-g \\ d_1 & 1-g,1+g & 1,1 \\ \end{array}$$

Best Response Dynamics:

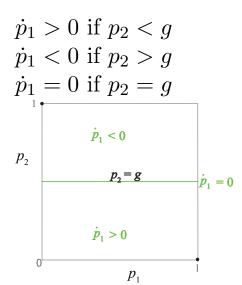
A new agent

- Knows the population state $p = (p_1, p_2)$
- Chooses a myopic best response

Playing
$$h_1$$
 gives $(1+g)(1-p_2)$
Playing d_1 gives $(1-g)p_2 + 1 \cdot (1-p_2)$
 $h_1 \succ d_1 \iff (1+g)(1-p_2) > (1-g)p_2 + 1 \cdot (1-p_2)$
 $\iff p_2 < g$

$$\dot{p}_1 = \begin{cases} 1 - p_1 & \text{if } p_2 < g \\ -p_1 & \text{if } p_2 > g \end{cases}$$

$$\dot{p}_1 = \begin{cases} 1 - p_1 & \text{if } p_2 < g \\ -p_1 & \text{if } p_2 > g \end{cases}$$



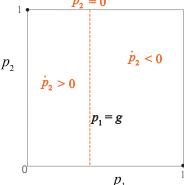
$$\dot{p}_1 = \begin{cases} 1 - p_1 & \text{if } p_2 < g \\ -p_1 & \text{if } p_2 > g \end{cases}$$

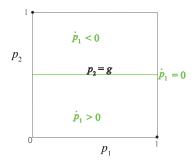
if
$$p_2 < g$$

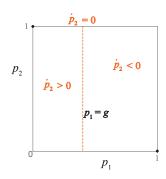
if $p_2 > g$

$$\dot{p}_1 > 0 \text{ if } p_2 < g$$
 $\dot{p}_1 < 0 \text{ if } p_2 > g$
 $\dot{p}_1 = 0 \text{ if } p_2 = g$
 $\dot{p}_1 = 0 \text{ if } p_2 = g$
 $\dot{p}_1 < 0$
 $\dot{p}_2 = g$
 $\dot{p}_1 < 0$

$$\dot{p}_2 > 0 \text{ if } p_1 < g$$
 $\dot{p}_2 < 0 \text{ if } p_1 > g$
 $\dot{p}_2 = 0 \text{ if } p_1 = g$







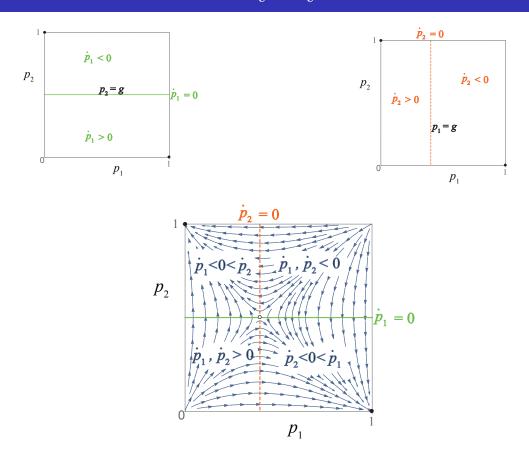


Figure 1: Best response dynamics in hawk-dove game

A new agent:

- Tests each action k times, with each trial against a newly drawn opponent
- Then chooses the action whose mean payoff was highest during the testing phase

(Osborne and Rubinstein 1998, Sethi 2000, Sandholm et al. 2019)

	h_2	d_2
h_1	0,0	1 + g, 1 - l
d_1	$\boxed{1-l, 1+g}$	1, 1

 h_1 -sample: the sample against which h_1 is tested d_1 -sample: the sample against which d_1 is tested

	h_2	d_2
h_1	0,0	1 + g, 1 - l
d_1	1-l, 1+g	1, 1

 h_1 -sample: the sample against which h_1 is tested d_1 -sample: the sample against which d_1 is tested

 X_k^q, Y_k^q are i.i.d. Binomial(k, q) $X_k^{p_2}$ = number of h_2 players in the h_1 -sample $Y_k^{p_2}$ = number of h_2 players in the d_1 -sample

	h_2	d_2
h_1	0,0	1 + g, 1 - l
d_1	1-l, 1+g	1, 1

 h_1 -sample: the sample against which h_1 is tested d_1 -sample: the sample against which d_1 is tested

 X_k^q, Y_k^q are i.i.d. Binomial(k, q) $X_k^{p_2}$ = number of h_2 players in the h_1 -sample $Y_k^{p_2}$ = number of h_2 players in the d_1 -sample

Playing h_1 gives $(1+g)(k-X_k^{p_2})$ Playing d_1 gives $(1-l)Y_k^{p_2} + 1 \cdot (k-Y_k^{p_2}) = k - lY_k^{p_2}$

Playing
$$h_1$$
 gives $(1+g)(k-X_k^{p_2})$
Playing d_1 gives $(1-l)Y_k^{p_2} + 1 \cdot (k-Y_k^{p_2}) = k - lY_k^{p_2}$

Playing
$$h_1$$
 gives $(1+g)(k-X_k^{p_2})$
Playing d_1 gives $(1-l)Y_k^{p_2} + 1 \cdot (k-Y_k^{p_2}) = k-lY_k^{p_2}$
Assume when there is a tie, the new agent plays d_1
New agent plays $h_1 \iff (1+g)(k-X_k^{p_2}) > k-lY_k^{p_2}$

 $\iff (1+q)X_{l_{1}}^{p_{2}}-lY_{l_{2}}^{p_{2}} < qk$

Playing
$$h_1$$
 gives $(1+g)(k-X_k^{p_2})$
Playing d_1 gives $(1-l)Y_k^{p_2} + 1 \cdot (k-Y_k^{p_2}) = k - lY_k^{p_2}$

Assume when there is a tie, the new agent plays d_1

New agent plays
$$h_1 \iff (1+g)(k-X_k^{p_2}) > k-lY_k^{p_2}$$

 $\iff (1+g)X_k^{p_2} - lY_k^{p_2} < gk$

$$\dot{p}_1 = w_1(p_2) - p_1 \tag{1}$$

Playing
$$h_1$$
 gives $(1+g)(k-X_k^{p_2})$
Playing d_1 gives $(1-l)Y_k^{p_2} + 1 \cdot (k-Y_k^{p_2}) = k - lY_k^{p_2}$

Assume when there is a tie, the new agent plays d_1

New agent plays
$$h_1 \iff (1+g)(k-X_k^{p_2}) > k-lY_k^{p_2}$$

 $\iff (1+g)X_k^{p_2} - lY_k^{p_2} < gk$

$$\dot{p}_1 = w_1(p_2) - p_1 \tag{1}$$

 $w_1(p_2)$ is the probability that new agent in population 1 chooses h_1 $w_1(p_2) = Pr\left((1+g)X_k^{p_2} - lY_k^{p_2} < gk\right)$

Best Experienced Payoff Dynamics in the Hawk–Dove Game:

$$\dot{p}_1 = w_1(p_2) - p_1$$
$$\dot{p}_2 = w_2(p_1) - p_2,$$

where,
$$w_1(q) = w_2(q) = Pr((1+g)X_k^q - lY_k^q < gk)$$

Results

Let
$$p(t) = (p_1(t), p_2(t))$$

Proposition

 $\lim_{t\to\infty} p(t)$ exists for any p(0), and it is a stationary state

Results

Let
$$p(t) = (p_1(t), p_2(t))$$

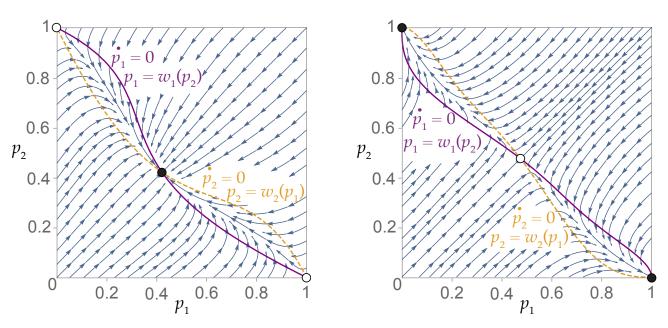
Proposition

 $\lim_{t\to\infty} p(t)$ exists for any p(0), and it is a stationary state

The paper provides sufficient conditions under which pure stationary states are unstable

Results (Interior state can be globally stable)

Figure 2: Phase Plots for various values of k



The figure illustrates the phase plots of BEP dynamics for two environments: left panel, g = l = 0.4, k = 2; right panel, g = l = 0.4, k = 5.

$$\begin{array}{c|cc} h_2 & d_2 \\ h_1 & 0,0 & 1+g,1-g \\ d_1 & 1-g,1+g & 1,1 \end{array}$$

$$g \in (0,1)$$
 and $k \ge 2$

$$egin{array}{c|c} h_2 & d_2 \\ h_1 & 0,0 & 1+g,1-g \\ d_1 & 1-g,1+g & 1,1 \\ \end{array}$$

$$g \in (0,1)$$
 and $k \ge 2$

Stability analysis depends only on a *single* surprise in the sample

$$\begin{array}{c|cc} h_2 & d_2 \\ h_1 & 0,0 & 1+g,1-g \\ d_1 & 1-g,1+g & 1,1 \end{array}$$

$$g \in (0,1)$$
 and $k \geq 2$

Stability analysis depends only on a *single* surprise in the sample

 h_1 -sample: 1 h_2 and k-1 d_2 's

Playing h_1 gives (k-1)(1+g)

$$egin{array}{c|c} h_2 & d_2 \\ h_1 & 0,0 & 1+g,1-g \\ d_1 & 1-g,1+g & 1,1 \\ \end{array}$$

$$g \in (0,1)$$
 and $k \geq 2$

Stability analysis depends only on a *single* surprise in the sample

 h_1 -sample: 1 h_2 and k-1 d_2 's

Playing h_1 gives (k-1)(1+g)

 d_1 -sample: 1 h_2 and k-1 d_2 's

Playing d_1 gives $1 - g + (k - 1) \cdot 1$

$$\begin{array}{c|cc} h_2 & d_2 \\ h_1 & 0,0 & 1+g,1-g \\ d_1 & 1-g,1+g & 1,1 \end{array}$$

$$g \in (0,1)$$
 and $k \geq 2$

Stability analysis depends only on a *single* surprise in the sample

 h_1 -sample: 1 h_2 and k-1 d_2 's

Playing h_1 gives (k-1)(1+g)

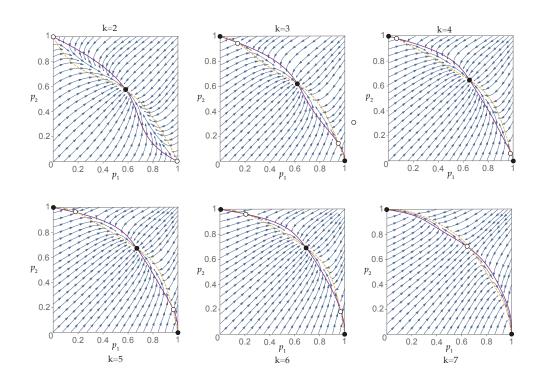
 d_1 -sample: 1 h_2 and k-1 d_2 's

Playing d_1 gives $1 - g + (k - 1) \cdot 1$

$$d_1 > h_1 \iff 1 - g + (k - 1) \cdot 1 > (k - 1)(1 + g) \iff kg < 1$$

Results (Boundary and Interior states can be stable)

Figure 3: Phase Plots for Various Values of k (g = l = 0.85)



Related Literature and Important Themes

Sampling dynamics in games:

```
Public goods game (Mantilla et al., JPET 2018)
```

Centipede game (Sandholm et al., TE 2019)

Finitely repeated games (Sethi, JET 2021)

Prioner's dilemma (Arigapudi et al., JET 2021)

Traveler's dilemma (Berkemer et al., GEB 2023)

Trust Game (Arigapudi and Lahkar, EL 2024)

Coordination games (Arigapudi et al., AEJ-Micro (forthcoming))

Related Literature and Important Themes

Sampling dynamics in games:

```
Public goods game (Mantilla et al., JPET 2018)

Centipede game (Sandholm et al., TE 2019)

Finitely repeated games (Sethi, JET 2021)

Prioner's dilemma (Arigapudi et al., JET 2021)

Traveler's dilemma (Berkemer et al., GEB 2023)

Trust Game (Arigapudi and Lahkar, EL 2024)

Coordination games (Arigapudi et al., AEJ-Micro (forthcoming))
```

Two themes:

- Non-Nash outcomes can be stable
- Strict equilibria can be unstable

Conclusion

Hawk–Dove games admit two types of equilibria: boundary and interior

Existing literature: Interior states are unstable under

many evolutionary dynamics

Our Result: Interior states can be stable under

certain evolutionary dynamics

THANK YOU