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Nodes

Positive interaction

Links
— = =~ Negative interaction

B Thickness indicates
strength of interaction

Many naturally occurring networks have links
with heterogeneously distributed properties

Differences in links can be
J Quantitative: distribution of degree and/or link weights
J Qualitative: nature of interactions (+ve or —ve)
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“Scale free”’ networks

Barabasi and Albert (1999): In many large networks — o
node connections follow a scale-free distribution P(I() ~ k
—> degree distribution has a power law tail

A Albert & Barabasi, 2002
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In contrast,
Nodes in Erdos-Renyi random networks, e.g., G(N,p), exhibit
Poisson degree distrn: P(k) = e (Al/k!)



Power laws, Pareto distributions and Zipf’s law

“When the probability of measuring a particular value of some
quantity varies inversely as a power of that value, the quantity is
said to follow a power law, also known variously as Zipf’s law or

the Pareto distribution”
Mark E ] Newman

Contemporary Physics, 46 (2005) 323

Expresses a relation between 2 quantities that is
independent of the scale one is looking at

P (W) — C W_@ exponent P (w)

:>ng F?(W)} = — a log(w) + log(C) \,—|/

Y =-a X + B

Image: wikipedia

log P (w)

Appears as a linear relation in a log-log graph
(i.e., the axes of the graph are expressed logarithmically) log w




Contrast with
Distributions having a characteristic scale

Example: Exponential distribution
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For instance,
Radioactive decay oo

P (t) = C e~ t/T 1:halflife e B@g

Or, waiting time between buses arriving

T
A3

o°

teday 123 245 359 492 615
years vyears years years years

Essentially, exponential distribution of times between PN,
events seen when events are independent and occur
at a constant average rate (i.e., a Poisson process)

Image: www.pngwing.com



Power law distribution = “Long tails”

High probability of having values that are extremely large deviations from the mean,
much larger than that expected from the variance

Networks with power-law
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Random networks with arbitrary degree distributions

The configuration model

Generating random networks with any desired degree distribution (instead
of Poisson, as in ER graphs), or rather, desired degree sequence

If the exact degree k; of each individual node i=1,2,...,N in the network is
specified a random network with these degrees is created by matching “stubs”

P(k) Specified deagyree Rec'Pe
distribution * Assign to each node i a total of k; stubs of edges
(“half-edges”) such that > k.= 2L where L is the
| 2 3 k total number of links

* Now choose a pair of stubs at random and connect
to form a link

/®/ * Continue by choosing another pair of stubs
k, =2 randomly from the remaining 2L — 2 stubs, and so on
until all stubs are used

/®/ e Results in a network in which each node i has
ky=2 exactly the assigned degree k;

analogous to the G(N,L) random graph model,
where the number of links is fixed



How can scale-free networks evolve !

0

10
The Price-Barabasi-Albert preferential attachment scheme:
(A) Networks expand continuously by addition of new 107 7
nodes —_
(B) New nodes attach preferentially to nodes already well- n‘x--_-' 10
connected, i.e., probability that a new node is connected W
to a node of degree k; is I1(k)=k/Zk; (“linear” scheme) 10 \
10" b
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The Mechanism:

Derek ] de Solla Price : the earliest mathematically
detailed mechanism by which scale-free degree
distribution can arise in the context of networks of
citations between scientific papers

A General Theory of Bibliometric and Other Cumulative

Advantage Processes”

Derek de Solla Price
Department of History of Science and Medicine
Yale University
New Haven, CT 06520
A Cumulative Advantage Distribution is proposed

which models statistically the situation in which success
breeds success. It differs from the Negative Binomial Dis-
tribution in that lack of success, being a non-event, is
not punished by increased chance of failure. It is shown
that such a stochastic law is governed by the Beta
Function, containing only one free parameter, and this is
approximated by a skew or hyperbolic distribution of
the type that is widespread in bibliometrics and diverse
social science phenomena. In particular, this is shown to

be an appropriate underlying probabilistic theory for the
Bradford Law, the Lotka Law, the Pareto and Zipf Dis-
tributions, and for ail the empirical results of citation
frequency analysis. As side results one may derive also
the obsolescence factor for literature use. The Beta
Function is peculiarly elegant for these manifald pur-
poses because it yields both the actual and the cumula-
tive distributions in simple form, and contains a limiting
case of an inverse square law to which many empirical
distributions conform.

Derek ] de Solla Price
292 Journal of the American Society for Information Science—September-October 1976
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The stem cell wars

The most influential players in cellular reprogramming are revealed by recording how many times the scientists have
referred to each other's work. Each link shows where one researcher cited another four or more times in papers in
leading journals (for analysis, see “The strongest link”, below right)

©NewsScientist
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Matthew Effect

Matthew 25:29

FOR TO ALL THOSE WHO
HAVE, MORE WILL BE GIVEN,
AND THEY WILL HAVEAN

ABUNDANCE; BUT FROM ¢
THOSE WHO HAVE NOTHING

EVEN WHAT THEY HAVE WILL;M\ . 4
BE TAKEN AWAY, b\

Image: Sutori

Already well-known scientists receive
disproportionate credit for their contributions,
while less-known scientists receive less credit
than their works merit

Robert Merton



Why the degree distribution is scale-free

Start with a small number (m;) of nodes, at every time step,add a new
node with m(<m,) links to nodes already present in the system.

From
Statistical mechanics of complex

networks

Reka Albert and Albert-Laszlo 'Barabasi
Rev Mod Phys 74 (2002) 47-97

Continuum theory: The continuum approach intro-
duced by Barabasi and Albert (1999) and Barabasi, Al-
bert, and Jeong (1999) calculates the time dependence
of the degree k; of a given node i. This degree will in-
crease every time a new node enters the system and
links to node i, the probability of this process being
I1(k;). Assuming that k; is a continuous real variable,
the rate at which k; changes is expected to be propor-
tional to II(k;). Consequently k; satisfies the dynamical
equation

dk ; k;

I £

=mll(k;)=m

(79)

N-T -
2k
j=1 "
The sum in the denominator goes over all nodes in the
system except the newly introduced one; thus its value is
Ef-k;-=2m.*—m, leading to

dk; ki

a2t

dt

(80)

The solution of this equation, with the initial condition
that every node i at its introduction has k;(1;)=m, is

(t\B 1
k,-l[r}=m(f—_] with p=3. 1)

Equation (#1) indicates that the degree of all nodes
evolves the same way, following a power law, the only
difference being the intercept of the power law.

Using Eq. (81), one can write the probability that a
node has a degree k;(t) smaller than k, P[k;(t)<<k], as

[ m Y
Plk:.u;.q:kpp[_fpw]). (82)

Assuming that we add the nodes at equal time intervals
to the network, the t; values have a constant probability
density

1

P(t)= el (83)
Substituting this into Eq. (52) we obtain
p r.}n\'z"r‘gf' —1_ m'"Py ' (84)

The degree distribution P(k) can be obtained using
6 aP[k(t)<k] 2mYP; 1

dk - ."ﬂu"‘f RU'B-FI ’ {85)
predicting that asymptotically (t—=)
1
P(k)~2m"Pk~Y with fy=E+1=3 (86)

being independent of m, in agreement with the numeri-
cal results.



Importance of “hubs”

Random failure of nodes typically has little effect on scale-free network as most nodes
connect only to a few other nodes: Robustness to random node removal

o T T ]
Random LT
. |
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<s> :average size
of the isolated
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as a function of
the fraction of
removed nodes

0
0.0 0.2 0.4

Newman 2008

However targeting the highest-degree nodes (hubs) has devastating effect on the network —
most nodes become isolated on removing a few hubs: Vulnerability to targeted removal of hubs



How does a heterogeneous degree distribution
affect dynamical processes on the network —
e.g., epidemic propagation!?



The Kermack-McKendrick S-1-R Model (1927)

20000 - dS/dt = - B Sl
di/de=BSI— 1/t
15000 -
dR/dt=1/<
[
g Infected
g 10000 - effective contact rate = 4.00 === Recovered
i Susceptible

B : rate of infection spreading
=008 Y :recovery rate
(= I/avg infectious period, 1)
In reality B has two
parts — average
20 30 40 50 degree (soctal) and
Day the ease with which a
pathogen can be

Epidemic occurs if the number of infections increases with time -, tted neroes
—> Change in infected population dl/dt > 0, ie, BSI>1/1 (biological)

—> Condition for epidemicS>1/f3 1 \

0 10

Image:kx.com/blog/dynamic-modeling-of-covid- 19/

As in the initial stage of an epidemic S = N, total population... :
Ry=NBt> I

An epidemic will occur if N3t > 1



Minimum immunization coverage required
to stop epidemic (obvious policy implications)

SIR model equation: dl/dt =3 SI — I/t

— To stop epidemic we need to make dl/dt <0, i.e., S(t=0) <1/ Bt
where

B :rate of infection spreading

T :average infectious period

Let total population be N
Thus, proportion of the population that is susceptible, s = S(t=0)/N needs
to be made smaller than [/(Nft) = I/R, (because R, = N f37)

—The fraction of population that needs to be immunized to stop the
epidemic (assuming homogeneous mixing) is p > 1- (1/R)
For Ry = 2, p,i, ® 50%, while for Ry = 3, p,.., = 66%



No threshold for epidemics in
scale-free networks
Networks of sexual relations have been

i - !
claimed to be scale-free ! PHYSICAL REVIEW LETTERS reck ending

IVOLUME 90, NUMBER 2 17 JANUARY 2003

Absence of Epidemic Threshold in Scale-Free Networks with Degree Correlations

.. iy > . 3
Mariin Boguiid,' Romualdo Pastor-Satorras,” and Alessandro Vespignani

A few highly promiscuous individuals
(X3 ’ 'Departament de Fisica Fonamental, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain
act a.s h u b n Od es . 2Departament de Fisica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Campus Nord, 08034 Barcelona, Spain

“Laboratoire de Physique Théorigue (UMR 8627 du CNRS), Batiment 210, Université de Paris-Sud, 91405 Orsay Cedex, France
(Received 8 August 2002; published 15 January 2003)

Random scale-free networks have the peculiar property of being prone to the spreading of infections.

H H H Here we provide for the susceptible-infected-susceptible model an exact result showing that a scale-free

Plays crUCIaI rOIe in Spreadlng Sexua”y degree distribution with diverging second moment is a sufficient condition to hatve null epidemic
. . threshold in unstructured networks with either assortative or disassortative mixing. Degree correlations
transm |tted d|seases ! result therefore irrelevant for the epidemic spreading picture in these scale-free networks. The present

result is related to the divergence of the average nearest neighbor’s degree, enforced by the degree
detailed balance condition.

If the contact structure of a disease is network with heterogeneous degree
distribution, the condition for occurrence of an epidemic is:

R=NBt > (k)/{{k*)—- (k)}

For a scale-free network having degree exponent 2<q <3, <k?> —w0
—There is no epidemic threshold !

Even diseases with extremely low transmission probabilities are likely to
cause a major outbreak involving a significant fraction of population



log(N(k))

But are most real networks “scale free” ?

[ Scale-free networks characterized by long-tailed degree distribution (power laws) have
been proposed as unifying concept for biological complex systems — have been
reported in metabolic, protein, and gene interaction networks.

L But many of these reports of scale-free networks are possibly just a result of bad
statistics (a combination of extremely limited data and faulty analysis) !

L Almost any distribution seen over a small enough range in a double logarithmic scale
would appear linear — and wrongly interpreted as power law

Guelzim ef al., 2002

o
m - .
Is this data really
o . . .
¥ indicative of a
power law !
o —
N
T 7| yeast transcriptional
regulatory network
© o

1 I | |
0 1 2 3

log(k)

1 To establish power laws from finite data one has
to use unbiased techniques such as maximum
likelihood estimation.

[ Rigorous re-analysis of many of the data sets
used by earlier studies that claimed power-law
degree distributions have shown little evidence
for scale-free nature!

(E.g., R Khanin & EWit, | Comp Biol 13
(2006) 810)



Can other processes yield scale-free degree distribution?

The Case of Duplication & Divergence

preferential attachment appropriate for explaining scale-free character of WWW
Less clear how it might play a role in biological systems,

e.g., protein-protein interaction network that has been claimed to be scale-free

As most biological systems have emerged through a long history of evolution, can
evolutionary processes give rise to a network with scale-free property ?

Vazquez et al, ComPlexUs (2003)
In the Duplication-Divergence mechanism, a node along with all its interactions are

duplicated with probability p and then some of the interactions mutated with probability q
= claimed to yield networks with scale-free degree distribution but is it true?

Target Protein Duplication

. 0.0

)
A /
AN o@l@-'

Shared interactions

Divergence

Interactions

Loss of some interactions



Nodes

Positive interaction

Links
— = =~ Negative interaction

B Thickness indicates
strength of interaction

Many naturally occurring networks have links
with heterogeneously distributed properties

Differences in links can be
J Quantitative: distribution of degree and/or link weights
J Qualitative: nature of interactions (+ve or —ve)




Heider’s “Three-Body Problem”™

A basic characterization of relationships between
mutual acquaintances

Pradeep

psychspace.com

Fritz Heider (1896-1988)

F Heider (1946) Attitudes and cognitive
organization. | Psychol 21:107—112.

aminoapps.com

(2) Pradeep and Xena are friends = PX: +ve interaction (link)
(3) Om and Pradeep are enemies = OP: —ve interaction (link)

(I) Om and Xena are friends = OX: +ve interaction (link)
} Tension



Structural Balance

UD‘JBU'OEL{DSUEMD}

P P P
@ + X0 - X g = %X
1 2 3 4
P
No Balance
O + X
5 6 7 8

Relationship triangles containing exactly 2 friendships are prone to transition to
triangles with either | or 3 friendships = friend of my enemy is my enemy

A single friendship may appear in a relationship triangle that initially had none =
enemy of my enemy is my friend



Structural Balance
from triads to networks

% :

Dorwin Cartright Frank Harary
(1915-2008) (1921-2005)

Carwright & Harary (1956)

Generalization of Heider’s theory to network of N nodes  Psychol Rev 63:277-293

In a balanced network, every cycle (closed loop) is balanced, i.e.,
product of the signs of the links in the loop is +ve

A complete graph (a network where all pairs of nodes are
connected) is balanced if each constituent triad is balanced




The local concept of balance results in non-trivial network structure

Any balanced network can be partitioned into two communities
such that all edges inside each community are positive and all
edges between nodes in opposite communities are negative
(one of these communities may be empty)

In absence of any external influence or noise, the two communities
are unified and opposed in their response to any issue



Balance and International Relations

The height of cold war from a

network perspective
7 4 ‘{ Alliance network of nations in 1962

MAL) SRL gar

HiG SPN
CYP/’ o o o
/ YUG As bipartite relations

LB
NATO @iDENR PR among countries
\ G}
o gl
N4 through events such

Y that comprise major
AT | ) BSGRC y P J
L AN alliances change
@ m’ PAK =0 _—
LBR .
@ as war, triads become
unbalanced
—> creates tension
—> Reorganization
into a balanced state
OAS involving new blocs
and alliances
‘ o (Evolution to balance)

Z Maoz, Networks of Nations (Camb Univ Press, 2010)

MLI




For physicists

Structural balance = No Frustration

E.g., Ising spin systems with exchange interactions of FM or AFM type

/ﬂ\
+ve +ve / \
/ \
tve i i —ve E

Absence of structural balance would

result in a rugged energy landscape, .

with the system trapped in any one ;«
)

of a large number of local minima F A

A balanced network would have T Vg
smooth energy landscape T



Structural balance in the brain ?

On the basis of
spontaneous
correlations &
anti-correlations of
fluctuations in fMRI
between different brain
regions, two
“diametrically opposed”
widely distributed brain

regions identified.

One network consists
of regions routinely
exhibiting task-related
activations;

the other of regions
routinely exhibiting
task-related

deactivations.
Time (seconds)

Fox et al, PNAS 102 (2005) 9673



But how is balance achieved ?

Most studies on structural balance have been
carried out in the context of social networks

JCan other kinds of networks, in particular
those that occur in biology, exhibit balance ?

JANd if so, what is the mechanism of

evolution to balance ?

In particular, can balance be achieved as an outcome of link
adaptation dynamics that depends on the state dynamics of
the nodes of the network



“Learning” to Balance
Modifying the synaptic weights by Hebb rule

A) M WA :
— - en Donald O Hebb (1904-85)
N ; i t .
}WN MR ebb's hypothesis (1949)
an action potential.

Neurons that fire together, wire together

e

Intuitive interpretation

: Agents behaving alike have their ties
~“»~4  Heavy simultaneous . . .
Y lty oot strengthened, while those behaving differently
n neurons . . .
gradually develop antagonistic relations.

’}\ Long-term potentiation

aaaaaaaaaaaaaaaaaaaaaaaa Initial State

AAAAAAAAAAAAAAAAAAAAAA

%} Neuron's synapse, First empirical observation Py €

strengthened by (Lomo, 1966) supporting Hebb’s (¢, .

this simultaneous h hesi .0
activity, triggers ypotnesis TR

an action potential. &
Persistent increase in synaptic a
strength after high-freq

stimulation /‘\\\_

33
=

Repeate
Stimulation

http://thebrain.mcgill.ca



http://www.scholarpedia.org/article/File:DonaldOldingHebb.jpg

Hebb-like rule results in evolution to structural balance through

Coevolution of coupling strength & spin dynamics

Spin orientations

E=— Z J@jO't'O'j

= (b)

Interaction
matrix

Jij(t—l—l) (1—EJ31L+EO'1

(C)

landscape

(schematic)
Initial Intermediate Final
(Frustrated) (Balanced)

Image: R Singh, S Dasgupta & SS, EPL (2014)



Structural balance: A tool for seeing some order behind the
chaos of financial markets ?
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Robust signatures of systemic crises

Financial markets undergo fluctuations at all times — but only occasionally these
spill over into the real economy resulting in economic collapse

E.g.,1929 Great Recession and the 2008 Great Recession

Can we distinguish such crises events from day-to-day ups and
downs of the market ?

For this purpose look at the long-term evolution of a market over

almost a century:
the daily closing prices of all stocks in New York Stock Exchange

between 3| Dec 1925 and | Feb 2012

[CRSP (Center for Research in Security Prices) database]



Identifying the network of relations between
different stocks in terms of how similar their
prices movements are over time

By spectral analysis of cross-correlation matrix



Correlation Analysis

l. Construct the correlation matrix C composed of
correlation values between every pair of stocks

Correlation between returns for stocks i and j:

C;=<r,r> where r=[R;-<R>]/o,

Data set;

Data split into 85 overlapping periods of 1000 days (labeled Period 0 to Period 84), the
temporal window being shifted by 260 days

Stocks with > 50 missing days not considered

To compare different periods, we consider 300 or 500 stocks in each

Sector to which a stock belongs identified by SIC (Standard Industrial Classification)

code



Correlation Matrix
100¢
Distribution of magnitudes of cross- 1

correlations varies with time over the 0200 [
o o X i
period considered. 3
wn

10.4

Distributions are highly asymmetric,
skewed towards +ve values.

Stocks

Degree of asymmetry varies
with time, with the distributions
in the 1930s and early 1940s and
the 1990s onwards era having
the largest degree of skewness
— coincides with periods of
marked upheaval in economy.




The problem with analyzing raw correlations

Cross-correlations of infinitely long time series of different
variables will reflect actual inter-relations between them

But in reality, we only get data over a finite time !

Due to stochastic fluctuations, even the output of uncorrelated
random processes may exhibit spurious correlations, if we
calculate C over finite-length time-series !

Question: Can we identify true interactions between variables by
filtering out the effect of cross-correlations generated because of
such finite time effects ?

Solution: Look at the spectral properties of C and compare with
that of an ensemble of random cross-correlation matrices



The spectrum of “Wigner-ium”

Nuclear physics: VWhat is the energy spectrum of a complex nucleus ?

‘ S i .' Q”L!J | (/n)= 478 b/atom |
: ! l l k ? , . |
’ < l .lil | ,

. g lll\“-'.f' b . ﬂ| TR
14 .; n. 7 I ]\ q l lw‘qc il | :7} ,l ].l It ,.,

1 e u.é.?&__-g"_w e 3 ol A S Yk et "-*w_rl"__,t*m':ln
400 700 '

ENERGT (eV)  Exact calculations too difficult!

Image: O. Bohigas, R.U. Haq and A. Pandey, in Nuclear Data for Science and Technology (1983)

1.0 . - -
-\ Poisson NDE - 1 Wigner:Instead of focusing on
- X 1726 spacings 1 specific energy levels, look at the
- | | 1 spectral properties (eigenvalues &
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ll. Obtain eigenvalues of the correlation matrix

If all stocks are uncorrelated, C will be a random (Wishart) matrix with
Marchenko-Pastur distribution (1967)

P (%) =[QRn] V(o -A) (A-2)]  where Q=T/N
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BUSINESS
SECTORS

Deviating eigenvalues = Information about

interaction structure of the market
Look at eigenvectors u of the largest few eigenvalues

|IT-Telecom

< Services
= Pharma

Industrial
~ Misc

Energy
Materials
T ConGoods
o ConDiscre

Auto
Basic -

w Financial
Tech

=
0
J
m
T

o,

lu (k)
o

Stocks (i)
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= Market mode

Common component affecting
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However ...

largest eigenmode (market) dominates all intra-group correlations (if existing).
=> no straightforward detection of significantly related groups of stocks.

For this purpose, use

Matrix Decomposition Technique
Aim: removing the effect of (i) market mode & (ii) random noise

Expanding correlation matrixas C=X.A.u,"u.

Allows decomposition of C into contributions due to
* market, common for all stocks

* groups of co-moving stocks (identified with various business sectors)
* random, idiosyncratic effects for each stock

C = C market T C sector t C

random
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Focus on group modes

Csoup : information about interaction
between “related” stocks

Higher incidence of larger values of positive correlations in certain periods is
representative of higher correlation between groups of stocks.



Reconstructing the interaction network

Method: Use Cé&™UP to generate an adjacency matrix A, such that
A, = | if |Cerovpy| > 3 x std dev of Crdem distribution
* A; = 0 otherwise

@) st (b)

Node colors represent sector

Image: C Kuyyamudi, A S Chakrabarti & S Sinha, PRE (2019)

Dec, 2002 - Dec, 2006 Great recession Feb, 2008 - Feb, 2012

Blue links: +ve interactions, Red links: — ve interactions



During a major crisis, network structure shows increased

* Connection density,
* Number of negative edges, and

* Clustering

Kuyyamudi, Chakrabarti & Sinha, PRE (2019)

g 100 | | | | | 1 | |
L L€
) M
L
10 . . T2, Nt b . .
10 20 30 40 | 50 60 70 80
Great Periods 2007-9
Depression crisis
—~10* td |

|

50 60 70 80
Periods

10 20 30 40



Degree and size of inner cores increase during crisis

2007-9 crisis
Feb 21,2008 - Feb 2,2012

Feb 8,2007 — Jan 24,201 |
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An even more robust indicator of
economic crisis is the loss of

structural balance

i.e., the emergence of frustrated triads in the
interaction network



A closer look at triangles in the NYSE stock
interaction networks

Red: empirical networks, Gray: degree-preserved randomized networks
Kuyyamudi, Chakrabarti & Sinha, PRE (2019)
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Frustration = Systemic Risk

Frustrated triads appear in individual eigenmodes in many periods, but in the network only
prior to/during systemic crisis in the economy (e.g., negative growth rate of GDP per capita)
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Qualitatively similar behaviour shown by NASDAQ and the FOREX markets




Assignment

Consider a fully connected network of 4 nodes shown on the right, the nodes
being labelled A,B,C,D and the links designated AB,BC,CD, etc. (i.e.,
indicating the pair of nodes that each link connects).

(a) If each link can be either +ve or —ve, what is the total number of possible
configurations that can be obtained (where the configurations can be
represented as {+’+1+’+1+s+}1 {+l+1+l+1+l_}1{+!+l+!+l_l+}l {+l+!+l_!+1+}l
etc.)?

[Note that each of the links are distinct, i.e., AB being negative in a network

where all other links are positive is a distinct configuration compared to one
in which AD (for instance) is the only link which is negative.]

(b) How many distinct configurations will have 3 links positive and 3 links negative?

(c) Find how many of the total number of configurations with distinct assignment of link signs that you calculated
in (a) are balanced. Note that a network is balanced if every closed loop or cycle is balanced, i.e., product of the
signs of the links in the loop is + ve. However, instead of having to look at all 4-cycles as well as 3-cycles (triads),
you can use the Cartwright-Harary theorem, according to which a fully connected network is balanced if each of

the triads (ABC, ABD, etc.) are each individually balanced.

[Hint: find how many distinct triads are there in the network. If for a given configuration, even one of these triads is
not balanced (i.e., has an odd number of negative links) the configuration will be not balanced.]



