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A partial reconstruction of the 

acquaintance network of School 

participants as reported on Day 1

Data acquisition by Ritam Pal (IISER Pune)

Visual rendering by Shakti N Menon (IMSc Chennai)

Node color → institutional 

affiliations of participants 

(institutes with just a single 

participant colored grey)

Node shape → gender 

(square: male, triangle: female)



Theoretical understanding of networks

• Regular lattice or grid (Physics)
• average path length ~ N1/D (no. of nodes)

• clustering high

• delta function distribution of degree (links/node)

• Random networks (Graph theory)
Also known as Erdös-Renyi networks

• average path length ~ log N

• clustering low

• Poisson distribution of degree

Behavior of theoretical networks typically examined in the limit N→

D: spatial dimension



Ray Solomonoff Anatol Rapoport

Random networks 
Networks constructed by choosing to place 

links between each possible pair of nodes using 

independent, identical probability



Random networks 

Paul Erdös Alfred Renyi

Erdös-Renyi model (1959): Two closely 

related probability-based models for 

generating random networks

I. The G(N,L) model: when any member of a family of all graphs 

with N nodes and L links is chosen uniformly at random.
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Graph 1 Graph2 Graph 3

Each graph can be picked with probability 1/3

Example: 
G(3,2) comprises 3 possible networks of 3 nodes A,B and C 



Random networks 

Paul Erdös Alfred Renyi

I. s

II. The G(N,p) model: when a network is constructed by randomly 

placing a link between each possible pair of nodes with a 

probability p (0<p<1)

Erdös-Renyi model (1959): Two closely 

related probability-based models for 

generating random networks

Example: 
G(3, ½ ) is ensemble of all possible networks of 3 

nodes A,B and C such that each link {AB, BC, AC} 

occurs with probability ½ 

As N→,  p  2ln(N)/N  network will almost surely be connected

A

B C



Largest Connected Component
A largest connected component (LCC, or 

giant component) is a connected component 

whose size Nl is a finite fraction of that of the 

size N of the entire network, even as the 

network becomes larger and larger, i.e., 

LimN→ Nl / N = c > 0.

As p gradually increased from 0 to 1, 

the fraction Nl / N suddenly increases 

from 0 to a finite value (>0) 

Phase transition

In G(N,p) random network model, LCC size is 

Nl =1 when p = 0 (isolated nodes) 

Nl =N when p =1 (clique) 

Image: www.sci.unich.it

Image: Kang & Petrasek, Internat. Math. Nachrichten (2014)
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i.e., becomes extensive, increasing with N 
at a critical value of p, pc = 1/N



Random networks & Percolation
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the links between any two neighboring sites is open with 

probability p [ closed with probability (1 – p) ] 

The Question:

What is the probability that a connected path exists from 

one side of the lattice to the other ?

Percolation theory has origins in understanding 

the process of transport through porous 

medium, e.g., of toxic chemical molecules 

through the filtering agent of a gas mask

Random Network phase transition related to bond percolation
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The average path length in the random 
network is  L   log N / log k

Intuition: 

Locally, a random network G(N,p) with very small p

– as cycles or closed loops involving only a few 

nodes are unlikely – will be approximately like a 

tree

The average number of neighbors located at 

distance d away from a node is :

Nd = kd

 N = k + k2  + k3 + … + kd   kd

Path length & Clustering in Random networks
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The average path length in the random 
network is  L   log N / log k

Intuition: 

Locally, a random network G(N,p) with very small p

– as cycles or closed loops involving only a few 

nodes are unlikely – will be approximately like a 

tree

The average number of neighbors located at 

distance d away from a node is :

Nd = kd

 N = k + k2  + k3 + … + kd   kd

The average clustering coefficient in a G(N,p) random network is 

approximately C  p ≈ k / N
This is because if you randomly select a node i and look at two neighboring 

nodes j and k connected to it, the probability that j & k will be connected is just p

Path length & Clustering in Random networks



Degree distribution of Random networks 

The G(N,p) model: 

A given node in the network is connected with independent probability p to 

each of the N – 1 other nodes. 

Thus the probability of being connected to k (and only k) other nodes is 

pk(1 – p)N – 1 – k

There are N – 1Ck ways to choose those k other vertices, and hence the total 

probability of being connected to exactly k others is

pk = N – 1Ck p
k(1 – p)N – 1 – k

which is the Binomial distribution having mean Np and variance Np(1 – p)

As N becomes large with p being extremely 

small (→0), such that Np = k =  is finite, 

this tends to the Poisson distribution

P(k) = e- (k/k!)
Both the mean and variance is given by .

For large values of  this converges to the 

bell-shaped Gaussian or Normal distribution
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Empirical networks are not random –

many have certain structural patterns

Theoretical understanding of networks

• Regular lattice or grid (Physics)
• average path length ~ N (no. of nodes)

• clustering high

• delta function distribution of degree (links/node)

•Random networks (Graph theory)
Also known as Erdos-Renyi networks

• average path length ~ log N

• clustering low

• Poisson distribution of degree



Macro-patterns



“It’s a small world”: The Milgram Experiment
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Milgram, 1967

Stanley Milgram (1933-1984), US social psychologist

Arbitrarily selected individuals in Nebraska were asked 

to generate acquaintance chains (knowing  on first name 

basis) connecting them to a target individual in Boston

In one experiment, 64 of the 296 chains initiated 

eventually reached the target – the mean number of 

intermediaries between source and target being slightly 

larger than 5 

 Six degrees of separation



Clerk in Omaha Self-employed friend in 

Council Bluffs,  Iowa

Publisher in 

Belmont,Mass.

Tanner in 

Sharon,Mass.

Sheet metal worker 

in Sharon,Mass.Dentist in 

Sharon,Mass.

Printer in 

Sharon,Mass.

Cloth merchant 

in Sharon,Mass.

Stock broker in 

Sharon,Mass.

Across the country 

in eight hops

Source

Target



Regular Network Random Network“Small-world” Network

Increasing Randomness

p = 0 p = 10 < p < 1

“Small world” networks

p: fraction of random, long-range connections

Watts and Strogatz (1998): Many biological, technological and social 
networks have connection topologies that lie between the two 
extremes of completely regular and completely random.



Small-world networks can be highly clustered (like regular networks ), 

yet have small characteristic path lengths (as in random networks ).

Watts & Strogatz, 1998

“Small world”: Local properties of regular networks 

but global properties of random networks

L

Characteristic path length

: shortest distance            

between nodes i and j

Clustering coefficient

where

Alternatively

Alternatively



Implication:

“Control the truck-drivers”

Key Results:

• Critical infectiousness rhalf, at which the 

disease infects half the population, 

decreases with p

• Time required for a maximally infectious 

disease (r = 1) to spread throughout the 

entire population T(p) has same form as 

characteristic path length L(p) 

 rewiring only a few links in the original 

lattice causes global infection to occur almost 

as fast as in random network

Watts & Strogatz, 1998

Epidemics on “Small world”

Dynamical process:

• Time t = 0: single infected individual present.

• Each infected agent can infect any of its 

neighbours with probability r. 

• Infected individuals removed (by immunity or 

death) after unit period of sickness. 



Do small-world networks occur in real life ?

# nodes Avg degree Avg path length Clustering coefficient

Albert & Barabasi, 2003


