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A partial reconstruction of the
acquaintance network of School
participants as reported on Day |

Node color — institutional
affiliations of participants

(institutes with just a single
participant colored grey)

Node shape — gender
(square: male, triangle: female)

Data acquisition by Ritam Pal (IISER Pune)
Visual rendering by Shakti N Menon (IMSc Chennai)



Theoretical understanding of networks

Behavior of theoretical networks typically examined in the limit N—o0

* Regular lattice or grid (Physics) VA F
» average path length ~ NP (no. of nodes) .”.".".".".

D: spatial dimension —d o

* clustering high VAVAVAVAVAV,

* delta function distribution of degree (Iinks/‘nlocll‘e)ﬂ

* Random networks (Graph theory)
Also known as Erdos-Renyi networks
* average path length ~ log N
* clustering low
* Poisson distribution of degree




Random networks

Networks constructed by choosing to place
links between each possible pair of nodes using
independent, identical probability

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 13, 1951

Ray Solomonoff Anatol Rapoport
CONNECTIVITY OF RANDOM NETS

RAY SOLOMONOFF AND ANATOL RAPOPORT
DEPARTMENT OF PHYSICS AND COMMITTEE ON MATHEMATICAL BIOLOGY
THaE UNIVERSITY OF CHICAGO Y

The weak connectivity ¥ of a random net is defined and computed
by an approximation method as a function of @, the axone density. It =i
is shown that y rises rapidly with @, attaining 0.8 of its asymptotic @ ¢ -~ ===7"777"" ===~
value (unity) for a — 2, where the number of neurons in the net is
arbitrarily large. The significance of this parameter is interpreted also
in t&arms of the maximum expected spread of an epidemic under certain
conditions.

Numerous problems in various branches of mathematical biology p
lead to the consideration of certain structures which we shall call /
“random nets.” Consider an aggregate of points, from each of which /
issues some number of outwardly directed lines (axones). Each ;
axone terminates upon some point of the aggregate, and the prob-
ability that an axone from one point terminates on another point is = Weak connectivity as a function of axone density
the same for every pair of points in the aggregate. The resulting
configuration constitutes a random net.




Random networks

Erdos-Renyi model (1959): Two closely
related probability-based models for
generating random networks

Paul Erdos Alfred Reﬁyi

. The G(N,L) model: when any member of a family of all graphs
with N nodes and L links is chosen uniformly at random.

Example:
G(3,2) comprises 3 possible networks of 3 nodes A,B and C

Graph | Graph?2 Graph 3

Each graph can be picked with probability 1/3



Random networks

Erdos-Renyi model (1959): Two closely
related probability-based models for
generating random networks

4 |

Paul Erdos Alfred Reﬁyi

ll.  The G(N,p) model: when a network is constructed by randomly
placing a link between each possible pair of nodes with a

probability p (0<p<lI)

Example: o o

G(3, 2 ) is ensemble of all possible networks of 3 ‘é). P % ‘é).

nodes A,B and C such that each link {AB, BC,AC} ' y

occurs with probability /2 G'g'g
)

As N—oo, p > 2In(N)/N = network will almost surely be connected



A largest connected component (LCC, or

giant component) is a connected component

whose size N, is a finite fraction of that of the -

size N of the entire network, even as the

network becomes larger and larger, i.e.,
Limy_,.. N,/ N=¢c>0.

In G(N,p) random network model, LCC size is
N, =1 when p = 0 (isolated nodes)
N, =N when p =1 (clique)

Phase transition
As p gradually increased from O to I,
the fraction N,/ N suddenly increases

from O to a finite value (>0)
L.e., becomes extensive, bnereasing with N

at a critical value of p, p. = |/N

Image: Kang & Petrasek, Internat. Math. Nachrichten (2014)
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Random networks & Percolation
Random Network phase transition related to bond percolation

Charcoal Dust Filter

Percolation theory has origins in understanding
the process of transport through porous
medium, e.g., of toxic chemical molecules
through the filtering agent of a gas mask

Consider a 2-dimensional lattice of N x N sites in which _D_ <l —, 52
the links between any two neighboring sites is open with — -
o . o —1

probability p [= closed with probability (I —p) ] o ‘.1 T=- —E
LL I gt

The Question: l_ RO :II‘LF‘ 1

What is the probability that a connected path exists from 3 r_

one side of the lattice to the other ? Sfrﬂ eegd v [_ 1

Image: http://www.suffos.bam.de



Path length & Clustering in Random networks

The average path length in the random
network is ( £ ) ~ log (N) / log (k)

Intuition:

Locally,a random network G(N,p) with very small p
— as cycles or closed loops involving only a few
nodes are unlikely — will be approximately like a
tree

Image: http://i.stack.imgur.com

The average number of neighbors located at
distance d away from a node is :

Ny = (k)

= N =(k) +({k)? + ky+ ...+ k) ~ (k)




Path length & Clustering in Random networks

The average path length in the random
network is ( £ ) ~log (N) / log (k)

Intuition:

Locally,a random network G(N,p) with very small p
— as cycles or closed loops involving only a few
nodes are unlikely — will be approximately like a
tree

Image: http://i.stack.imgur.com

The average number of neighbors located at
distance d away from a node is :

Ny = (k)

= N =(k) +({k)? + ky+ ...+ k) ~ (k)

The average clustering coefficient in a G(N,p) random network is
approximately (C) ~p = (k) / N

This is because if you randomly select a node i and look at two neighboring
nodes j and k connected to it, the probability that j & k will be connected is just p



Degree distribution of Random networks
The G(N,p) model:

A given node in the network is connected with independent probability p to
each of the N — | other nodes.

Thus the probability of being connected to k (and only k) other nodes is
k(1 — p)N=1-k

There are N~ 'C, ways to choose those k other vertices, and hence the total
probability of being connected to exactly k others is

pi =N~ ICpH(1 = p)N-
which is the Binomial distribution having mean Np and variance Np(I — p)

0.40

As N becomes large with p being extremely 0.35L%9 e A=
small (—0), such that Np = (k) = A is finite, 030l | * \=:
this tends to the Poisson distribution 025 ° A=

P(k) = e (AMK!) 0200 Lse

n' f !
0.15} L) ?

Both the mean and variance is given by A. N\ \ geey
. 0.10F /| * s =}
For large values of A this converges to the cosl P & S o
bell-shaped Gaussian or Normal distribution 000l 8encTa. 0 "o
' 0 2 10 15

Source: wikipedia



Theoretical understanding of networks

* Regular lattice or grid (Physics) f“
* average path length ~ N (no. of nodes) :" '''''''' “:

° CIU ste ri N g h’ gh N :,::"”/‘i;n",.;‘“i:..‘_,,; AV

* delta function distribution of degree (Iinks;/’no‘de\)” ‘

*Random networks (Graph theory)
Also known as Erdos-Renyi networks
* average path length ~ log N
* clustering low
* Poisson distribution of degree

Empirical networks are not random —
many have certain structural patterns



Macro-patterns



“It’s a small world”’: The Milgram Experiment
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Oston) with each remove. Diagram
h 8 the number of miles from the
8TQet area, with the distance of each
Fimove averaged over completed
and Uncomplated chains.

STARIING
FosiTion

Stanley Milgram (1933-1984), US social psychologist

Arbitrarily selected individuals in Nebraska were asked
to generate acquaintance chains (knowing on first name
basis) connecting them to a target individual in Boston

In one experiment, 64 of the 296 chains initiated
eventually reached the target — the mean number of
intermediaries between source and target being slightly
larger than 5

—> Six degrees of separation




Clerk in Omaha Self-employed friend in
Council Bluffs, lowa

Tanner in
Sharon,Mass.

Publisher in
Belmont,Mass.

Sheet metal worker
in Sharon,Mass.

Dentist in
Sharon,Mass. ;

Stock broker in
Sharon,Mass.

Cloth merchant
in Sharon,Mass.

Printer in
Sharon,Mass.

Across the country
in eight hops



“Small world” networks

Regular Network “Small-world” Network Random Network
P = O O < P < I P = I

>
Increasing Randomness

p: fraction of random, long-range connections
Watts and Strogatz (1998): Many biological, technological and social

networks have connection topologies that lie between the two
extremes of completely regular and completely random.



“Small world”: Local properties of regular networks

but global properties of random networks

TEETTETTe d o g o 1 Characteristic path length
* ]
- 7 1
- - T —_—
sl C(p)/ C(0) © . = di;
o8 | ] (p) / C(0) A Y ; j
] ] >
06 |- ] d;; :shortestdistance
s i between nodes i and j
= D =
0.4 o ] Alternatively (1 = 1; >
1 an(n+1) =
ool Lip)/ L(O) * ' =
e - ® .
- ¢ o 1 Clustering coefficient
: ® ® [ ] ® ‘i 1
e c=1ye
0.0001 0.001 0.01 0.1 1 n £ '
i where
Watts & Strogatz, 1998 P number of triangles connected to vertex 2

C’i —

number of triples centered on vertex

. ] 3% number of triangles 1in the network
Alternatively (C = gles

number of connected triples of vertices
Small-world networks can be highly clustered (like regular networks ),
yet have small characteristic path lengths (as in random networks ).



Epidemics on “Small world”

Dynamical process:
* Time t = 0:single infected individual present.
* Each infected agent can infect any of its
;
neighbours with probability r. half
* Infected individuals removed (by immunity or
death) after unit period of sickness.

Key Results:

* Critical infectiousness r, i, at which the
disease infects half the population,
decreases with p

* Time required for a maximally infectious
disease (r = |) to spread throughout the
entire population T(p) has same form as
characteristic path length L(p)

=> rewiring only a few links in the original

lattice causes global infection to occur almost

as fast as in random network

Implication:
“Control the truck-drivers”

a
0.35

Watts & Strogatz, 1998

03+

0.25

02 [

0.15 L

T TrT]

TTTT]

0.0001

0.001

0.01

0.8

T BD‘ T F 1

0.6 L
04 L

02 L

T(p) /T(0)

L(p) /L(0) -

0.0001



Do small-world networks occur in real life ?

# nodes Avg degree Avg path length Clustering coefficient

Network Size {k} £ £ and C C,and
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023
Internet, domain level  3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001

Movie actors 225226 61 3.65 2.99 0.79 0.00027 I
ANL co-authorship 52000 9.7 30 479 043 18x10 7
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x1077
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003
NCSTRL co-authorship 11994 3.59 9.7 7.34 0.496  3x10~*
Math. co-authorship 70975 3.9 9.5 8.2 059 5.4x107°
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  55x107°
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026
E. coli, reaction graph 315 283 2.62 1.98 0.59 0.09
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006

Power grid 4041

C. Elegans 282

Albert & Barabasi, 2003



