Towards a zero-one law for improvements to Dirichlet's approximation theorem

Shucheng Yu
USTC
Joint with Dmitry Kleinbock and Andreas Strömbergsson

ICTS, Bangalore
12 December 2022

Dirichlet's Theorem on simultaneous Diophantine approximation

Theorem (Dirichlet)

Fix $m, n \in \mathbb{N}$. For any $A \in M_{m, n}(\mathbb{R})$ and $t>1$, there exists $(\boldsymbol{p}, \boldsymbol{q}) \in \mathbb{Z}^{m} \times\left(\mathbb{Z}^{n} \backslash\{\mathbf{0}\}\right)$ satisfying the following system of inequalities:

$$
\|A \boldsymbol{q}-\boldsymbol{p}\|^{m}<\frac{1}{t} \quad \text { and } \quad\|\boldsymbol{q}\|^{n} \leq t
$$

- Here $\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|=\max \left\{\left|x_{i}\right|: 1 \leq i \leq k\right\}$.
- $m=n=1,\left|x-\frac{p}{q}\right|<\frac{1}{q t}$ and $1 \leq q \leq t$.

Corollary (Dirichlet)

For any $A \in M_{m, n}(\mathbb{R})$, there exist infinitely many $(\boldsymbol{p}, \boldsymbol{q}) \in \mathbb{Z}^{m} \times\left(\mathbb{Z}^{n} \backslash\{\mathbf{0}\}\right)$ satisfying

$$
\|A \boldsymbol{q}-\boldsymbol{p}\|^{m}<\|\boldsymbol{q}\|^{-n}
$$

Question

Can we improve Dirichlet's theorem?

Asymptotic approximation: Khintchine-Groshev Theorem

Let $\psi:[1, \infty) \rightarrow(0, \infty)$ be continuous, decreasing and $\lim _{t \rightarrow \infty} \psi(t)=0$.

Definition

$\boldsymbol{A} \in M_{m, n}(\mathbb{R})$ is ψ-approximable if $\exists \infty$ many $(\boldsymbol{p}, \boldsymbol{q}) \in \mathbb{Z}^{m} \times\left(\mathbb{Z}^{n} \backslash\{\mathbf{0}\}\right)$ satisfying

$$
\|A \boldsymbol{q}-\boldsymbol{p}\|^{m}<\psi\left(\|\boldsymbol{q}\|^{n}\right) .
$$

- A is ψ-approximable if and only if $A+A^{\prime}$ is ψ-approximable for any $A \in M_{m, n}(\mathbb{Z})$.
- $W(\psi) \subset M_{m, n}(\mathbb{R} / \mathbb{Z})$ the set of ψ-approximable real matrices.

Theorem (Khintchine-Groshev)

$$
\operatorname{Leb}(W(\psi))= \begin{cases}1 & \text { if } \sum_{k} \psi(k)=\infty \\ 0 & \text { if } \sum_{k} \psi(k)<\infty\end{cases}
$$

Uniform approximation

Definition (Kleinbock-Wadleigh, 2018)

$A \in M_{m, n}(\mathbb{R})$ is ψ-Dirichlet if for all sufficiently large t, there exists $(\boldsymbol{p}, \boldsymbol{q}) \in \mathbb{Z}^{m} \times\left(\mathbb{Z}^{n} \backslash\{\boldsymbol{0}\}\right)$ satisfying the following system of inequalities:

$$
\|A \boldsymbol{q}-\boldsymbol{p}\|^{m}<\psi(t) \quad \text { and } \quad\|\boldsymbol{q}\|^{n}<t
$$

- A is ψ-Dirichlet if and only if $A+A^{\prime}$ is ψ-Dirichlet for any $A^{\prime} \in M_{m, n}(\mathbb{Z})$.
- Denote by $\mathrm{DI}(\psi) \subseteq M_{m, n}(\mathbb{R} / \mathbb{Z})$ the set of ψ-Dirichlet real matrices.

Question

Is there a zero-one law for $\operatorname{Leb}\left(\mathrm{DI}^{\prime}(\psi)\right)$ analogous to the Khintchine-Groshev theorem?

- Let $\psi_{1}(t)=\frac{1}{t}$. $\mathrm{DI}\left(\psi_{1}\right)=M_{m, n}(\mathbb{R} / \mathbb{Z})$ (Dirichlet).
- \boldsymbol{A} is Dirichlet improvable $\Leftrightarrow \boldsymbol{A}$ is $\boldsymbol{c} \psi_{1}$-Dirichlet for some $0<c<1$.
- Leb($\left.\operatorname{DI}\left(c \psi_{1}\right)\right)=0$ (Davenport-Schmidt, 1969).
- $\operatorname{Leb}(W(\psi))=\operatorname{Leb}(W(c \psi))$ for any $c>0$.

Interesting cases for ψ

In view of results of Dirichlet and Davenport-Schmidt, to get interesting results for $\operatorname{Leb}(\operatorname{DI}(\psi))$, we need for any $0<c<1$

$$
\boldsymbol{c} \psi_{1}(t)<\psi(t)<\psi_{1}(t) \text { for all sufficiently large } t
$$

That is to say we need

$$
\psi(t)=\frac{1-a(t)}{t},
$$

where $a(t):[1, \infty) \rightarrow(0,1)$ is some function with $a(t) \rightarrow 0$ as $t \rightarrow \infty$.
Some heuristics:

- If $a(t)$ decays fast (so that ψ is close to ψ_{1}), then we expect $\mathrm{DI}(\psi)$ to be close to $\mathrm{DI}\left(\psi_{1}\right)$, thus having large Lebesgue measure.
- If $a(t)$ decays slow (so that ψ is close to $c \psi_{1}$ for some $0<c<1$), then we expect $\mathrm{DI}(\psi)$ to be close to $\mathrm{DI}\left(c \psi_{1}\right)$, thus having small Lebesgue measure.

A zero-one law for $\operatorname{Leb}(\operatorname{DI}(\psi))$ when $m=n=1$

Theorem (Kleinbock-Wadleigh, 2018)

Assume $m=n=1$. Let $\psi(t)=\frac{1-a(t)}{t}:[1, \infty) \rightarrow(0, \infty)$ be continuous and decreasing with also $a(t):[1, \infty) \rightarrow(0,1)$ also decreasing. Then

$$
\operatorname{Leb}(D I(\psi))= \begin{cases}1 & \text { if } \sum_{k \in \mathbb{N}} k^{-1} a(k) \log \left(\frac{1}{a(k)}\right)<\infty, \\ 0 & \text { if } \sum_{k \in \mathbb{N}} k^{-1} a(k) \log \left(\frac{1}{a(k)}\right)=\infty .\end{cases}
$$

- If $a(t)=(\log t)^{-c}\left(\Leftrightarrow \psi(t)=\frac{1-(\log t)^{-c}}{t}\right)$, then

$$
\operatorname{Leb}(\operatorname{DI}(\psi))= \begin{cases}1 & \text { if } c>1 \\ 0 & \text { if } 0<c \leq 1\end{cases}
$$

- Proof uses continued fractions, not applicable to higher dimensions.

Main result: a partial zero-one law on $\operatorname{Leb}(\mathrm{DI}(\psi))$

Theorem (Kleinbock-Strömbergsson-Y. 2021)

Fix $m, n \in \mathbb{N}$. Set $d=m+n, \alpha=\frac{d^{2}+d-4}{2}$ and $\beta=\frac{d^{2}-d}{2}$. Let $\psi(t)=\frac{1-a(t)}{t}:[1, \infty) \rightarrow(0, \infty)$ be continuous and decreasing with also $a(t):[1, \infty) \rightarrow(0,1)$ also decreasing. Then

$$
\operatorname{Leb}\left(D^{\prime}(\psi)\right)= \begin{cases}1 & \text { if } \sum_{k \in \mathbb{N}} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)<\infty, \\ 0 & \text { if } \sum_{k \in \mathbb{N}} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)=\infty \text { and }(\star) .\end{cases}
$$

Here

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{\sum_{1 \leq k \leq t^{-1}} a(k)^{\alpha} \log ^{\beta+1}\left(\frac{1}{a(k)}\right)}{\left(\sum_{1 \leq k \leq t} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)\right)^{2}}=0 . \tag{*}
\end{equation*}
$$

- When $m=n=1,(\star)$ is not needed (Kleinbock-Wadleigh).
- (\star) says that when the series $\sum_{k \in \mathbb{N}} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)$ diverges, the rate of divergence can not be too slow.

Examples

- $a(t)=(\log t)^{-c}\left(\Leftrightarrow \psi(t)=\frac{1-(\log t)^{-c}}{t}\right)$ then

$$
\operatorname{Leb}(\mathrm{DI}(\psi))= \begin{cases}1 & \text { if } c>1 / \alpha, \\ 0 & \text { if } 0<c \leq 1 / \alpha .\end{cases}
$$

- (zoom in at the critical case) $a(t)=(\log t)^{-1 / \alpha}(\log \log t)^{-c}$ then

$$
\operatorname{Leb}(\mathrm{DI}(\psi))= \begin{cases}1 & \text { if } c>\frac{\beta+1}{\alpha}, \\ 0 & \text { if } 0<c<\frac{\beta}{\alpha} .\end{cases}
$$

When $\frac{\beta}{\alpha} \leq c \leq \frac{\beta+1}{\alpha}$ our theorem does not give any information on $\operatorname{Leb}(\operatorname{DI}(\psi))$. (When $m=n=1$, Kleinbock-Wadleigh implies $\operatorname{Leb}(\operatorname{DI}(\psi))=0$).

Homogeneous dynamics

- Let $d=m+n . X=G / \Gamma=\mathrm{SL}_{d}(\mathbb{R}) / \mathrm{SL}_{d}(\mathbb{Z})$ parameterizes the space of covolume 1 lattices in \mathbb{R}^{d} via $g \Gamma \leftrightarrow g \mathbb{Z}^{d}$.
- μ the unique G-invariant probability measure on X.
- G acts on X via left multiplication.
- The matrix space $M_{m, n}(\mathbb{R} / \mathbb{Z})$ naturally embeds in X via

$$
A \in M_{m, n}(\mathbb{R} / \mathbb{Z}) \mapsto \Lambda_{A}:=\left(\begin{array}{cc}
I_{m} & A \\
0 & I_{n}
\end{array}\right) \mathbb{Z}^{d} \in X .
$$

It thus gets identified with the sub-manifold

$$
Y=\left\{\Lambda_{A}: A \in M_{m, n}(\mathbb{R} / \mathbb{Z})\right\} \subseteq X
$$

endowed Lebesgue measure.

Dani correspondence

Proposition (Dani Correspondence)

There exists a continuous decreasing function $r:\left[s_{0}, \infty\right) \rightarrow \mathbb{R}_{>0}$ uniquely determined by $\psi(t)=\frac{1-a(t)}{t}$ such that

$$
A \notin D^{\prime}(\psi) \quad \Longleftrightarrow \quad g_{s} \wedge_{A} \in K_{r(s)} \text { for an unbounded set of } s>0,
$$

where $g_{s}:=\operatorname{diag}\left(e^{s / m} I_{m}, e^{-s / n} I_{n}\right)$ and $K_{r}:=\left\{\Lambda \in X: \Lambda \cap\left(-e^{-r}, e^{-r}\right)^{d}=\{\mathbf{0}\}\right\}$. Moreover,

$$
\sum_{k} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)<\infty \Longleftrightarrow \sum_{k} r(k)^{\alpha} \log ^{\beta}\left(\frac{1}{r(k)}\right)<\infty .
$$

In other words,

$$
\mathrm{DI}(\psi)^{c}=\limsup _{s \rightarrow \infty}\left(g_{-s} K_{r(s)} \cap Y\right)
$$

Discretize it: define $B_{k}:=\bigcup_{0 \leq s<1} g_{-s} K_{r(k+s)}$, then

$$
\mathrm{DI}(\psi)^{c}=\limsup _{k \rightarrow \infty}\left(g_{-k} B_{k} \cap Y\right)
$$

Measure of limsup sets: Borel-Cantelli lemma

Lemma (Convergence case)

Let (X, ν) be a probability space. Given $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ a sequence of measurable sets. If $\sum_{k} \nu\left(A_{k}\right)<\infty$, then $\nu\left(\lim \sup _{k \rightarrow \infty} A_{k}\right)=0$.

Lemma (Divergence case)

If $\sum_{k} \nu\left(A_{k}\right)=\infty$ and $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ further satisfies the following quasi-independence condition that

$$
\begin{equation*}
\liminf _{k_{2} \rightarrow \infty} \frac{\left|\sum_{k_{1} \leq i \neq j \leq k_{2}} \nu\left(A_{i} \cap A_{j}\right)-\nu\left(A_{i}\right) \nu\left(A_{j}\right)\right|}{\left(\sum_{i=k_{1}}^{k_{2}} \nu\left(A_{i}\right)\right)^{2}}=0 \text { for some } k_{1} \in \mathbb{N} \tag{QI}
\end{equation*}
$$

then $\nu\left(\lim \sup _{k \rightarrow \infty} A_{k}\right)=1$.

The convergence case

Recall $\mathrm{DI}(\psi)^{c}=\lim \sup _{k \rightarrow \infty}\left(g_{-k} B_{k} \cap Y\right)$. Borel-Cantelli lemma tells us

$$
\begin{cases}\sum_{k} \operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)<\infty & \Longrightarrow \operatorname{Leb}\left(\operatorname{DI}(\psi)^{c}\right)=0, \\ \sum_{k} \operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)=\infty \&(\mathrm{QI}) & \Longrightarrow \operatorname{Leb}\left(\mathrm{DI}(\psi)^{c}\right)=1 .\end{cases}
$$

Need to restate the convergence or divergence of the series $\sum_{k} \operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)$ in terms of $\psi=\frac{1-a(t)}{t}$.

Theorem (Kleinbock-Strömbergsson-Y. 2021)

$$
\sum_{k} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)<\infty \quad \Longleftrightarrow \quad \sum_{k} \operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)<\infty
$$

- This theorem settles the convergence case.
- Proof consists of two steps:

Step 1. Estimate $\mu\left(B_{k}\right)$.
Step 2. Relate Leb $\left(g_{-k} B_{k} \cap Y\right)$ with $\mu\left(B_{k}\right)$.

Step 1: A quantitative Hajós' theorem
Recall $B_{k}=\bigcup_{0 \leq s<1} g_{-s} K_{r(k+s)}$ and

$$
K_{r}=\left\{\Lambda \in X: \Lambda \cap\left(-e^{-r}, e^{-r}\right)^{d}=\{\mathbf{0}\}\right\}
$$

$\left\{K_{r}\right\}_{r>0}$ are compact neighborhoods of the critical locus for the supremum norm in \mathbb{R}^{d} :

$$
K_{0}:=\left\{\Lambda \in X: \Lambda \cap(-1,1)^{d}=\{\mathbf{0}\}\right\}
$$

Theorem (Hajós, 1941)

Let U be the subgroup of upper triangular unipotent matrices in $\mathrm{SL}_{d}(\mathbb{R})$, and let W be the subgroup of permutations. Then

$$
K_{0}=\bigcup_{w \in W}\left(w U w^{-1}\right) \mathbb{Z}^{d}
$$

- $\mu\left(K_{r}\right) \rightarrow \mu\left(K_{0}\right)=0$ as $r \rightarrow 0^{+}$. Need a more precise asymptotic formula.

Theorem (Kleinbock-Strömbergsson-Y. 2021)

Let $\alpha=\frac{d^{2}+d-4}{2}$ and $\beta=\frac{d^{2}-d}{2}$.

$$
\mu\left(K_{r}\right) \asymp{ }_{d} r^{\alpha+1} \log ^{\beta}\left(\frac{1}{r}\right), \quad \text { as } r \rightarrow 0^{+} .
$$

Step 1: A quantitative Hajós' theorem

Up to permutations, $g \mathbb{Z}^{d} \in K_{r}$ roughly means each diagonal entry satisfies $g_{i i}=1+O(r)$, contributing

$$
\int_{1-c r}^{1+c r} d x \asymp r
$$

with $d-1$ copies, and each pair of symmetric off-diagonal entries $\left(g_{i j}, g_{j i}\right)$ satisfies $\left|g_{i j} g_{j i}\right| \ll r$ and $\max \left\{\left|g_{i j}\right|,\left|g_{j i}\right|\right\} \ll 1$, contributing

$$
\int_{\{(x, y): \max \{|x|,|y|\} \ll 1,|x y| \ll r\}} d x d y \asymp r \log \left(\frac{1}{r}\right)
$$

with $\frac{d(d-1)}{2}$ copies. In total

$$
r^{d-1}\left(r \log \left(\frac{1}{r}\right)\right)^{\frac{d(d-1)}{2}}=r^{\alpha+1} \log ^{\beta}\left(\frac{1}{r}\right)
$$

Corollary

$$
\mu\left(\bigcup_{0 \leq s<1} g_{-s} K_{r}\right) \asymp r^{\alpha} \log ^{\beta}\left(\frac{1}{r}\right), \quad \text { as } r \rightarrow 0^{+}
$$

In particular,

$$
\sum_{k} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)<\infty \Leftrightarrow \sum_{k} r(k)^{\alpha} \log ^{\beta}\left(\frac{1}{r(k)}\right)<\infty \Leftrightarrow \sum_{k} \mu\left(B_{k}\right)<\infty
$$

Step 2: Effective equidistribution of expanding horoshperes

To relate $\operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)$ with $\mu\left(B_{k}\right)$ we use

Proposition (Kleinbock-Margulis, 1996)

There exists $\delta>0$ such that for any $f \in C_{c}^{\infty}(X)$ and for any $k \in \mathbb{N}$,

$$
\int_{Y} f\left(g_{k} \Lambda_{A}\right) d A=\mu(f)+O\left(e^{-\delta k} \mathcal{S}(f)\right)
$$

where $\mathcal{S}(\cdot)$ is some Sobolev norm.
Note

$$
\operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)=\int_{Y} \chi_{B_{k}}\left(g_{k} \Lambda_{A}\right) d A
$$

- Take $f_{k} \approx \chi_{B_{k}}$ a smooth function approximating $\chi_{B_{k}}$.
- $\mathcal{S}\left(f_{k}\right) \asymp r(k)^{-L}$ for some $L>0$.

Step 2: Effective equidistribution of expanding horoshperes

To summarize we show

$$
\operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)=\int_{Y} \chi_{B_{k}}\left(g_{k} \Lambda_{A}\right) d A \approx \int_{Y} f_{k}\left(g_{k} \Lambda_{A}\right) d A \approx \mu\left(f_{k}\right) \approx \mu\left(B_{k}\right) .
$$

Making all these " \approx " precise one shows that

$$
\sum_{k} \operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)<\infty \quad \Longleftrightarrow \quad \sum_{k} \mu\left(B_{k}\right)<\infty .
$$

We have shown from step 1 that

$$
\sum_{k} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)<\infty \quad \Longleftrightarrow \quad \sum_{k} \mu\left(B_{k}\right)<\infty
$$

Combining these two we get

$$
\sum_{k} k^{-1} a(k)^{\alpha} \log ^{\beta}\left(\frac{1}{a(k)}\right)<\infty \quad \Longleftrightarrow \quad \sum_{k} \operatorname{Leb}\left(g_{-k} B_{k} \cap Y\right)<\infty .
$$

Divergence case: Effective doubly mixing of expanding horospheres

To verify quasi-independence condition, need to show

$$
\operatorname{Leb}\left(g_{-i} B_{i} \cap g_{-j} B_{j} \cap Y\right) \approx \operatorname{Leb}\left(g_{-i} B_{i} \cap Y\right) \operatorname{Leb}\left(g_{-j} B_{j} \cap Y\right)
$$

on average. For this we use

Proposition (Kleinbock-Shi-Weiss, 2017; Björklund-Gorodnik, 2019)

For any $f_{1}, f_{2} \in C_{c}^{\infty}(X)$ and for any $i \neq j$,

$$
\int_{Y} f_{1}\left(g_{i} \Lambda_{A}\right) f_{2}\left(g_{j} \Lambda_{A}\right) d A=\mu\left(f_{1}\right) \mu\left(f_{2}\right)+O\left(e^{-\delta \min \{i, j, i i-j \mid\}} \mathcal{S}\left(f_{1}\right) \mathcal{S}\left(f_{2}\right)\right) .
$$

Note

$$
\operatorname{Leb}\left(g_{-i} B_{i} \cap g_{-j} B_{j} \cap Y\right)=\int_{Y} \chi_{B_{i}}\left(g_{i} \Lambda_{A}\right) \chi_{B_{j}}\left(g_{j} \Lambda_{A}\right) d A .
$$

- Not so useful when $|i-j|$ is small.

Divergence case: Effective doubly mixing of expanding horospheres

- When $|i-j|$ is large, taking $f_{i} \approx \chi_{B_{i}}$ and $f_{j} \approx \chi_{B_{j}}$ and applying this effective doubly mixing we get

$$
\begin{aligned}
\operatorname{Leb}\left(g_{-i} B_{i} \cap g_{-j} B_{j} \cap Y\right) & \approx \int_{Y} f_{i}\left(g_{i} \Lambda_{A}\right) f_{j}\left(g_{j} \Lambda_{A}\right) d A \approx \mu\left(f_{i}\right) \mu\left(f_{j}\right) \\
& \approx \mu\left(B_{i}\right) \mu\left(B_{j}\right) \approx \operatorname{Leb}\left(g_{-i} B_{i} \cap Y\right) \operatorname{Leb}\left(g_{-j} B_{j} \cap Y\right) .
\end{aligned}
$$

- For $i \leq j$ with $j-i$ small we use the trivial bound

$$
\begin{aligned}
\operatorname{Leb}\left(g_{-i} B_{i} \cap g_{-j} B_{j} \cap Y\right) & =\int_{Y} \chi_{B_{i}}\left(g_{i} \Lambda_{A}\right) \chi_{B_{j}}\left(g_{j} \Lambda_{A}\right) d A \\
& \leq \int_{Y} \chi_{B_{j}}\left(g_{j} \Lambda_{A}\right) d A=\operatorname{Leb}\left(g_{-j} B_{j} \cap Y\right) .
\end{aligned}
$$

- The extra condition (\star) is needed to ensure (QI).

Thank you for your attention!

