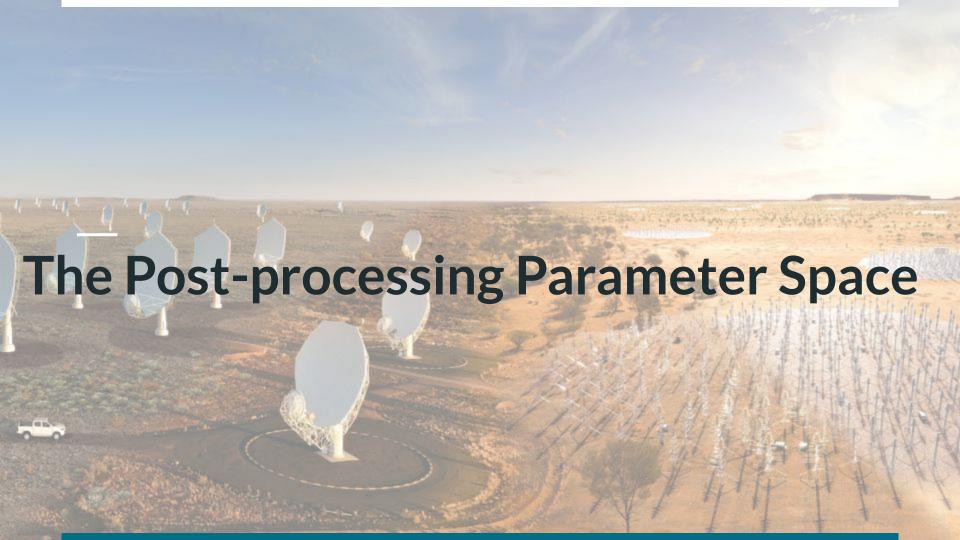
# A Novel Two Stage Approach for Single Pulse Post-processing

-Shubham Singh and the SKA-PSS team:

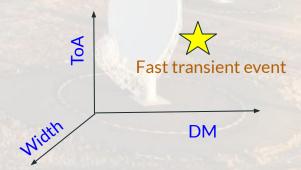
(A. Karastergiou, A. Naidu, B. Stappers, B. Shaw, B. Posselt, D. Lumba, G. Berriman, J. Taylor, K. Rajwade, L. Levin, M. Droog, M. Mickaliger, P. Thiagaraja, R. Hombal)





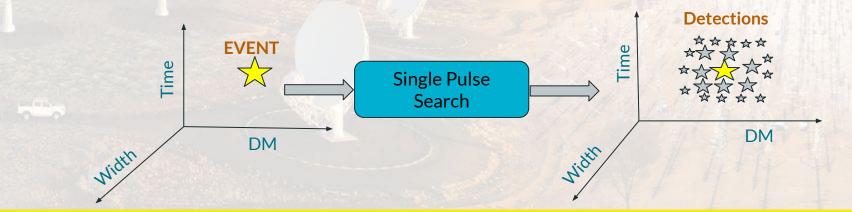



The University of Mancheste


13 Oct 2025: FTSky, Bengaluru

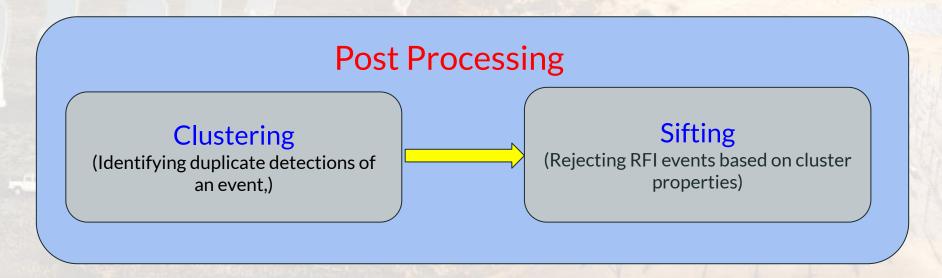


#### Fast transient search


Fast transients can be described by three parameters in addition to their sky coordinates,

- 1. Distance from observer (Indicated by electron column density, DM)
- 2. When did the event happen (Time of occurrence/arrival, ToA)
- 3. For how long the transient event last (Duration of the event, Width)




#### Final result of single pulse search

- The telescope search mode data is searched over,
- 1. All time samples 2. Set of Trial DMs 3. Set of trial Width
- The result of the search is a set of detections in the Time-DM-Width space with associated S/N.



# **Need for post processing**

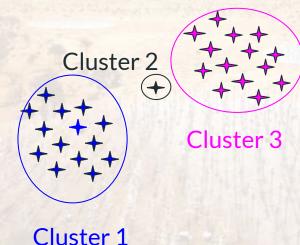
- A strong and wide event can sometimes produce millions of duplicate detections.
- A big fraction of candidates are RFI generated.





## Friends of friends clustering

- Fast
- Can handle large number of detections
- User defined linking lengths
- The linking lengths need to be tuned according to the target pulse
- Can not handle variable density (caused by the DM plans)





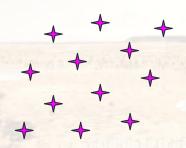

# Friends of friends clustering

Linking length

Smaller Linking length can make too many cluster. It can also split a single cluster into multiple clusters.



# Friends of friends clustering


Large linking length might merge multiple independent clusters along with noise.

Linking length

Cluster 1

## **DBSCAN Clustering**

- Fast
- Can handle large number of detections
- Uses density instead of linking lengths
- Can handle noise
- Still needs a length scale (ε) and a number (n) to decide density cut-off.
- Can not handle variable density





# **DBSCAN Clustering**

A predefined n and  $\varepsilon$  may work for one density but not for other.

The DM plan used in search creates different detection density for different DM range.

$$n=5, \varepsilon =$$



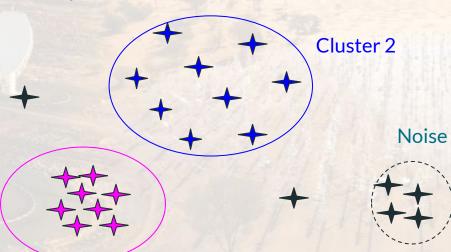


Cluster 1

## **HDBSCAN Clustering**

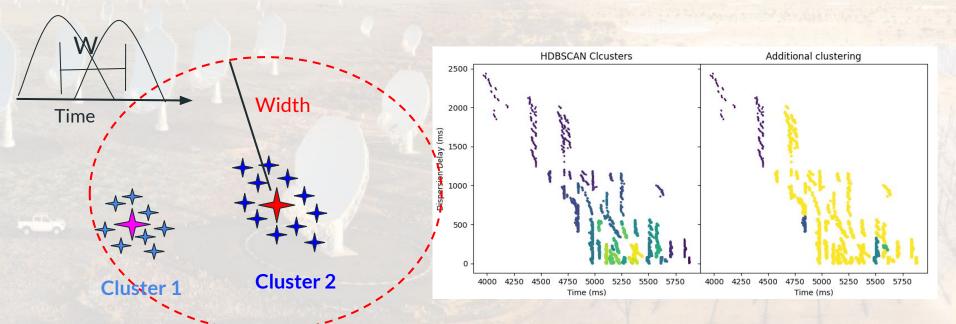
- Needs only one user defined parameter (minimum size of the cluster), can create bias against faint pulsars
- Tolerant to density variations, hence can handle density variations due to DM-plan
- Robust against noise, can identifies noise points
- Computationally expensive




#### **HDBSCAN Clustering**

- Uses only one user defined parameter (minimum size of the cluster), can create bias against faint pulsars
- Tolerant to density variations, hence can handle density variations due to DM-plan
- Robust against noise, can identifies noise points

Cluster 1


Computationally expensive

Min cluster size = 5



## Need for additional clustering step

- In case of wide pulses, multiple clusters are formed for a single event.
- We propose and additional step of clustering that unifies the clusters within the detection width.



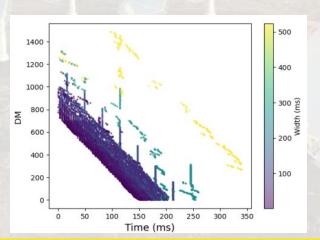
#### Optimal approach for clustering

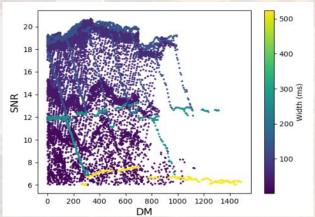
#### **HDBSCAN Clustering**

(With one clustering parameter: Minimum cluster size)

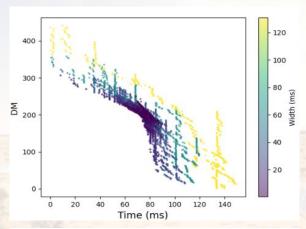


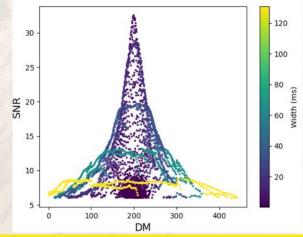
Additional Width Based
Clustering
(Uses detection width of brightest


detection width of brightes detection as clustering radius)




## Selecting cluster features for sifting


- Limited number of intuitive features
- No complex fitting on the data: expensive for large clusters and noisy for small clusters
- Select carefully: feature can introduce bias


#### **RFI** Event





#### Astrophysical Event





## Manual thresholding

- A lower cut-off on the size of cluster can get rid of noise detections.
- A simple lower cut-off on the DM of best detection can remove most of the wideband RFI.
- But excluding narrowband RFI clusters is non-trivial.

## Machine learning sifting methods

We tried three supervised machine learning methods:

- 1. **Decision tree:** Simple and interpretable, but prone to overfitting and imprecise (accuracy: 70-80%)
- 2. Random Forest: Collection of decision trees, interpretable and accurate (accuracy: 90-100%)
- 3. **Neural Network:** Performance similar to Random Forest, but hard to interpret results

We decided to use Random Forest for its accuracy, flexibility, and interpretability. We easily achieve 96% accuracy with our selected features and Random Forest sifting.

#### Reducing false negative rate in random Forest

We can use the flexibility of the Random forest classifier to reduce the loss of astrophysical candidates.

Regular Majority Voting: An object belongs to class A, if more than 50% trees say so.

Majority Voting to reduce the loss of astrophysical class: A cluster is astrophysical if 40% or more trees say so.

## Optimal approach for sifting

#### Simple set of cluster features

(Small number of intuitive, easy to compute features)



#### Random Forest Classifier

(Classifier with higher weightage to astrophysical class to reduce the loss of astrophysical signal)

No Optimal Approach, but this does the job!!

#### Single pulse search post-processing in PSS-Cheetah

#### Available methods for Clustering

- 1. FoF (fast approach)
- HDBSCAN + Width based clustering (robust approach)

#### Available methods for Sifting

- 1. Simple thresholding on features
- 2. Random Forest classification (RfSift)

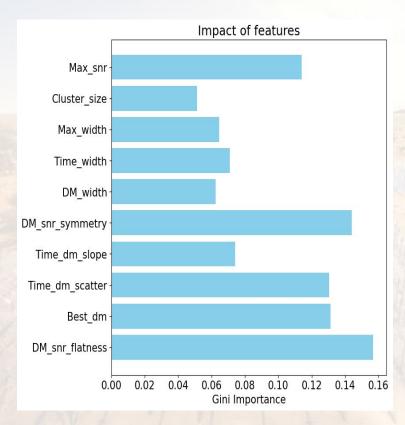
Recommended Combination: HDBSCAN clustering followed by Random Forest Sifting

#### **Summary**

- The single pulse post-processing has two parts: clustering and sifting
- The clustering step aims to identify clusters belonging to a specific event.
- HDBSCAN followed by a width based clustering is the optimal way to cluster single pulse detection.
- The sifting step aims to identify RFI clusters and remove them.
- The Random Forest classification of clusters with simple set of features is an effective and flexible method for sifting.
- The Random Forest Classifier can be tuned to reduce false negative rates, reducing the loss of astrophysical signal.

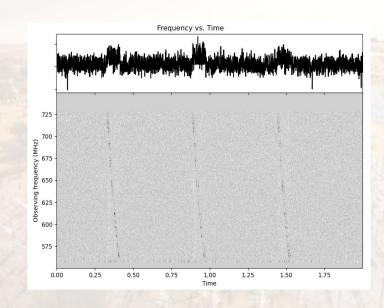


#### Difference between RFI and Astrophysical clusters


#### Astrophysical Signal vs Narrowband RFI

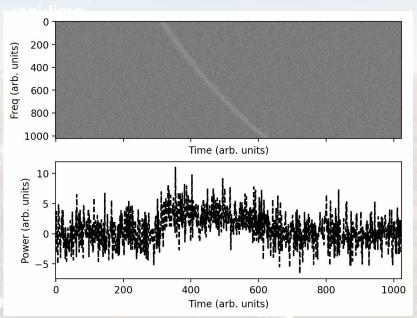
A few fundamental differences how narrowband and wideband signals appear in DM-Time plane and DM-S/N plot Astrophysical Signal vs wideband RFI

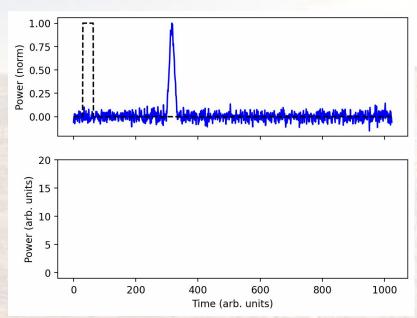
Very similar, only difference is the DM corresponding to best S/N detection, which is very small in case of wideband RFI


#### Performance of cluster features with random forest

- 1. Max\_snr: Maximum detection SNR in the cluster
- 2. **Cluster\_size:** Number of detections in cluster
- 3. Max\_width: Detection width of brightest member
- 4. **Time\_width:** Extent in time axis
- 5. **DM\_width:** extent in DM axis
- 6. **DM\_snr\_symmetry:** measure of how symmetric DM-SNR plot is
- 7. **Time\_dm\_slope:** Slope of the Time DM plot
- 8. **Time\_dm\_scatter:** Scatter in Time-DM plane
- 9. Best\_dm: DM of best detection
- 10. **DM\_snr\_flatness:** The flatness measure of DM-SNR plot



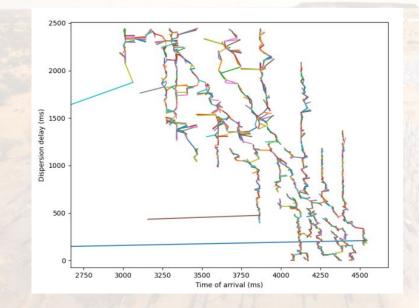

## Radio data from the telescope


- The radio telescope is pointed towards the interesting sky coordinates (RA, Dec)
- High time resolution data with enough frequency channels is recorded
- The final product is Time-frequency data corresponding to a sky coordinates.

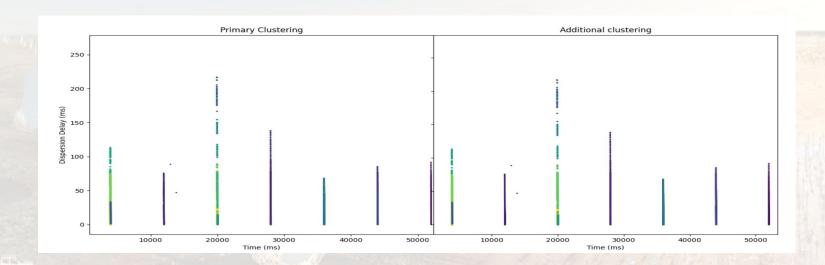


#### What is PSS (Pulsar Search Subsystem)

The subsystem aims to find pulsars and fast transients in







Credits: Kaustubh Rajwade

#### **Constructing MST based on MRD**

- 'Spanning\_tree\_MRD' class provides tools to compute MRD and construct MST.
- Method 'Compute\_coredist()' is first used to compute the core distance for all data points.
- Then method 'construct\_tree()' is used to construct the MST based on MRD.



#### Examples of additional clustering step based on width



Case of narrow pulses (10 ms wide, 24 clusters are reduced to 20)