
Random friend trees

Based on joint work with Louigi Addario-Berry, Simon Briend, Luc
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Introduction

We study a random recursive
tree model called the random
friend tree

Attachment via complete
redirection

’Rich-getting-richer’ dynamics

Interesting emergent properties

Local attachment rule

Serte Donderwinkel (McGill/Groningen) Random friend trees ICTS–NETWORKS, 2024 2 / 17



Definition of the model

Let T2 be the tree consisting of vertices 1 and 2 connected via an
edge.

Given Tn, let Vn be a uniform vertex in Tn

Let Wn be a uniform neighbour of Vn in Tn

Include the vertex n + 1 and the edge {n + 1,Wn} in Tn to obtain
Tn+1
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Earlier work

‘Introduced’ by Saramäki and Kaski (2004)

Cannings and Jordan show that Tn contains n − o(n) leaves almost
surely (2014)

More specific properties of the degree sequence were studied
non-rigorously in the physics literature by Karpivsky and Redner
(2017)
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Intuition for dynamics
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Results I - Hubs

For u ∈ [n], let Nn(u) be the number of neighbours of vertex u in Tn and
let Ln(u) be the number of leaf neighbours of vertex u in Tn.

Convergence of normalised degrees ⋆

There exists a random variable Zu on [0,∞) such that(
Ln(u)

n
,
Nn(u)

n

)
→ (Zu,Zu) almost surely

We call a vertex u a hub if Zu > 0.

All edges contain a hub ⋆

For any edge {m + 1,Wm}, it holds that

Zm+1 + ZWm > 0 almost surely
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Results II - Frozen degrees

Vertices never acquire a new neighbour with positive probability

For each k , there is a pk so that for any n, any degree k vertex present at
time n has probability at least pk to never acquire another neighbour.

Most leaves stay leaves forever

Suppose v is a hub. Then, then the number of leaves adjacent to v at
time n that ever acquire another neighbour is tight.
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Results III - Distances

Diameter ⋆

Let Dn be the diameter of Tn. Then,

1 ≤ lim inf
Dn

log n
≤ lim sup

Dn

log n
≤ 4e.

Leaf depth

Let Mn be the maximal distance of any vertex to its nearest leaf in Tn.
Then,

Mn = Θ

(
log n

log log n

)
in probability.
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Results IV - Degree sequence

Let X≥k
n be the number of vertices in Tn with degree at least k .

Large-ish degrees

For any sequence (mn)n≥1 with mn = o(n),

lim
n→∞

X≥mn
n = ∞.

Small degrees

There exist constants 0.1 < α < β < 0.9 such that for any k ≥ 2, as
n → ∞,

X≥k
n

nα
→ ∞ and

X≥k
n

nβ
→ 0.
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It is a slippery model to study!

In preferential attachment trees and uniform attachment trees, the
development of the sequence of vertex degrees, or even of a single
vertex degree, can be studied without keeping track of the geometry
of the tree.

In the random friend tree, this is not possible.

To know E[∆Nn(v) | Tn], you need to know the degrees of the
neighbours of v . But to sample their development, you need to know
the degrees of their neighbours, etc.

More generally, in the random friend tree, the global structure affects
local properties.
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Proof lower bound diameter lim inf Dn/n ≥ 1

P(∆Dn = 1 | Tn) ≥ P(Vn = i2,Wn ̸= i3) + P(Vn = iDn−1,Wn ̸= iDn−2)

≥ 1

n
× 1

2
+

1

n
× 1

2
=

1

n
.

So Dn stochastically dominates B1 + · · ·+ Bn, for Bi a Bernoulli random
variable with P(Bi = 1) = 1

i . Kolmogorov’s strong law of large numbers
implies that

lim inf
Dn

log n
≥ 1 almost surely.
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Proof almost sure limit Ln(v)/n,Nn(v)/n.

E[Ln+1(v) | Tn] = Ln(v)− P(Vn = v ,Wn a leaf) + P(Wn = v)

≥ Ln(v)− P(Vn = v) + P(Wn = v ,Vn a leaf)

= Ln(v)−
1

n
+

Ln(v)

n
.

Rearrangement yields that

E
[
Ln+1(v)− 1

n + 1

∣∣Tn

]
≥ Ln(v)− 1

n
.

This implies that (Ln(v)− 1)/n is a submartingale, so it has an almost
sure limit Zv . Then,

Ln(v)

n
≤ Nn(v)

n
≤ Ln(v) + X≥2

n

n
.

Joint convergence follows from X≥2
n = o(n0.9) almost surely.
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Proof sketch Zu + Zv > 0 for {u, v} an edge

Set (u, v) = (m + 1,Wm) and for n ≥ m + 1, write Nn = Nn(u) + Nn(v)
and Ln = Ln(u) + Ln(v). We show that lim inf Ln/n > 0 almost surely.

Observe that ∆(Ln,Nn) ∈ {(1, 1), (0, 0), (−1, 0)} and

P (∆(Ln,Nn) = (1, 1)) = P(Wn = u) + P(Wn = v) ≥ 1

n

(
Ln +

1

Nn

)
.

We also have

P (∆(Ln,Nn) = (−1, 0)) ≤ min(2, Ln)

n
.

For Xn ≥ 0 a random variable with increments in {0, 1},
P(∆Xn = 1) ≥ Xn/n implies that Xn can be bounded from below by the
black balls in a Pólya urn, so lim inf Xn/n > 0 almost surely would follow!
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Further directions I - Extend results

Does the degree of an older vertex stochastically dominate the degree
of a younger vertex in Tn?

Is the number of vertices of degree k of the same order as the number
of vertices of degree at least k? Does it hold that

lim supn→∞
X≥k
n

X≥2
n

→ 0 as k → ∞? Does X≥k
n

X≥2
n

have some almost sure

limit? (Krapivsky and Redner conjecture the limit is Θ(k−µ) for
µ ≈ 0.566)

What does the graph restricted to the small degree vertices look like?
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Further directions II - Extend results

Is there a γ such that n−γX≥2
n → X almost surely for X a random

variable on (0,∞)?

A heuristic

For Xn ≥ 0 a random variable with increments in {0, 1} and 0 < γ ≤ 1 ,
P(∆Xn = 1) = γ

nXn implies that Xn = Θ(nγ) almost surely.

P(∆X≥2
n = 1 | Tn) =

1
n

∑
v :Nn(v)≥2

Ln(v)

Nn(v)
= 1

n

 1

X≥2
n

∑
v :Nn(v)≥2

Ln(v)

Nn(v)

X≥2
n .

Can we show that the average proportion of leaf neighbours across
non-leaf vertices converges almost surely?

Krapivsky and Redner conjecture that γ = µ ≈ 0.566
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Further directions III - A potential master key

Intuitively, the different parts of the tree should ’decouple’ at the hubs.
The hubs cut the tree in (almost) independent parts that, up to a time
change, evolve like rooted random friend trees.

If we can make this formal, averaging across the tree allows for use of the
law of large numbers, bringing many more complicated questions within
reach.
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Further directions IV - Generalisations

Wn can be viewed as the end point of a random walk of length 1 on
Tn started at Vn. What happens if we increase the length of the
random walk to k?

We may consider partial redirection, where n + 1 connects to Vn

instead of Wn with probability p > 0.

We can let new vertices connect to multiple vertices.
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