Random friend trees

Based on joint work with Louigi Addario-Berry, Simon Briend, Luc Devroye, Céline Kerriou and Gabor Lugosi

January 2024

Introduction

- We study a random recursive tree model called the random friend tree
- Attachment via complete redirection
- 'Rich-getting-richer' dynamics
- Interesting emergent properties
- Local attachment rule

Definition of the model

- Let T_{2} be the tree consisting of vertices 1 and 2 connected via an edge.
- Given T_{n}, let V_{n} be a uniform vertex in T_{n}
- Let W_{n} be a uniform neighbour of V_{n} in T_{n}
- Include the vertex $n+1$ and the edge $\left\{n+1, W_{n}\right\}$ in T_{n} to obtain T_{n+1}

Earlier work

- 'Introduced' by Saramäki and Kaski (2004)
- Cannings and Jordan show that T_{n} contains $n-o(n)$ leaves almost surely (2014)
- More specific properties of the degree sequence were studied non-rigorously in the physics literature by Karpivsky and Redner (2017)

Intuition for dynamics

Results I - Hubs

For $u \in[n]$, let $N_{n}(u)$ be the number of neighbours of vertex u in T_{n} and let $L_{n}(u)$ be the number of leaf neighbours of vertex u in T_{n}.

Convergence of normalised degrees *
There exists a random variable Z_{u} on $[0, \infty)$ such that

$$
\left(\frac{L_{n}(u)}{n}, \frac{N_{n}(u)}{n}\right) \rightarrow\left(Z_{u}, Z_{u}\right) \text { almost surely }
$$

We call a vertex u a hub if $Z_{u}>0$.

Results I - Hubs

For $u \in[n]$, let $N_{n}(u)$ be the number of neighbours of vertex u in T_{n} and let $L_{n}(u)$ be the number of leaf neighbours of vertex u in T_{n}.

Convergence of normalised degrees *
There exists a random variable Z_{u} on $[0, \infty)$ such that

$$
\left(\frac{L_{n}(u)}{n}, \frac{N_{n}(u)}{n}\right) \rightarrow\left(Z_{u}, Z_{u}\right) \text { almost surely }
$$

We call a vertex u a hub if $Z_{u}>0$.
All edges contain a hub \star
For any edge $\left\{m+1, W_{m}\right\}$, it holds that

$$
Z_{m+1}+Z_{W_{m}}>0 \text { almost surely }
$$

Results II - Frozen degrees

Vertices never acquire a new neighbour with positive probability
For each k, there is a p_{k} so that for any n, any degree k vertex present at time n has probability at least p_{k} to never acquire another neighbour.

Results II - Frozen degrees

Vertices never acquire a new neighbour with positive probability

For each k, there is a p_{k} so that for any n, any degree k vertex present at time n has probability at least p_{k} to never acquire another neighbour.

Most leaves stay leaves forever

Suppose v is a hub. Then, then the number of leaves adjacent to v at time n that ever acquire another neighbour is tight.

Results III - Distances

Diameter *
Let D_{n} be the diameter of T_{n}. Then,

$$
1 \leq \lim \inf \frac{D_{n}}{\log n} \leq \lim \sup \frac{D_{n}}{\log n} \leq 4 e
$$

Results III - Distances

Diameter *

Let D_{n} be the diameter of T_{n}. Then,

$$
1 \leq \lim \inf \frac{D_{n}}{\log n} \leq \lim \sup \frac{D_{n}}{\log n} \leq 4 e .
$$

Leaf depth

Let M_{n} be the maximal distance of any vertex to its nearest leaf in T_{n}. Then,

$$
M_{n}=\Theta\left(\frac{\log n}{\log \log n}\right) \text { in probability. }
$$

Results IV - Degree sequence

Let $X_{n}^{\geq k}$ be the number of vertices in T_{n} with degree at least k.

Large-ish degrees

For any sequence $\left(m_{n}\right)_{n \geq 1}$ with $m_{n}=o(n)$,

$$
\lim _{n \rightarrow \infty} X_{n}^{\geq m_{n}}=\infty
$$

Results IV - Degree sequence

Let $X_{n}^{\geq k}$ be the number of vertices in T_{n} with degree at least k.

Large-ish degrees

For any sequence $\left(m_{n}\right)_{n \geq 1}$ with $m_{n}=o(n)$,

$$
\lim _{n \rightarrow \infty} X_{n}^{\geq m_{n}}=\infty
$$

Small degrees

There exist constants $0.1<\alpha<\beta<0.9$ such that for any $k \geq 2$, as $n \rightarrow \infty$,

$$
\begin{aligned}
& \frac{X_{n}^{\geq k}}{n^{\alpha}} \rightarrow \infty \text { and } \\
& \frac{X_{n}^{\geq k}}{n^{\beta}} \rightarrow 0 .
\end{aligned}
$$

It is a slippery model to study!

- In preferential attachment trees and uniform attachment trees, the development of the sequence of vertex degrees, or even of a single vertex degree, can be studied without keeping track of the geometry of the tree.

It is a slippery model to study!

- In preferential attachment trees and uniform attachment trees, the development of the sequence of vertex degrees, or even of a single vertex degree, can be studied without keeping track of the geometry of the tree.
- In the random friend tree, this is not possible.
- To know $\mathbb{E}\left[\Delta N_{n}(v) \mid T_{n}\right]$, you need to know the degrees of the neighbours of v. But to sample their development, you need to know the degrees of their neighbours, etc.
- More generally, in the random friend tree, the global structure affects local properties.

Proof lower bound diameter liminf $D_{n} / n \geq 1$

Proof lower bound diameter liminf $D_{n} / n \geq 1$

$$
\begin{aligned}
\mathbb{P}\left(\Delta D_{n}=1 \mid T_{n}\right) & \geq \mathbb{P}\left(V_{n}=i_{2}, W_{n} \neq i_{3}\right)+\mathbb{P}\left(V_{n}=i_{D_{n}-1}, W_{n} \neq i_{D_{n}-2}\right) \\
& \geq \frac{1}{n} \times \frac{1}{2}+\frac{1}{n} \times \frac{1}{2}=\frac{1}{n} .
\end{aligned}
$$

Proof lower bound diameter liminf $D_{n} / n \geq 1$

$$
\begin{aligned}
\mathbb{P}\left(\Delta D_{n}=1 \mid T_{n}\right) & \geq \mathbb{P}\left(V_{n}=i_{2}, W_{n} \neq i_{3}\right)+\mathbb{P}\left(V_{n}=i_{D_{n}-1}, W_{n} \neq i_{D_{n}-2}\right) \\
& \geq \frac{1}{n} \times \frac{1}{2}+\frac{1}{n} \times \frac{1}{2}=\frac{1}{n} .
\end{aligned}
$$

So D_{n} stochastically dominates $B_{1}+\cdots+B_{n}$, for B_{i} a Bernoulli random variable with $\mathbb{P}\left(B_{i}=1\right)=\frac{1}{i}$. Kolmogorov's strong law of large numbers implies that
$\lim \inf \frac{D_{n}}{\log n} \geq 1$ almost surely.

Proof almost sure limit $L_{n}(v) / n, N_{n}(v) / n$.

$$
\begin{aligned}
\mathbb{E}\left[L_{n+1}(v) \mid T_{n}\right] & =L_{n}(v)-\mathbb{P}\left(V_{n}=v, W_{n} \text { a leaf }\right)+\mathbb{P}\left(W_{n}=v\right) \\
& \geq L_{n}(v)-\mathbb{P}\left(V_{n}=v\right)+\mathbb{P}\left(W_{n}=v, V_{n} \text { a leaf }\right) \\
& =L_{n}(v)-\frac{1}{n}+\frac{L_{n}(v)}{n} .
\end{aligned}
$$

Proof almost sure limit $L_{n}(v) / n, N_{n}(v) / n$.

$$
\begin{aligned}
\mathbb{E}\left[L_{n+1}(v) \mid T_{n}\right] & =L_{n}(v)-\mathbb{P}\left(V_{n}=v, W_{n} \text { a leaf }\right)+\mathbb{P}\left(W_{n}=v\right) \\
& \geq L_{n}(v)-\mathbb{P}\left(V_{n}=v\right)+\mathbb{P}\left(W_{n}=v, V_{n} \text { a leaf }\right) \\
& =L_{n}(v)-\frac{1}{n}+\frac{L_{n}(v)}{n} .
\end{aligned}
$$

Rearrangement yields that

$$
\mathbb{E}\left[\left.\frac{L_{n+1}(v)-1}{n+1} \right\rvert\, T_{n}\right] \geq \frac{L_{n}(v)-1}{n} .
$$

This implies that $\left(L_{n}(v)-1\right) / n$ is a submartingale

Proof almost sure limit $L_{n}(v) / n, N_{n}(v) / n$.

$$
\begin{aligned}
\mathbb{E}\left[L_{n+1}(v) \mid T_{n}\right] & =L_{n}(v)-\mathbb{P}\left(V_{n}=v, W_{n} \text { a leaf }\right)+\mathbb{P}\left(W_{n}=v\right) \\
& \geq L_{n}(v)-\mathbb{P}\left(V_{n}=v\right)+\mathbb{P}\left(W_{n}=v, V_{n} \text { a leaf }\right) \\
& =L_{n}(v)-\frac{1}{n}+\frac{L_{n}(v)}{n} .
\end{aligned}
$$

Rearrangement yields that

$$
\mathbb{E}\left[\left.\frac{L_{n+1}(v)-1}{n+1} \right\rvert\, T_{n}\right] \geq \frac{L_{n}(v)-1}{n} .
$$

This implies that $\left(L_{n}(v)-1\right) / n$ is a submartingale, so it has an almost sure limit Z_{v}. Then,

$$
\frac{L_{n}(v)}{n} \leq \frac{N_{n}(v)}{n} \leq \frac{L_{n}(v)+X_{n}^{\geq 2}}{n}
$$

Joint convergence follows from $X_{n}^{\geq 2}=o\left(n^{0.9}\right)$ almost surely.

Proof sketch $Z_{u}+Z_{v}>0$ for $\{u, v\}$ an edge

Set $(u, v)=\left(m+1, W_{m}\right)$ and for $n \geq m+1$, write $N_{n}=N_{n}(u)+N_{n}(v)$ and $L_{n}=L_{n}(u)+L_{n}(v)$. We show that $\lim \inf L_{n} / n>0$ almost surely.

Proof sketch $Z_{u}+Z_{v}>0$ for $\{u, v\}$ an edge

Set $(u, v)=\left(m+1, W_{m}\right)$ and for $n \geq m+1$, write $N_{n}=N_{n}(u)+N_{n}(v)$ and $L_{n}=L_{n}(u)+L_{n}(v)$. We show that $\lim \inf L_{n} / n>0$ almost surely. Observe that $\Delta\left(L_{n}, N_{n}\right) \in\{(1,1),(0,0),(-1,0)\}$

Proof sketch $Z_{u}+Z_{v}>0$ for $\{u, v\}$ an edge

Set $(u, v)=\left(m+1, W_{m}\right)$ and for $n \geq m+1$, write $N_{n}=N_{n}(u)+N_{n}(v)$ and $L_{n}=L_{n}(u)+L_{n}(v)$. We show that $\lim \inf L_{n} / n>0$ almost surely. Observe that $\Delta\left(L_{n}, N_{n}\right) \in\{(1,1),(0,0),(-1,0)\}$ and

$$
\mathbb{P}\left(\Delta\left(L_{n}, N_{n}\right)=(1,1)\right)=\mathbb{P}\left(W_{n}=u\right)+\mathbb{P}\left(W_{n}=v\right) \geq \frac{1}{n}\left(L_{n}+\frac{1}{N_{n}}\right)
$$

Proof sketch $Z_{u}+Z_{v}>0$ for $\{u, v\}$ an edge

Set $(u, v)=\left(m+1, W_{m}\right)$ and for $n \geq m+1$, write $N_{n}=N_{n}(u)+N_{n}(v)$ and $L_{n}=L_{n}(u)+L_{n}(v)$. We show that $\lim \inf L_{n} / n>0$ almost surely. Observe that $\Delta\left(L_{n}, N_{n}\right) \in\{(1,1),(0,0),(-1,0)\}$ and

$$
\mathbb{P}\left(\Delta\left(L_{n}, N_{n}\right)=(1,1)\right)=\mathbb{P}\left(W_{n}=u\right)+\mathbb{P}\left(W_{n}=v\right) \geq \frac{1}{n}\left(L_{n}+\frac{1}{N_{n}}\right)
$$

We also have

$$
\mathbb{P}\left(\Delta\left(L_{n}, N_{n}\right)=(-1,0)\right) \leq \frac{\min \left(2, L_{n}\right)}{n}
$$

Proof sketch $Z_{u}+Z_{v}>0$ for $\{u, v\}$ an edge

Set $(u, v)=\left(m+1, W_{m}\right)$ and for $n \geq m+1$, write $N_{n}=N_{n}(u)+N_{n}(v)$ and $L_{n}=L_{n}(u)+L_{n}(v)$. We show that $\lim \inf L_{n} / n>0$ almost surely. Observe that $\Delta\left(L_{n}, N_{n}\right) \in\{(1,1),(0,0),(-1,0)\}$ and

$$
\mathbb{P}\left(\Delta\left(L_{n}, N_{n}\right)=(1,1)\right)=\mathbb{P}\left(W_{n}=u\right)+\mathbb{P}\left(W_{n}=v\right) \geq \frac{1}{n}\left(L_{n}+\frac{1}{N_{n}}\right)
$$

We also have

$$
\mathbb{P}\left(\Delta\left(L_{n}, N_{n}\right)=(-1,0)\right) \leq \frac{\min \left(2, L_{n}\right)}{n}
$$

For $X_{n} \geq 0$ a random variable with increments in $\{0,1\}$, $\mathbb{P}\left(\Delta X_{n}=1\right) \geq X_{n} / n$ implies that X_{n} can be bounded from below by the black balls in a Pólya urn, so lim inf $X_{n} / n>0$ almost surely would follow!

Further directions I - Extend results

- Does the degree of an older vertex stochastically dominate the degree of a younger vertex in T_{n} ?

Further directions I - Extend results

- Does the degree of an older vertex stochastically dominate the degree of a younger vertex in T_{n} ?
- Is the number of vertices of degree k of the same order as the number of vertices of degree at least k ?

Further directions I - Extend results

- Does the degree of an older vertex stochastically dominate the degree of a younger vertex in T_{n} ?
- Is the number of vertices of degree k of the same order as the number of vertices of degree at least k ? Does it hold that $\lim \sup _{n \rightarrow \infty} \frac{x_{n}^{2 k}}{x_{n}^{22}} \rightarrow 0$ as $k \rightarrow \infty$?

Further directions I - Extend results

- Does the degree of an older vertex stochastically dominate the degree of a younger vertex in T_{n} ?
- Is the number of vertices of degree k of the same order as the number of vertices of degree at least k ? Does it hold that $\lim \sup _{n \rightarrow \infty} \frac{x_{n}^{\geq k}}{x_{n}^{\geq^{2}}} \rightarrow 0$ as $k \rightarrow \infty$? Does $\frac{x_{n}^{\geq k}}{x_{n}^{\geq^{2}}}$ have some almost sure limit? (Krapivsky and Redner conjecture the limit is $\Theta\left(k^{-\mu}\right)$ for $\mu \approx 0.566$)

Further directions I - Extend results

- Does the degree of an older vertex stochastically dominate the degree of a younger vertex in T_{n} ?
- Is the number of vertices of degree k of the same order as the number of vertices of degree at least k ? Does it hold that $\lim \sup _{n \rightarrow \infty} \frac{x_{n}^{\geq k}}{x_{n}^{\geq^{2}}} \rightarrow 0$ as $k \rightarrow \infty$? Does $\frac{x_{n}^{\geq k}}{X_{n}^{\geq 2}}$ have some almost sure limit? (Krapivsky and Redner conjecture the limit is $\Theta\left(k^{-\mu}\right)$ for $\mu \approx 0.566$)
- What does the graph restricted to the small degree vertices look like?

Further directions II - Extend results

- Is there a γ such that $n^{-\gamma} X_{n}^{\geq 2} \rightarrow X$ almost surely for X a random variable on $(0, \infty)$?

Further directions II - Extend results

- Is there a γ such that $n^{-\gamma} X_{n}^{\geq 2} \rightarrow X$ almost surely for X a random variable on $(0, \infty)$?

A heuristic

For $X_{n} \geq 0$ a random variable with increments in $\{0,1\}$ and $0<\gamma \leq 1$, $\mathbb{P}\left(\Delta X_{n}=1\right)=\frac{\gamma}{n} X_{n}$ implies that $X_{n}=\Theta\left(n^{\gamma}\right)$ almost surely.

Further directions II - Extend results

- Is there a γ such that $n^{-\gamma} X_{n}^{\geq 2} \rightarrow X$ almost surely for X a random variable on $(0, \infty)$?

A heuristic

For $X_{n} \geq 0$ a random variable with increments in $\{0,1\}$ and $0<\gamma \leq 1$, $\mathbb{P}\left(\Delta X_{n}=1\right)=\frac{\gamma}{n} X_{n}$ implies that $X_{n}=\Theta\left(n^{\gamma}\right)$ almost surely.
$\mathbb{P}\left(\Delta X_{n}^{\geq 2}=1 \mid T_{n}\right)=\frac{1}{n} \sum_{v: N_{n}(v) \geq 2} \frac{L_{n}(v)}{N_{n}(v)}$

Further directions II - Extend results

- Is there a γ such that $n^{-\gamma} X_{n}^{\geq 2} \rightarrow X$ almost surely for X a random variable on $(0, \infty)$?

A heuristic

For $X_{n} \geq 0$ a random variable with increments in $\{0,1\}$ and $0<\gamma \leq 1$, $\mathbb{P}\left(\Delta X_{n}=1\right)=\frac{\gamma}{n} X_{n}$ implies that $X_{n}=\Theta\left(n^{\gamma}\right)$ almost surely.
$\mathbb{P}\left(\Delta X_{n}^{\geq 2}=1 \mid T_{n}\right)=\frac{1}{n} \sum_{v: N_{n}(v) \geq 2} \frac{L_{n}(v)}{N_{n}(v)}=\frac{1}{n}\left(\frac{1}{X_{n}^{\geq 2}} \sum_{v: N_{n}(v) \geq 2} \frac{L_{n}(v)}{N_{n}(v)}\right) X_{n}^{\geq 2}$.
Can we show that the average proportion of leaf neighbours across non-leaf vertices converges almost surely?

Krapivsky and Redner conjecture that $\gamma=\mu \approx 0.566$

Further directions III - A potential master key

Intuitively, the different parts of the tree should 'decouple' at the hubs. The hubs cut the tree in (almost) independent parts that, up to a time change, evolve like rooted random friend trees.

Further directions III - A potential master key

Intuitively, the different parts of the tree should 'decouple' at the hubs. The hubs cut the tree in (almost) independent parts that, up to a time change, evolve like rooted random friend trees.

If we can make this formal, averaging across the tree allows for use of the law of large numbers, bringing many more complicated questions within reach.

Further directions IV - Generalisations

- W_{n} can be viewed as the end point of a random walk of length 1 on T_{n} started at V_{n}. What happens if we increase the length of the random walk to k ?

Further directions IV - Generalisations

- W_{n} can be viewed as the end point of a random walk of length 1 on T_{n} started at V_{n}. What happens if we increase the length of the random walk to k ?
- We may consider partial redirection, where $n+1$ connects to V_{n} instead of W_{n} with probability $p>0$.

Further directions IV - Generalisations

- W_{n} can be viewed as the end point of a random walk of length 1 on T_{n} started at V_{n}. What happens if we increase the length of the random walk to k ?
- We may consider partial redirection, where $n+1$ connects to V_{n} instead of W_{n} with probability $p>0$.
- We can let new vertices connect to multiple vertices.

