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MOTIVATION

"hydrodynamics is an asymptotic
series” (Bjorken flow, attractor, ...)

"hydrodynamics works
unreasonably well”

holographic calculation 7/
of works extremely well

: 1
is there a bound? > C—
S A7

quantum chaotic mess
leads to (collective)

hydrodynamisation and

thermalisation

is the speed of sound bounded?
[Annala, Gorda, Kurkela, Nattila, Vuorinen (2020)]
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OUTLINE

introduction: hydrodynamics and holographic duality

complex spectral curves and convergence

quantum chaos through pole-skipping

bounds from univalence

future directions
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HYDRODYNAMICS

low-energy limit of QFTs — a Schwinger-Keldysh effective field theory
[Grozdanov, Polonyi (2013); Crossley, Glorioso, Liu (2015); Haehl, Loganayagam, Rangamani (2015);

]

expressed through conservation laws (equations of motion) of

VY 2 Mo uvy ... Vy
V,TH =0 VJt=0 ... V,J" =
(symmetries and phenomenological It ~ T < 1
gradient expansions) with (microscopic)

T (u*, T, p) = (e + P)uru” + Pg** —no'” — (V- ulA* + ...

small 9 = small frequency-momentum ut, T ~ e i ax . |\ /T ~ q/T < 1

\equilibrium

dispersion relations: shear diffusion sound
. 5 T 5 temperature
w = —1Dq w = *veq — 1l'q
S = /q2



HYDRODYNAMICS

infinite, all-order hydrodynamic expansion

-
=D | AT

VT =0

ut ~T ~ e

—iwt+1qgz

non-analytic corrections due to statistical (quantum) corrections;

long-time tails

CFT:

conformal symmetry constrains the series Weyl covariance

state of the art for relativistic neutral hydrodynamics

T# =0

max N max N in CFT
first order 2 1 Navier-Stokes (1821)
second order 15 5 BRSSS (2007)
third order 68 20 Grozdanov, Kaplis, PRD (2016)

[also Diles, Mamani, Miranda, Zanchin, JHEP (2020)
and A. Jaiswal, PRC (2013) for kinetic theory]



HOLOGRAPHIC DUALITY

duality: theory A = theory B

holographic or gauge/gravity duality is a result of string theory, which is a

quantum theory of gravity [Maldacena (1997)]

weakly coupled gravity

strongly coupled quantum theory

(extremely hard) (much easier)

s

o RN .

weakly interacting gravity allows to analyse strongly coupled microscopic QFTs

invaluable explicit (toy) models, e.g., the N/ = 4 supersymmetric Yang-Mills theory



HOLOGRAPHIC HYDRODYNAMICS

holography is an extremely useful tool for studying
the structure of thermal spectra

example: the spectrum (physical excitations) of a free
(zero coupling) massive relativistic theory plotted for

complex frequency w € C

energy-momentum 4d QFT spectrum

(P(—w, —q), d(w, q))

(frequency-wavevector) relation

E? = (m62)2 + p2c2

E = hw
p=hg
>
lc:hzl

w = +t+v/m? + ¢

dispersion relation
no damping (no imaginary part)



HOLOGRAPHIC HYDRODYNAMICS

holography is an extremely useful tool for studying b(w, q)
the structure of thermal spectra

the spectrum of field theory correlators equals
the quasinormal spectrum of frequencies

w
of dual black branes, plotted for w = o cC:

analytically known dispersion relations in N =4

supersymmetric Yang-Mills theory at infinite
't Hooft coupling and N, — oo
[Grozdanov, Kovtun, Starinets, Tadi¢, JHEP (2019)]

1 i 3 —2In2 i (72 —24+241In2 — 121n° 2)
. — + . 2:|: 3 4:|:
sound: w=tmd = et e 6433 q
i i(1—1n2 i(241n% 2 — 72
shear: w=—t g U - 3)614— ( : ) 8
A7l 3271 96 (27T

i [2nr%(In32 - 1) — 21¢(3) — 24In2(1 + In2(In 32 - 3))] o
384 (27T)" !




THE REST OF THE TALK:




. COMPLEX SPECTRAL
CURVES AND CONVERGENCE



COMPLEX SPECTRAL CURVES

algebraic curves are solutions to polynomial equations  P(z,y) =0 = y(x)

e.g.: elliptic curves are

non-singular solutions of

v =z +ax+b, x,y eR

we will be interested in , such as cusps, self-intersections, ..., of

complex spectral curves (with P(x,y) not necessarily a polynomial)

P(z,y) =0 = y(z), z,y €C
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LOCAL ANALYSIS: PUISEUX SERIES

Taylor series is a series in integer powers of the expansion parameter

Puiseux series is a series in fractional powers of the expansion parameter

consider a simple example of an algebraic curve for x,y € C
Plx,y)=z*+y*—1=0

we want to find series solutions for y(x)

a is defined by P(x,,y,) =0, 0,P(x,,y,) # 0 atthe
regular point (z.,y,) = (0,1), the solution gives a Taylor series
2 4
Dy =1 T
y=y @) =1-o——+
a (of order 2) is defined by P(xz.,y.) =0, 0, P(2s,ys) =0, 0. P(z4,y.) # 0

here, two such points, (z.,y.) = (£1,0), each with two branches of Puiseux series, e.g.

)=(1,00: 7~ g (@) = ivV2x - 1)% +i2°

y =57 (a) = —iv2(z — 1)

|0
(V][oV

(z = 1)

—i272(x — 1)

N[~
N

radius of convergence is distance to the nearest critical point: R{") =1, R(®) =2

13
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CONVERGENCE OF HYDRODYNAMICS

hydrodynamic modes as complex spectral (or infinite-order algebraic) curves
[Grozdanov, Kovtun, Starinets, Tadi¢, PRL (2019) and JHEP (2019)]

hydro: det £(q?,w) =0

— 2 ) = (o _ w o d]
QNM: G(QQ,W) =) P(q ,CU) - O — w’&(q ) 0 = 3 Cl — = (C

e.g., first-order hydrodynamics: P (g%, w) = (w + iDq2)2 (w2 + iTwq® — vqu) =0

analytic implicit function theorem (a regular point)

P(qf,ws) = 0, 0, P(dz,ws) # 0

Puiseux theorem: there exists a convergent series around a critical point (q?,w,)

P(qzaw*) — 07 8wp(qz7w*) — 07 R 6£P(qzaw*) % O Pshear — 1

/ Psound = 2

hydrodynamic series are Puiseux series around (g, w) 8" — (2, w, )&M) — (0, 0)

shear

WOshear = —7 Z Cn (qz)n = —i@q2 + ... Wsound = —? Z aneian (q2)n/2 = +vsq — %®q2 + ...
n=1 n=1
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CONVERGENCE OF HYDRODYNAMICS

complexify g% = ‘q2| e'?  fix the absolute value and vary the argument in the QNM
spectrum of the shear (diffusive) channel in A/ = 4 supersymmetric Yang-Mills theory

[animation by
P. Tadic]
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CONVERGENCE OF HYDRODYNAMICS

complexify g% = ‘q2| e'?  fix the absolute value and vary the argument in the QNM
spectrum of the shear (diffusive) channel in A/ = 4 supersymmetric Yang-Mills theory

I9°] = 2.15

i o

[animation by
P. Tadic]
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CONVERGENCE OF HYDRODYNAMICS

complexify g% = ‘q2| e'?  fix the absolute value and vary the argument in the QNM
spectrum of the shear (diffusive) channel in A/ = 4 supersymmetric Yang-Mills theory

=]

I9°| = 2.21

i o

[animation by
P. Tadic]
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CONVERGENCE OF HYDRODYNAMICS

complexify g% = ‘q2| e'?  fix the absolute value and vary the argument in the QNM
spectrum of the shear (diffusive) channel in A/ = 4 supersymmetric Yang-Mills theory

=]

il]"i = 2.20

i o

[animation by
P. Tadic]




CONVERGENCE OF HYDRODYNAMICS

at which the hydro pole collides (level-crossing):

o
\ 2] = 1
) @

d« = min HqcollisionH

,i.e. |q] < g4, is set by the lowest momentum

e
C'\

v /\ a7l =1 |q%| = 2.22 l9°| = 2.23
° P
: o 1.
s I O O ;- E N
) 5 ( M\
< : S
g | O S, S
O
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
3 2 1 (¢} 1 2 3 0 1 2 3 2 1 e 1 2 3
Re Re

lq%| = 2.01

q. ~ 1.49131
() ~ £1.4436414 — 1.0692250i

. = V2 ~ 1.41421
(q.) =+1 —i




HIGHER CRITICAL POINTS (E.G. SHEAR/DIFFUSIVE CHANNEL)




ANALYTIC STURCTURE

analytic structure of dispersion relations in complexified momentum space

dispersion relations are complicated, multi-sheeted Riemann surfaces

“connecting various modes in the spectrum into one entity”

Branch cuts of the function 1gpe.:(q°) Branch cuts of the function wg,una(q)
T T T T T T T T T T T T T | T T T

T T T T T T T T T T T T T T T T T T T T T T T ] T T T T T T T T T T T T T T T T T T T

Im g*
(O]
Imq
(O]




UNREASONABLE EFFECTIVENESS

“unreasonable”: hydro works for large derivatives

radius of

> q/T ~ O(10)

convergence in
N=4 SYM at

infinite coupling

microscopic input
from holography

orders of magnitude larger radius of convergence than naive ¢/T < 1 — if this is true
in general, it may explain the

hydrodynamics is neither convergent nor asymptotic; it depends on the observable!

22



. QUANTUM CHAOS AND
POLE-SKIPPING
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CHAOS

Lyapunov exponent butterfly velocity

v
AZ(t,x)| & |AZ(t;,x;)| e xl/va)
classical chaos means extreme

sensitivity to initial conditions ~

exponential divergence of

trajectories and
t=1;

in quantum systems, molecules collide chaotically

“out-of-time-ordered” correlation functions [Larkin, Ovchinnikov; Kitaev]

C(t,x) = <[W(t,X), V (0, O)]T[W(t,x), V (0, O)]>T ~ ee)‘L(t_|X|/”Bv)\
/ T butte\rﬂy velocity

1
scrambling time | t, = ~ In N | «—— typically, e =1/N? <1 Lyapunov exponent
L

its “build-up” describes the

standard lore: “microscopic quantum information is smeared out at large distances”



QUANTUM CHAOS

Exponential Lyapunov Chaos — Lyapunov exponent and butterfly
velocity in holographic theories can be computed from holography

Lyapunov exponent saturates the Maldacena-Shenker-Stanford bound

OTOC of
O(t, x)

C(t, x) ~ eerrlt=a/vs)

25

)\L S 27T

in lattice spin systems, quantum chaos is not exponential (Lyapunov), but spreads

polynomially with a bounded rate of maximal power-law growth —
Weak Quantum Chaos [Kukuljan, Grozdanov, Prosen, PRB (2017)]

OTOC of
/ddaz O(t, x)

c(t) < At?

“-0—0—0—0—0—0—0—0—

all these theories exhibit macroscopic collective transport: hydrodynamics

what is the precise connection between hydrodynamics and chaos [Hartnoll; Blake]?

DN’U%/)\L > P
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POLE-SKIPPING

the phenomenon of pole-skipping makes precise the analytic connection between

hydrodynamics and exponential chaos — true in “all” holographic theories
[Grozdanov, Schalm, Scopelliti, PRL (2017); Blake, Lee, Liu, JHEP (2018); Blake, Davison,
Grozdanov, Liu, JHEP (2018);: Grozdanov, JHEP (2019)]

resumed all-order hydrodynamic series (e.g. the sound channel)

passes through a special “chaos point” at

P : w(q =1q0) = tAL, AL = 27T, go = A\L/UB

defined through the fact that the associated two point function has both a pole and a
zero at this point (e.g. in the sound channel, this is the energy density correlator)

b
G o000 (W, g) = (:’ Q), lim a(w,q)= lim b(w,q)=0

a(w, q) (w,q)—Pe (w,q)—Pe




POLE-SKIPPING

simple example: the Sachdev-Ye-Kitaev chain [Gu, Qi, Stanford (2017)]

&

i (% n 1)
—iw + DEq2

gooToo (w, C]) =C

pole (diffusion): W = —iDEQQ

zero: W = U],

in /=4 SYM theory at infinite N.:

go = V6rT
vp = AL/q0 =+/2/3

point of chaos is inside the
radius of convergence of

the reason for pole-skipping in holography is a special,

new property of Einstein’s equations at the horizon
[Blake, Davison, Grozdanov, Liu, JHEP (2018)]

-
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POLE-SKIPPING

in A =4 SYM theory at infinite N. and infinite coupling

diffusion : w. = w(q. = qo) = —iAL Lyapunov exponent : Ay, = |w.| = 27T
SOU.Hd D We = w(qc — Zqo) — Z)\L butterﬂy Velocity . Up = ]wc/qc\
[Grozdanov, Kovtun, Starinets, g € R

Tadi¢, JHEP (2019)]

shear (diffusion):

<Tajz(_w7 _QZ)a Tacz (wa q,z)>

i, il-h2) , iAlT2— )

397373 1 96 (2rT)°

_i[2r(ns2—1) - 21¢(3) ~ 2421 + (82 =)
384 (2nT)"




POLE-SKIPPING

in A =4 SYM theory at infinite N. and infinite coupling

diffusion : w. = w(q. =

sound : w, = w(q. =

qo) = —iAL Lyapunov exponent : A\j, = |w.| = 27T

iqo) = i\ butterfly velocity : vp = |w./q.|

[Grozdanov, Kovtun, Starinets,
Tadi¢, JHEP (2019)]

sound:

<Ttt(_w7 —Qz), Ttt(wa (]z)>

¢ € R

Im o
1.5

; . 2
R 2 3—2In2 q3_z(7r2—24—|—241n2—121n z)q
V35 6rT"  24./372T2 864m3T3
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POLE-SKIPPING

leading coupling corrections preserve
pole-skipping [Grozdanov, JHEP (2019)]

in general, multiple Lyapunov exponents, ... ?

at weak coupling (kinetic theory), existence of

pole-skipping is unknown
[Grozdanov, Schalm, Scopelliti, PRE (2018)]

(holographic) CFTs exhibit an infinite tower

of pole-skipping points (various operators)
[Grozdanov, Kovtun, Starinets, Tadi¢, JHEP (2019);

Blake, Davison, Vegh, JHEP (2019); ...]
frequencies are multiples of Matsubara frequencies

pole-skipping imposes infinite constraints on
the structures of field theory correlators

example: 2d CFT dual to a 3d black hole

30

in N =4 SYM:
)\L = 2’

2 23¢(3) 1
o 3B )

Im(w)

2T

Im(k)

Ay . ’ 4
' -4 4,
. ’ 27TT
LY 4
A ’
. ’
. ’
LY ’
. ’
\ ’
v 4
A ) \\ A Vi .
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. ’
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. ’
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E A "
v \(
I' b
Ay

’

[plot from Blake, Davison, Vegh, JHEP (2019)]
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1. BOUNDS FROM UNIVALENCE

[Grozdanov, arXiv:2008.00888]

> C ! CU%<D<C 2 <C !
D ~ UTea Vs > !
s = Tap TIh, =T = 1 Vda-1

| 3

A < 2T (7) = (?)




UNIVALENT FUNCTIONS

univalent function f(z), z € C is a complex, holomorphic and injective function

Y

injectivity: f(2z1) # f(z2) for all z; # 2z
assume that f(2) has a finite (open) region of univalence U

the Riemann mapping theorem:

Z

U

¢ = p(2)
¢)

2= I

function is now univalent on the open unitdisk: D = {(||{] < 1}

F(O)=¢+D) bal"
n—=2

32



UNIVALENT FUNCTIONS

recall: 33

FO=¢+ D> ™
n=2

holomorphic functions are “stiff”, univalent function even more so...

the growth theorem:

Iq
(1+¢])

€]
(1-1¢])?

< |f(Q)] <

the famous Bieberbach conjecture (19216), now de Branges’s theorem (1985):

b,| < n, foralln>2

when is f(z) univalent and whatis U ?

local univalence: f(z) #0

global univalence is tricky

Re f'(z) > 0 in any convex z € U C C

if Re f'(¢) >0, ¢ € D, then

—[¢l+2In (1 +[¢]) < |f(O)] < =[¢] = 2In (1 —|])

b,| < 2/n, for all n > 2

f(z) is univalent if

2
(1 =22

[{f(2),2}] <

12| < 1

if f(2) is univalent, then

6
(1 =22

[{f(2), 2} <

1z| < 1




DIFFUSIVE DISPERSION RELATION

diffusive Puiseux (Taylor) series  waqif (2 Z "

assume we know some U = ¢(z),and onevalue wy = waig(20), 20 €U

1 00
define fdlff( ) delff( ) PEEEN fdlff(C) — Zaggfc(j (C)) _ C 4+ Zbilffgn

n=2
.. ¢ = 90 ..
Co— (20)
map O to 0
exact bounds immediately follow:
1— 1 ° 2,5-1
Jwol (1 = 1¢o])” <D< jwol ( +_\§0\) bl <n = |o D02 (0)2 20
ol |0cp~(0)] ol [0cp=(0) 2 [~ (0)]%| ~ 10c971(0)]

stronger bounds (logs, ...) existif Re f'(¢) > 0, |¢| < 1

34
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DIFFUSIVE DISPERSION RELATION

are diffusive dispersion relations really univalent?

function is holomorphic and invertible at z = 0 (Puiseux), hence locally univalent;

a U = {z||z| < min[|z,|, R]} with group velocity vy = 0w/0q and

Re f'({) >0 = 2z, = qg = mianIRengmq = Imv, Reg

example: N =4 SYM theory 0.046/T < D = 1/47T ~ 0.080/T < 0.201/T

¢=¢le’?, ¢l <1

pole-
skipping

Mobius transformation I Q U—->D




SIMPLEST BOUND ON DIFFUSION

assume a dispersion relation that is univalent everywhere except at a single branch cut

example: self-dual axion model [Andrade, Withers (2013): Davison, Gouteraux (2014)]

energy diffusion: w(z = q2) = —ml’ (1 — \/1 _ = )

272

optimal bounds (similar to Blake's proposal D > v%/Ap):

A% V2 V2 AL
iff: =-"L<0: E<D<-E
energy diff: 20 2 y SP<5 + 5
)\2 2 )\ 2
momentum dif:  0<zp= "% < R: 9 _ AL o p< B
Up )\L R )\L

: D
higher orders: 0<e <4

infinite radius of convergence:

: Y
wain (@) = ~iDq? = —i 2 g

36



SOUND
the story is analogous with univalence breakdown set by the local condition
f[(z) =0 = v,=0

example: N =4 SYM theory ( ¢ =Icle®, |c] <1

Zg = \/qz = —3.791iT

Zg = /q; = —3ivs /4D = —5.4414T

construct a sufficient analyticity (univalence) condition for the conformal bound on the
Speed of sound [Cherman, Cohen, Nellore (2009): Hohler, Stephanov (2009)]

9:071(0)] = 4V3lwo(20)| A 6ol = lp(z0)| 21 = 0<w, < V;
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CONCLUSIONS AND
FUTURE DIRECTIONS
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CONCLUSIONS AND FUTURE DIRECTIONS

complex analytic structures of transport can reveal new physical properties

dispersion relations converge in momentum space, in x-space they sometimes converge

and sometimes diverge [see Heller, Serantes, Spalinski, Svensson, Withers (2020)]

pole-skipping imposes strong chaos constraints on transport and Green'’s functions
what is the physical meaning of pole-skipping or “0/0" in QFT correlators?
pole-skipping or its generalisation in weakly coupled QFTs and kinetic theory?

chaos in heavy ion collisions?

new methods that allow for rigorous derivations of lower and upper bounds

on all coefficients of hydrodynamic dispersion relations
we can find precise analytic conditions of a theory that lead to certain bounds

further physical implications? equations of state vs. the conformal bound, ...?
[QCD, neturon starts, etc., see e.g. Annala, Gorda, Kurkela, Nattila, Vuorinen (2020)]

fluctuations, quantum corrections, long-time tails, “1/N” ... what remains of this story?



THANK YOU!



