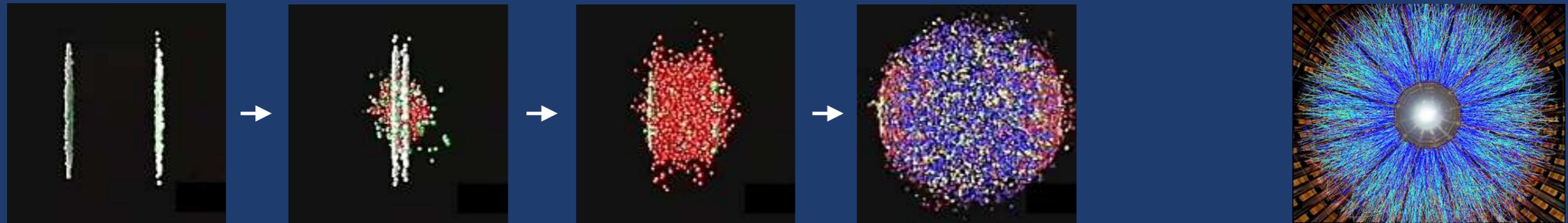


SAŠO GROZDANOV
UNIVERSITY OF LJUBLJANA

THE COMPLEX STRUCTURE
OF CLASSICAL HYDRODYNAMICS:
CONVERGENCE, QUANTUM CHAOS AND BOUNDS

ICTS, 7.10.2020

MOTIVATION



“hydrodynamics works
unreasonably well”

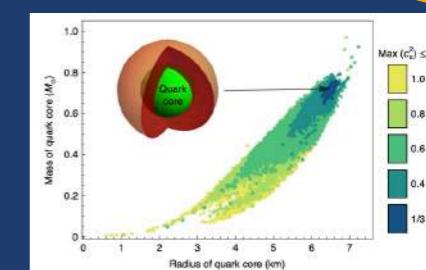
“hydrodynamics is an asymptotic
series” (Bjorken flow, attractor, ...)

quantum chaotic mess
leads to (collective)
hydrodynamisation and
thermalisation

holographic calculation η/s
of works extremely well

is there a bound? $\frac{\eta}{s} \geq \mathcal{C} \frac{1}{4\pi}$

is the speed of sound bounded?
[Annala, Gorda, Kurkela, Näätälä, Vuorinen (2020)]



OUTLINE

- introduction: hydrodynamics and holographic duality

- I. complex spectral curves and convergence
- II. quantum chaos through *pole-skipping*
- III. bounds from univalence

- future directions

INTRODUCTION: HYDRODYNAMICS AND HOLOGRAPHIC DUALITY

HYDRODYNAMICS

- low-energy limit of QFTs – a Schwinger-Keldysh effective field theory
[Grozdanov, Polonyi (2013); Crossley, Glorioso, Liu (2015); Haehl, Loganayagam, Rangamani (2015); ...]
- expressed through conservation laws (equations of motion) of
globally conserved operators

$$\nabla_\mu T^{\mu\nu} = 0 \quad \nabla_\mu J^\mu = 0 \quad \dots \quad \nabla_\mu J^{\mu\nu_1\dots\nu_n} = 0$$

- **tensor structures** (symmetries and phenomenological gradient expansions) with **transport coefficients** (microscopic)

$$\partial u^\mu \sim \partial T \ll 1$$

$$T^{\mu\nu} (u^\lambda, T, \mu) = (\varepsilon + P) u^\mu u^\nu + P g^{\mu\nu} - \eta \sigma^{\mu\nu} - \zeta \nabla \cdot u \Delta^{\mu\nu} + \dots$$

- small ∂ = small frequency-momentum $u^\mu, T \sim e^{-i\omega t + i\mathbf{q} \cdot \mathbf{x}}$:

$$\omega/T \sim q/T \ll 1$$

- dispersion relations:

shear diffusion

$$\omega = -iDq^2$$

sound

$$\omega = \pm v_s q - i\Gamma q^2$$

equilibrium temperature
 $q = \sqrt{\mathbf{q}^2}$

HYDRODYNAMICS

- infinite, all-order hydrodynamic expansion

$$T^{\mu\nu} = \sum_{n=0}^{\infty} \left[\sum_i^N \lambda_i^{(n)} \mathcal{T}_{(n)}^{\mu\nu} \right] \xrightarrow{\begin{array}{l} \nabla_{\mu} T^{\mu\nu} = 0 \\ u^{\mu} \sim T \sim e^{-i\omega t + iqz} \end{array}}$$

$$\omega(q) = \sum_{n=1}^{\infty} \alpha_n q^n$$

- non-analytic corrections due to statistical (quantum) corrections; long-time tails
- conformal symmetry constrains the series
- state of the art for relativistic neutral hydrodynamics

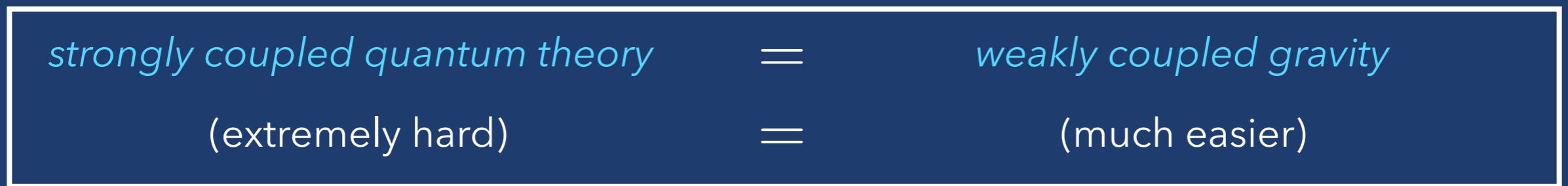
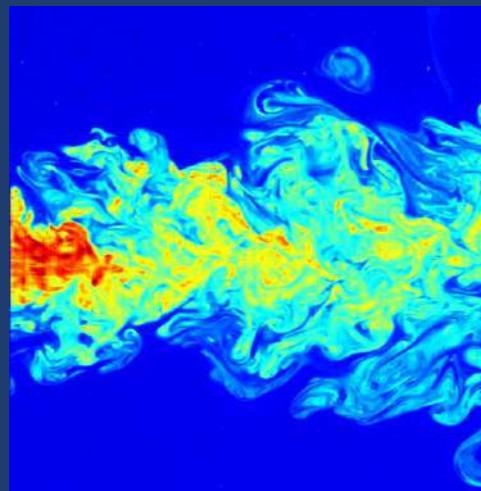
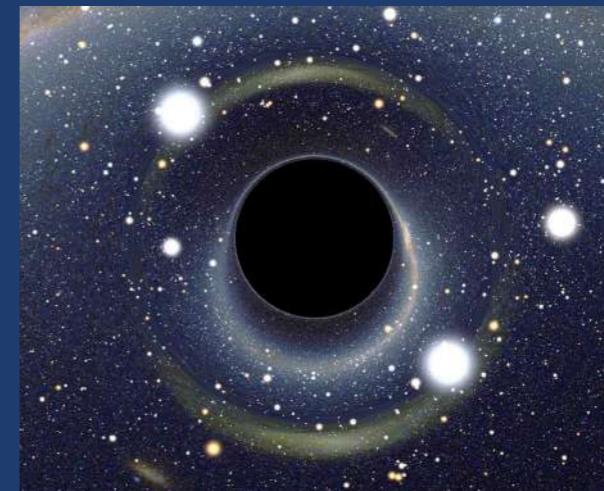
CFT:
Weyl covariance
 $T_{\mu}^{\mu} = 0$

	max N	max N in CFT	
first order	2	1	Navier-Stokes (1821)
second order	15	5	BRSSS (2007)
third order	68	20	Grozdanov, Kaplis, PRD (2016)

[also Diles, Mamani, Miranda, Zanchin, JHEP (2020)
and A. Jaiswal, PRC (2013) for kinetic theory]

HOLOGRAPHIC DUALITY

- duality: theory $A =$ theory B
- holographic or gauge/gravity duality is a result of string theory, which is a quantum theory of gravity [Maldacena (1997)]

 $=$ 

- weakly interacting gravity allows to analyse strongly coupled microscopic QFTs
- invaluable explicit (toy) models, e.g., the $\mathcal{N} = 4$ supersymmetric Yang-Mills theory

HOLOGRAPHIC HYDRODYNAMICS

- holography is an extremely useful tool for studying the structure of thermal spectra
- example: the spectrum (physical excitations) of a free (zero coupling) massive relativistic theory plotted for complex frequency $\omega \in \mathbb{C}$:

energy-momentum
(frequency-wavevector) relation

$$E^2 = (mc^2)^2 + p^2c^2$$

$$E = \hbar\omega$$

$$p = \hbar q$$

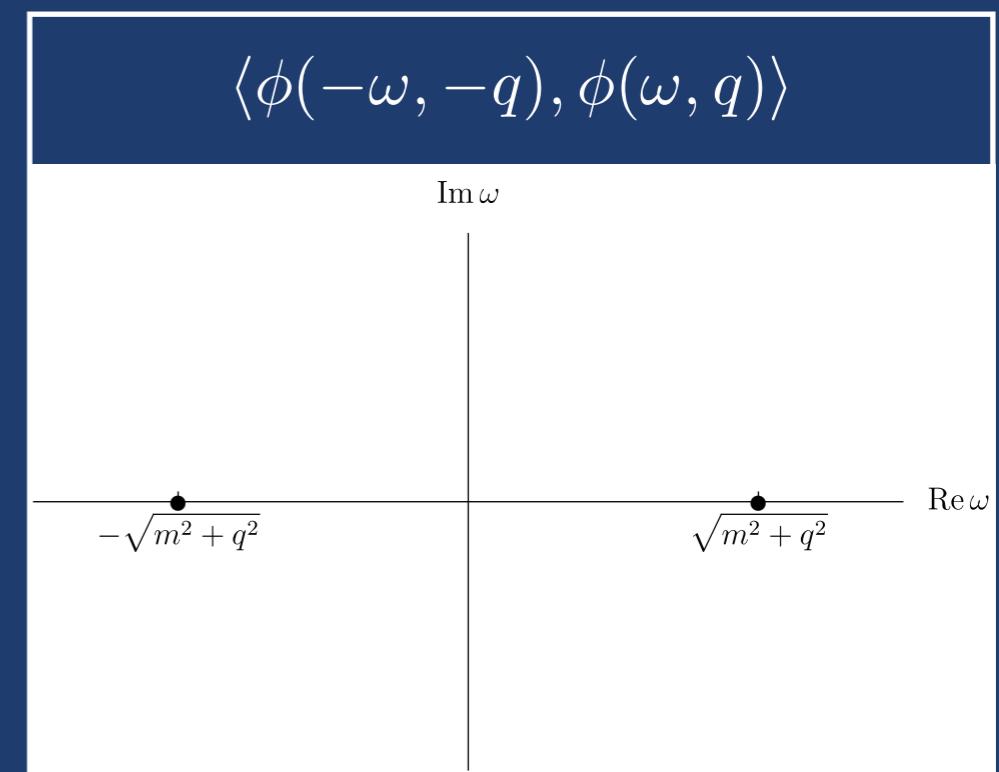
$$\downarrow c = \hbar = 1$$

$$\omega = \pm \sqrt{m^2 + q^2}$$

dispersion relation
no damping (no imaginary part)

4d QFT spectrum

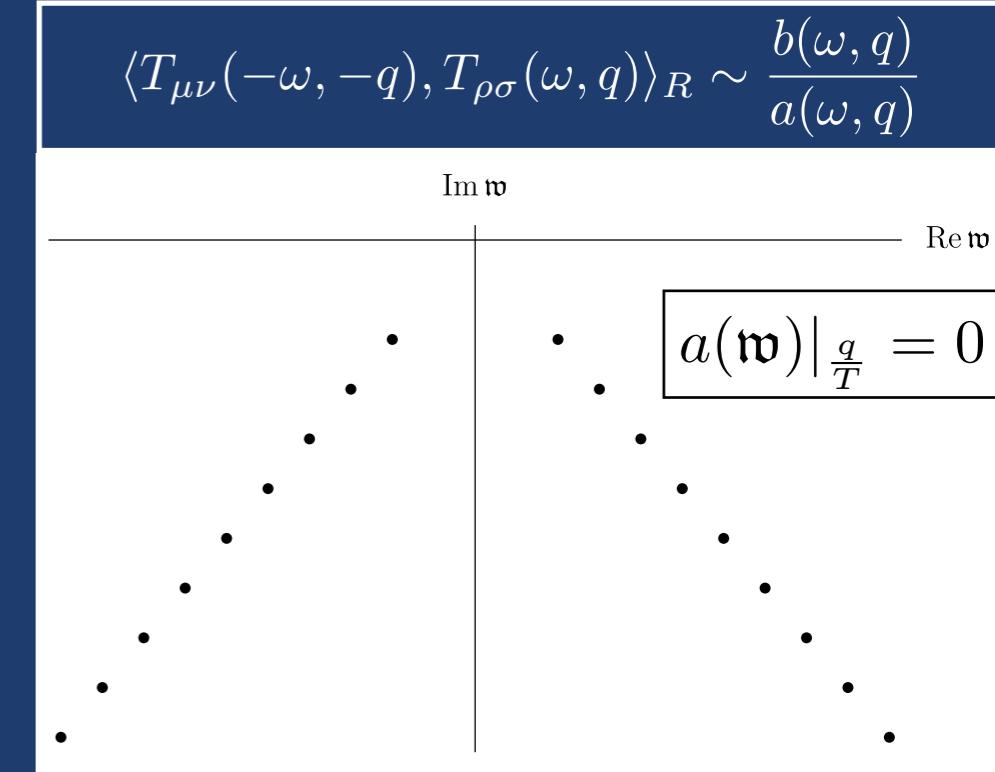
$$\langle \phi(-\omega, -q), \phi(\omega, q) \rangle$$



HOLOGRAPHIC HYDRODYNAMICS

- holography is an extremely useful tool for studying the structure of thermal spectra
- the spectrum of field theory correlators equals the quasinormal spectrum of frequencies of dual black branes, plotted for $\mathfrak{w} \equiv \frac{\omega}{2\pi T} \in \mathbb{C}$:
- analytically known dispersion relations in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory at infinite 't Hooft coupling and $N_c \rightarrow \infty$

[Grozdanov, Kovtun, Starinets, Tadić, JHEP (2019)]



- sound:
$$\omega = \pm \frac{1}{\sqrt{3}}q - \frac{i}{6\pi T}q^2 \pm \frac{3 - 2\ln 2}{24\sqrt{3}\pi^2 T^2}q^3 - \frac{i(\pi^2 - 24 + 24\ln 2 - 12\ln^2 2)}{864\pi^3 T^3}q^4 \pm \dots$$
- shear:
$$\omega = -\frac{i}{4\pi T}q^2 - \frac{i(1 - \ln 2)}{32\pi^3 T^3}q^4 - \frac{i(24\ln^2 2 - \pi^2)}{96(2\pi T)^5}q^6 - \frac{i[2\pi^2(\ln 32 - 1) - 21\zeta(3) - 24\ln 2(1 + \ln 2(\ln 32 - 3))]}{384(2\pi T)^7}q^8 + \dots$$

THE REST OF THE TALK:

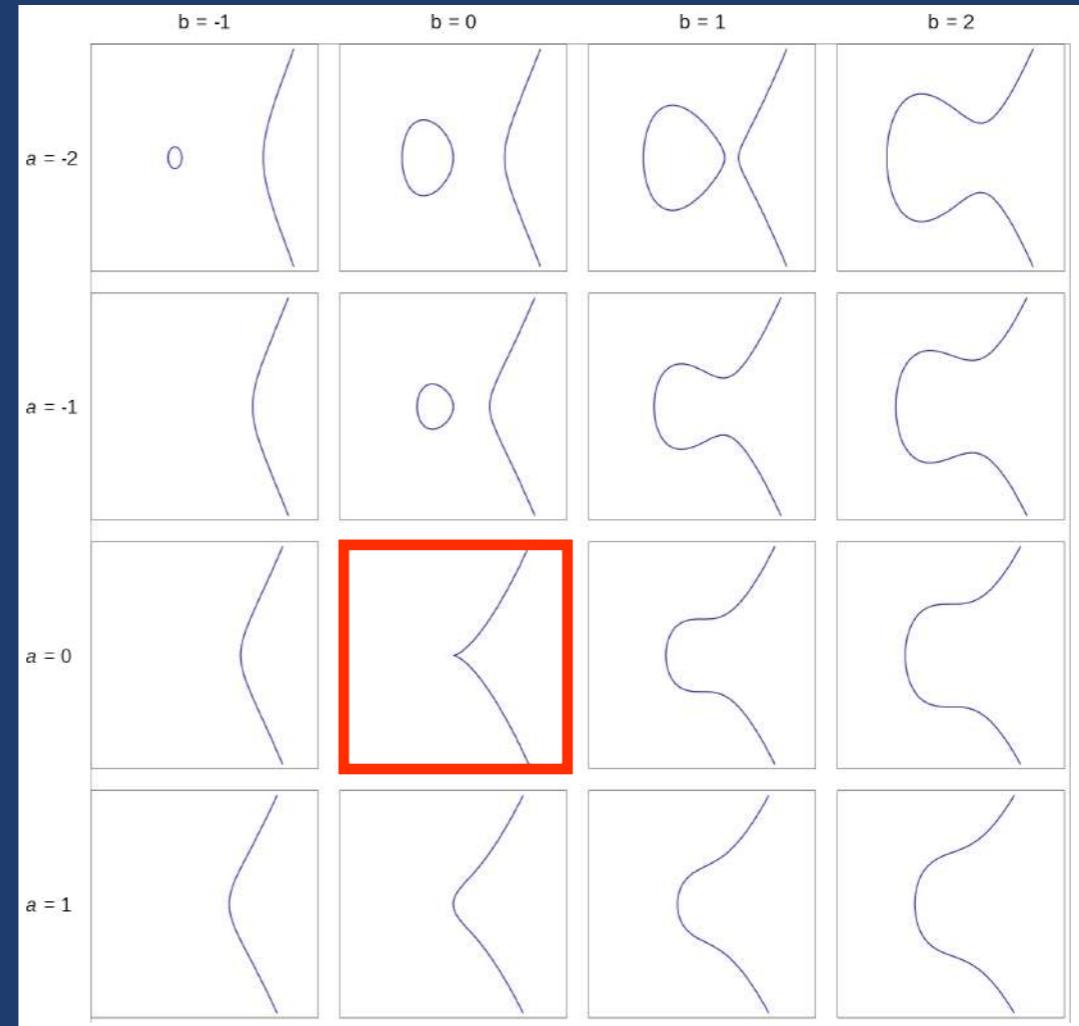
$$\omega(q) = \sum_{n=1}^{\infty} \alpha_n q^n$$

$$\omega, q \in \mathbb{C}$$

I. COMPLEX SPECTRAL CURVES AND CONVERGENCE

COMPLEX SPECTRAL CURVES

- algebraic curves are solutions to polynomial equations $P(x, y) = 0 \Rightarrow y(x)$
- e.g.: elliptic curves are non-singular solutions of $y^2 = x^3 + ax + b, x, y \in \mathbb{R}$



- we will be interested in **critical points**, such as cusps, self-intersections, ..., of complex spectral curves (with $P(x,y)$ not necessarily a polynomial)

$$P(x, y) = 0 \Rightarrow y(x), x, y \in \mathbb{C}$$

LOCAL ANALYSIS: PUISEUX SERIES

- **Taylor series** is a series in integer powers of the expansion parameter
- **Puiseux series** is a series in fractional powers of the expansion parameter
- consider a simple example of an algebraic curve for $x, y \in \mathbb{C}$

$$P(x, y) = x^2 + y^2 - 1 = 0$$

- we want to find series solutions for $y(x)$
- a **regular point** is defined by $P(x_r, y_r) = 0, \partial_y P(x_r, y_r) \neq 0$ at the regular point $(x_r, y_r) = (0, 1)$, the solution gives a Taylor series
$$y = y^{(T)}(x) = 1 - \frac{x^2}{2} - \frac{x^4}{8} + \dots$$
- a **critical point** (of order 2) is defined by $P(x_*, y_*) = 0, \partial_y P(x_*, y_*) = 0, \partial_y^2 P(x_*, y_*) \neq 0$ here, two such points, $(x_*, y_*) = (\pm 1, 0)$, each with two branches of Puiseux series, e.g.

at $(x_*, y_*) = (1, 0)$:

$$y = y_1^{(P)}(x) = i\sqrt{2}(x-1)^{\frac{1}{2}} + i2^{-\frac{3}{2}}(x-1)^{\frac{3}{2}} + \dots$$

$$y = y_2^{(P)}(x) = -i\sqrt{2}(x-1)^{\frac{1}{2}} - i2^{-\frac{3}{2}}(x-1)^{\frac{3}{2}} + \dots$$

- **radius of convergence** is distance to the nearest critical point: $R_x^{(T)} = 1, R_x^{(P)} = 2$

CONVERGENCE OF HYDRODYNAMICS

- hydrodynamic modes as complex spectral (or infinite-order algebraic) curves
[Grozdanov, Kovtun, Starinets, Tadić, PRL (2019) and JHEP (2019)]

$$\begin{array}{l} \text{hydro: } \det \mathcal{L}(\mathbf{q}^2, \omega) = 0 \\ \text{QNM: } a(\mathbf{q}^2, \omega) = 0 \end{array} \longrightarrow \boxed{P(\mathbf{q}^2, \omega) = 0} \implies \boxed{\omega_i(\mathbf{q}^2)} \quad \mathfrak{w} = \frac{\omega}{2\pi T}, \mathfrak{q} = \frac{|\mathbf{q}|}{2\pi T} \in \mathbb{C}$$

- e.g., first-order hydrodynamics: $P_1(\mathbf{q}^2, \omega) = (\omega + iD\mathbf{q}^2)^2 (\omega^2 + i\Gamma\omega\mathbf{q}^2 - v_s^2\mathbf{q}^2) = 0$
- analytic implicit function theorem (a regular point)

$$\boxed{P(\mathbf{q}_*^2, \omega_*) = 0, \partial_\omega P(\mathbf{q}_*^2, \omega_*) \neq 0}$$

- Puiseux theorem: there exists a convergent series around a critical point $(\mathbf{q}_*^2, \omega_*)$

$$\boxed{P(\mathbf{q}_*^2, \omega_*) = 0, \partial_\omega P(\mathbf{q}_*^2, \omega_*) = 0, \dots, \partial_\omega^p P(\mathbf{q}_*^2, \omega_*) \neq 0}$$

$$\begin{cases} p_{\text{shear}} = 1 \\ p_{\text{sound}} = 2 \end{cases}$$

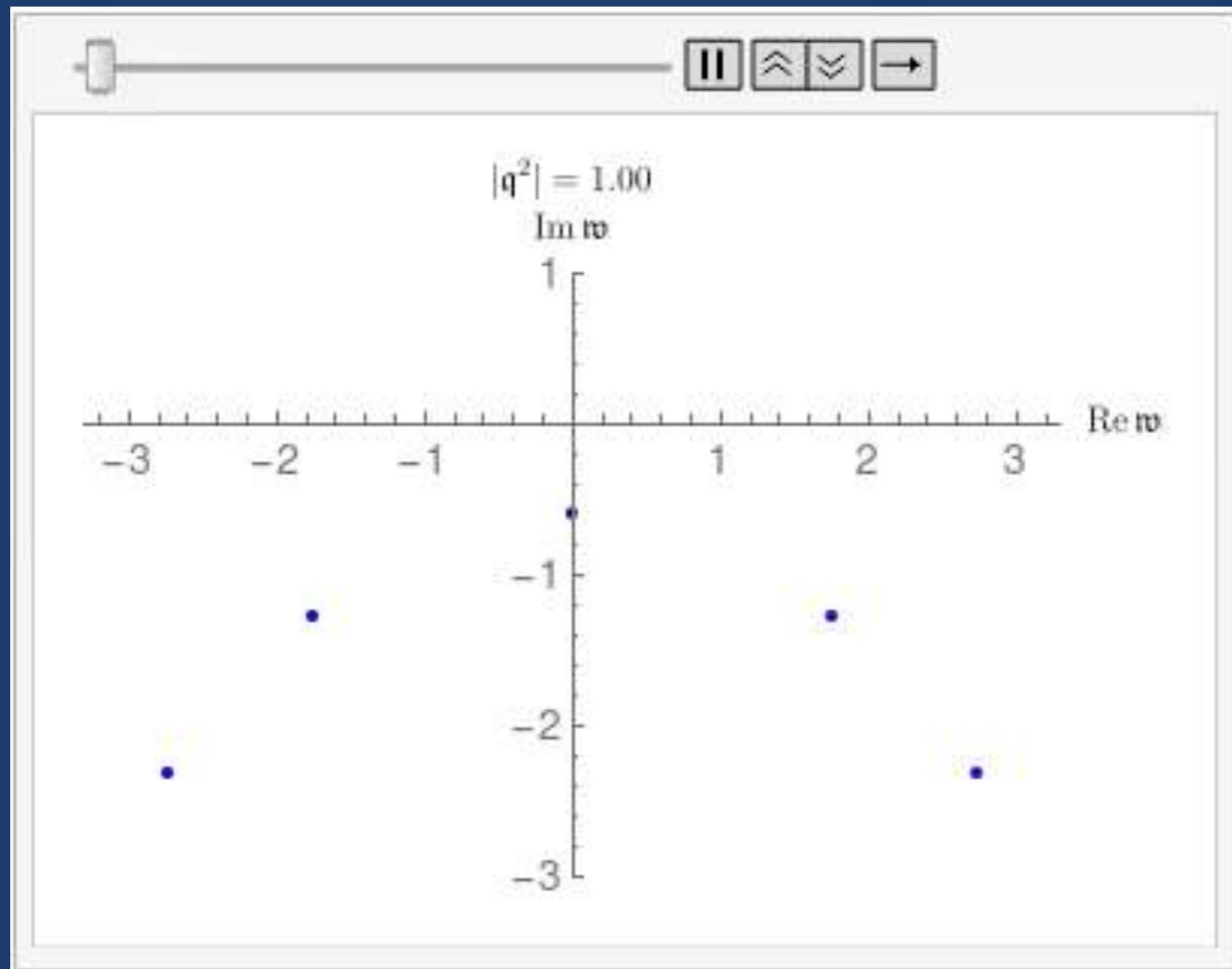
- hydrodynamic series are Puiseux series around $(\mathbf{q}^2, \omega)_{\text{shear}}^{(\text{regular})} = (\mathbf{q}_*^2, \omega_*)_{\text{sound}}^{(\text{critical})} = (0, 0)$

$$\boxed{\mathfrak{w}_{\text{shear}} = -i \sum_{n=1}^{\infty} c_n (\mathfrak{q}^2)^n = -i \mathfrak{D} \mathfrak{q}^2 + \dots}$$

$$\boxed{\mathfrak{w}_{\text{sound}} = -i \sum_{n=1}^{\infty} a_n e^{\pm \frac{i\pi n}{2}} (\mathfrak{q}^2)^{n/2} = \pm v_s \mathfrak{q} - \frac{i}{2} \mathfrak{G} \mathfrak{q}^2 + \dots}$$

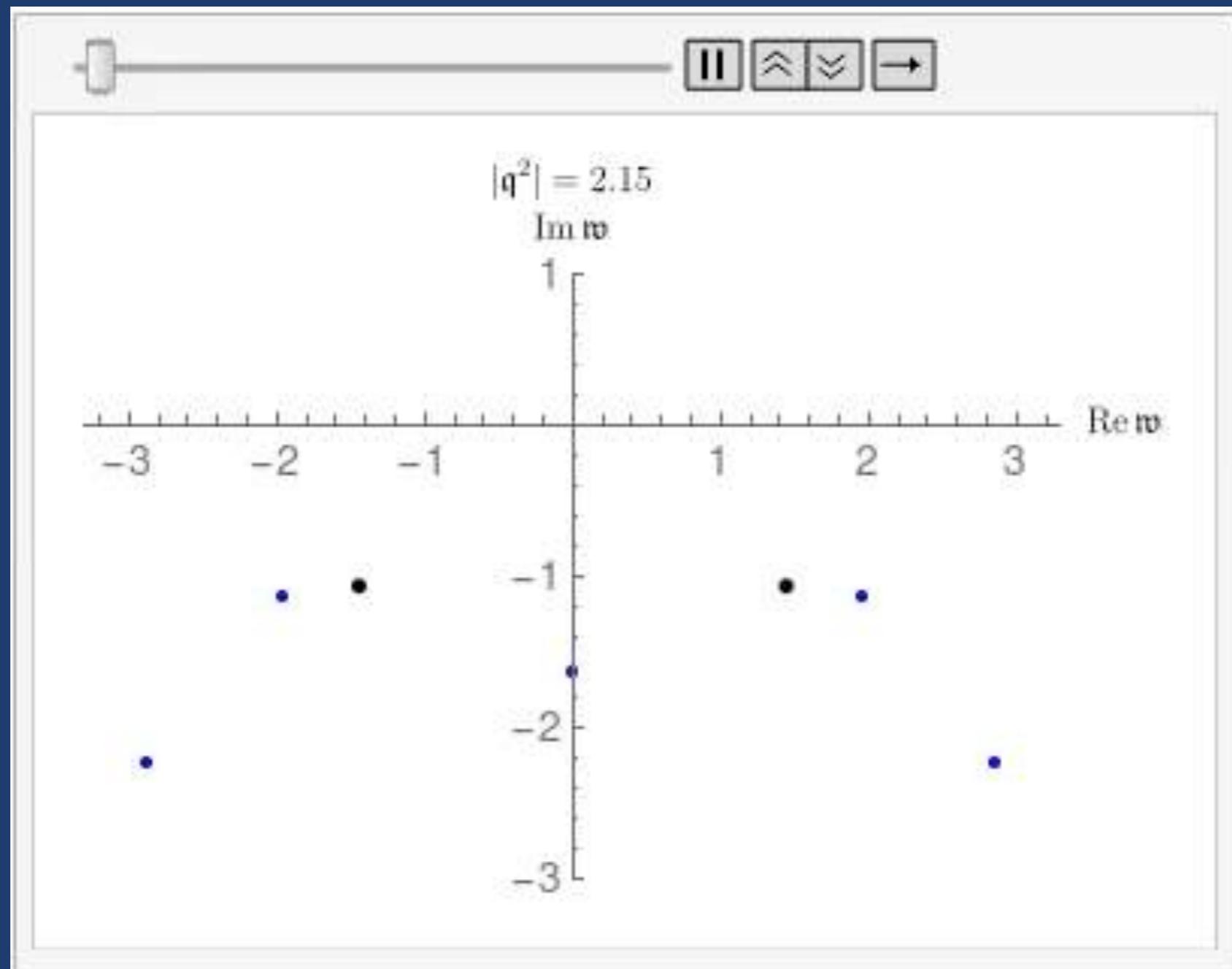
CONVERGENCE OF HYDRODYNAMICS

- complexify $q^2 = |q^2| e^{i\theta}$, fix the absolute value and vary the argument in the QNM spectrum of the shear (diffusive) channel in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory



CONVERGENCE OF HYDRODYNAMICS

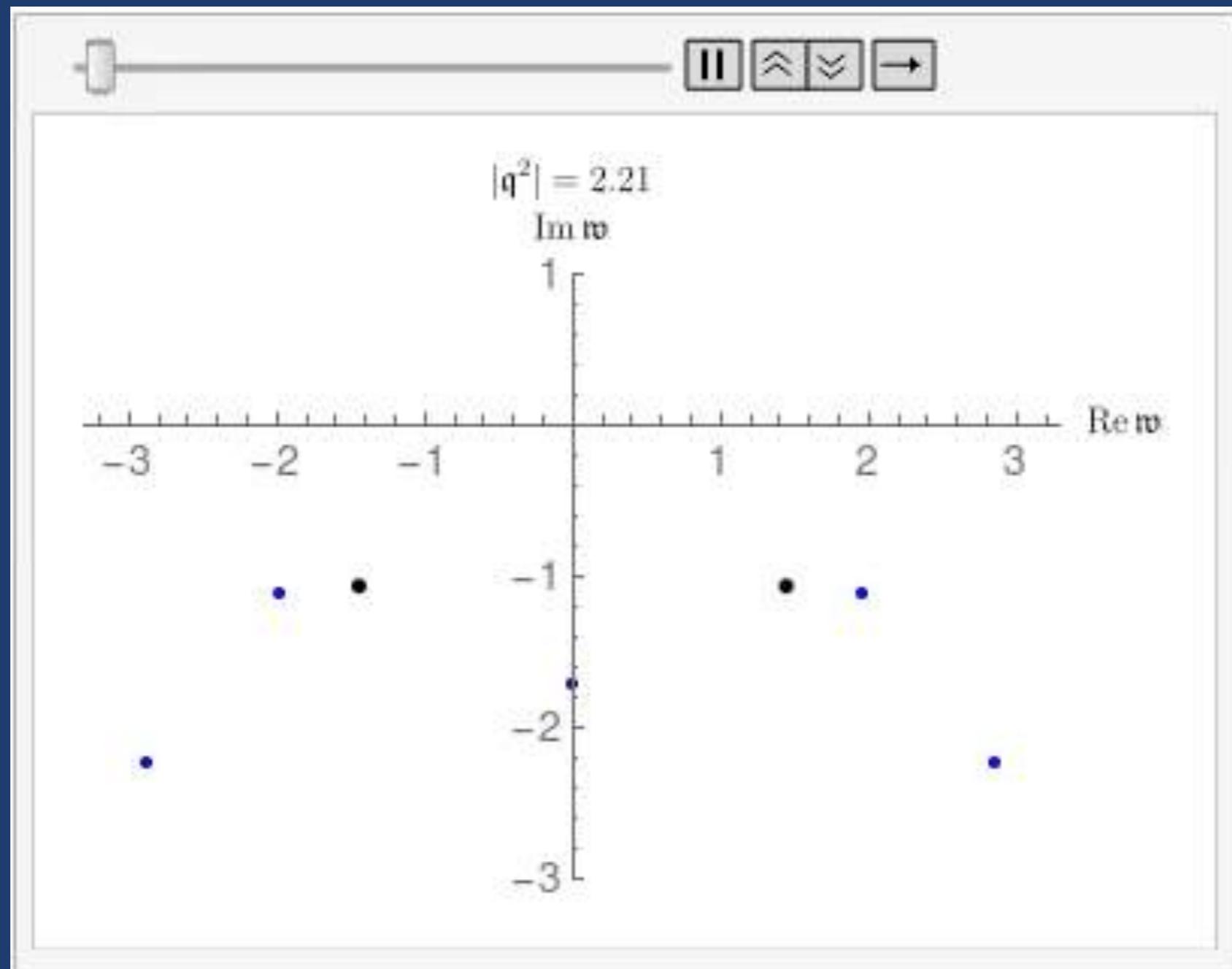
- complexify $q^2 = |q^2| e^{i\theta}$, fix the absolute value and vary the argument in the QNM spectrum of the shear (diffusive) channel in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory



[animation by
P. Tadić]

CONVERGENCE OF HYDRODYNAMICS

- complexify $q^2 = |q^2| e^{i\theta}$, fix the absolute value and vary the argument in the QNM spectrum of the shear (diffusive) channel in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory



CONVERGENCE OF HYDRODYNAMICS

- complexify $q^2 = |q^2| e^{i\theta}$, fix the absolute value and vary the argument in the QNM spectrum of the shear (diffusive) channel in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory

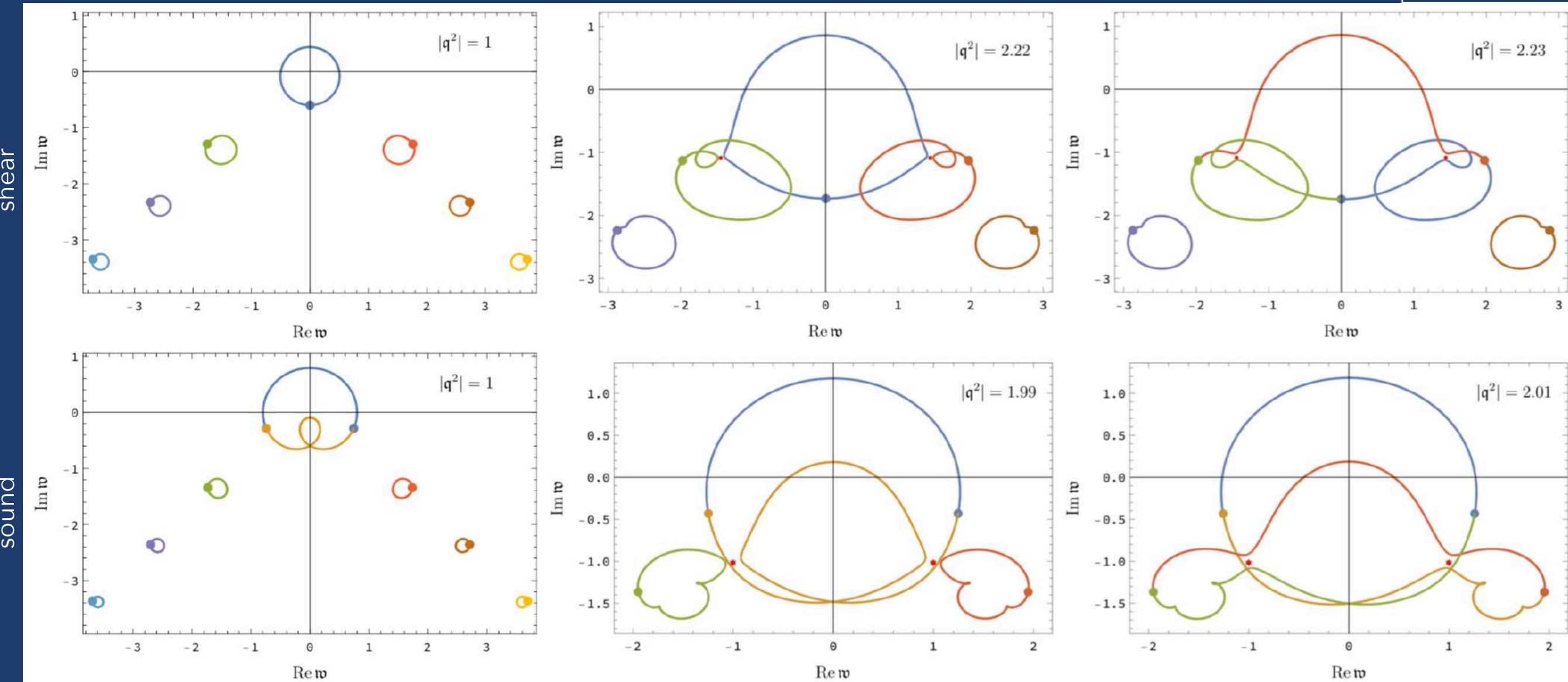


[animation by
P. Tadić]

CONVERGENCE OF HYDRODYNAMICS

- radius of convergence of $\mathfrak{w}(\mathfrak{q}) = \sum_{i=1}^{\infty} c_n \mathfrak{q}^n$, i.e. $|\mathfrak{q}| < \mathfrak{q}_*$, is set by the lowest momentum at which the hydro pole collides (level-crossing): $\mathfrak{q}_* = \min [|\mathfrak{q}_{\text{collision}}|]$

$$\mathfrak{q}^2 = |\mathfrak{q}^2| e^{i\theta}$$



shear:

$$\mathfrak{q}_* \approx 1.49131$$

$$\mathfrak{w}(\mathfrak{q}_*) \approx \pm 1.4436414 - 1.0692250i$$

$$\mathcal{N} = 4$$

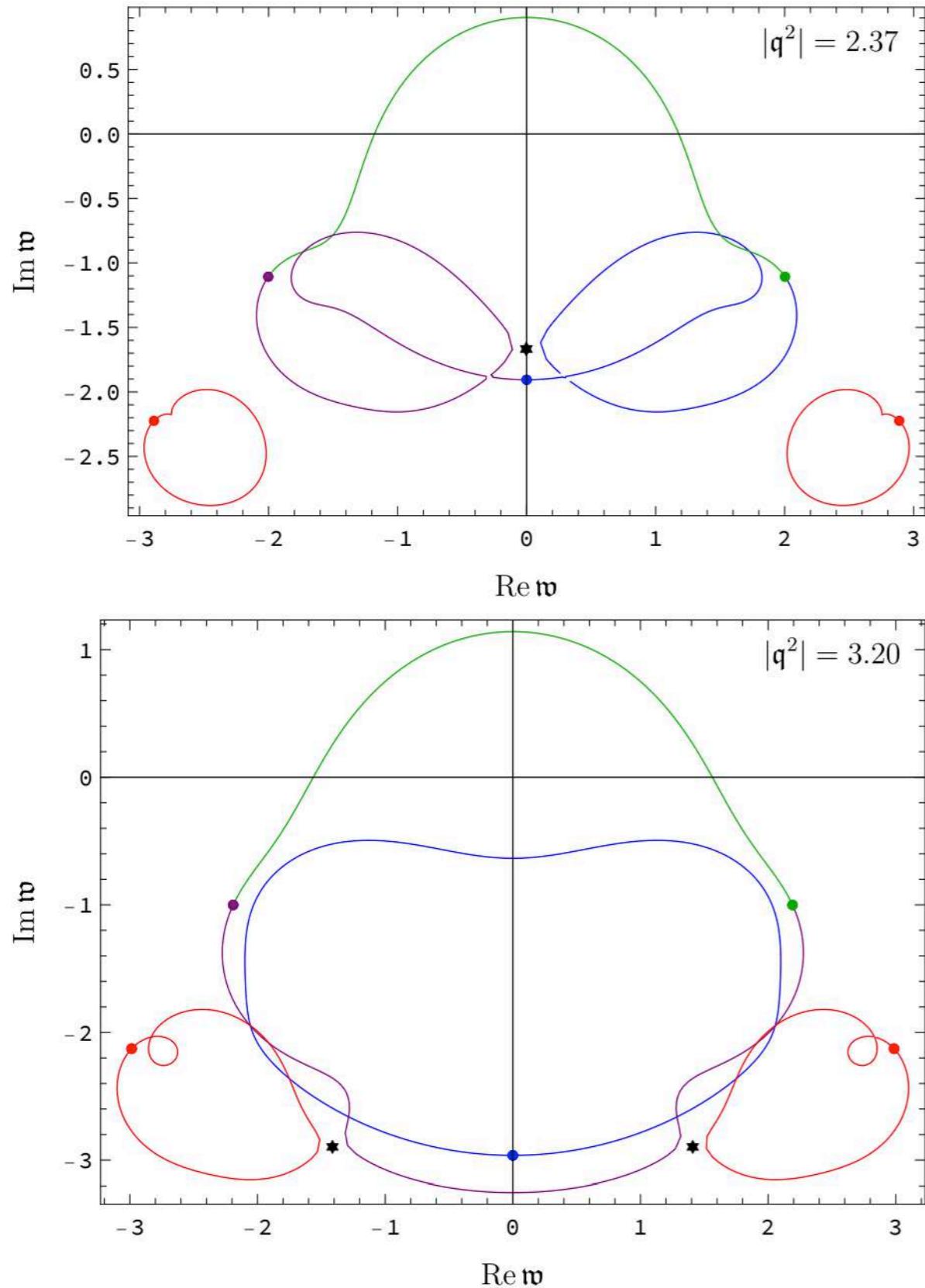
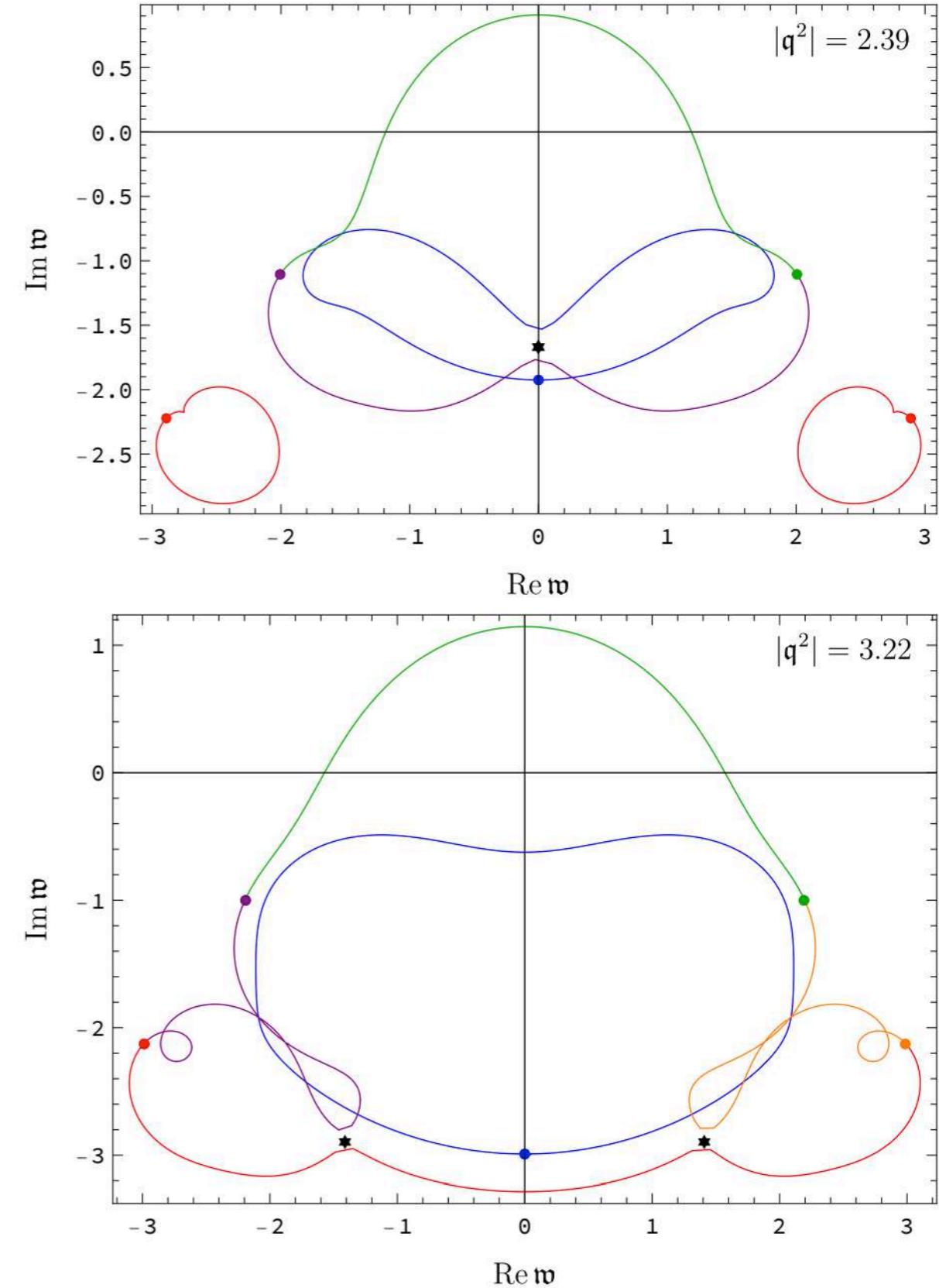
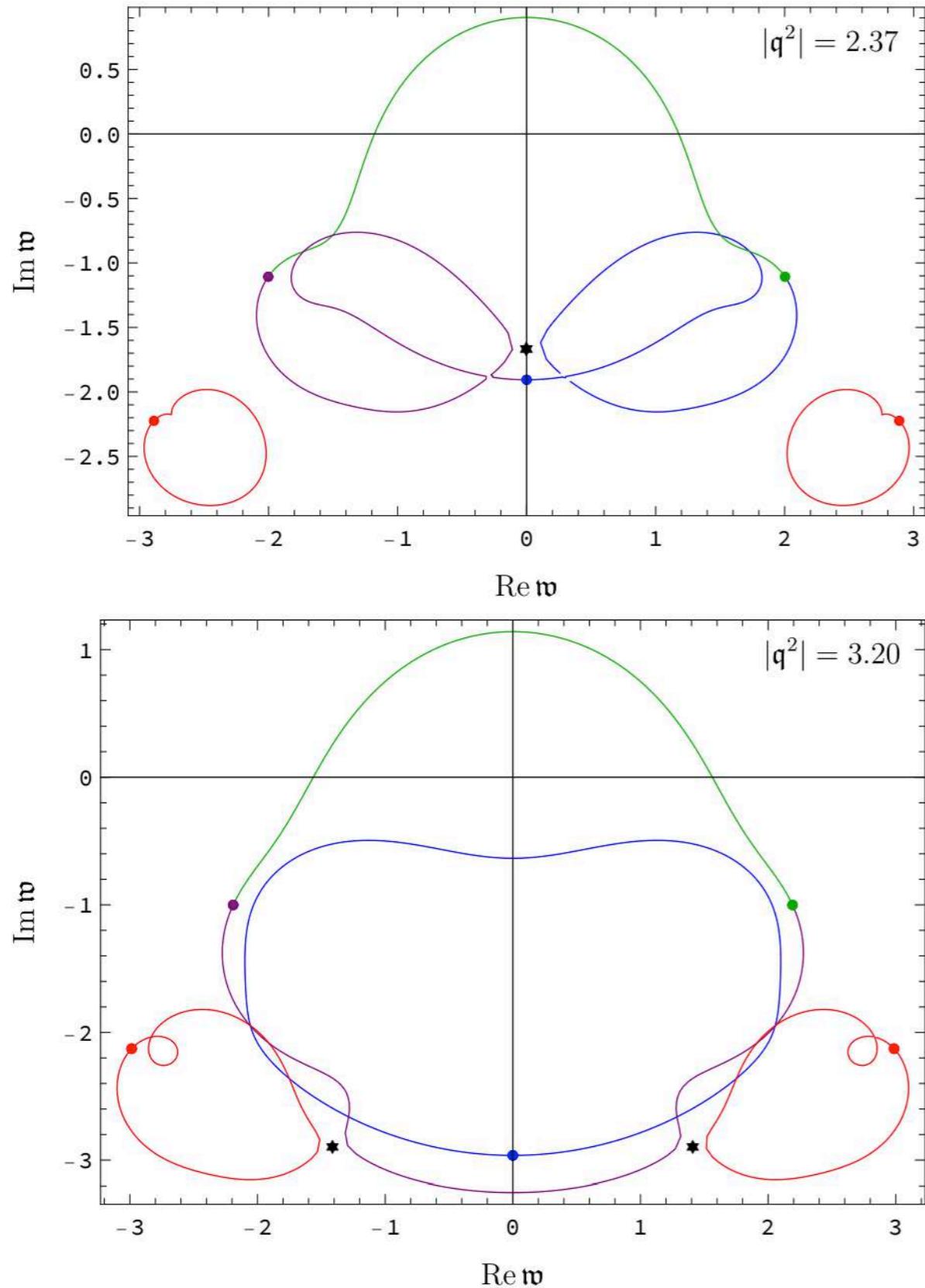
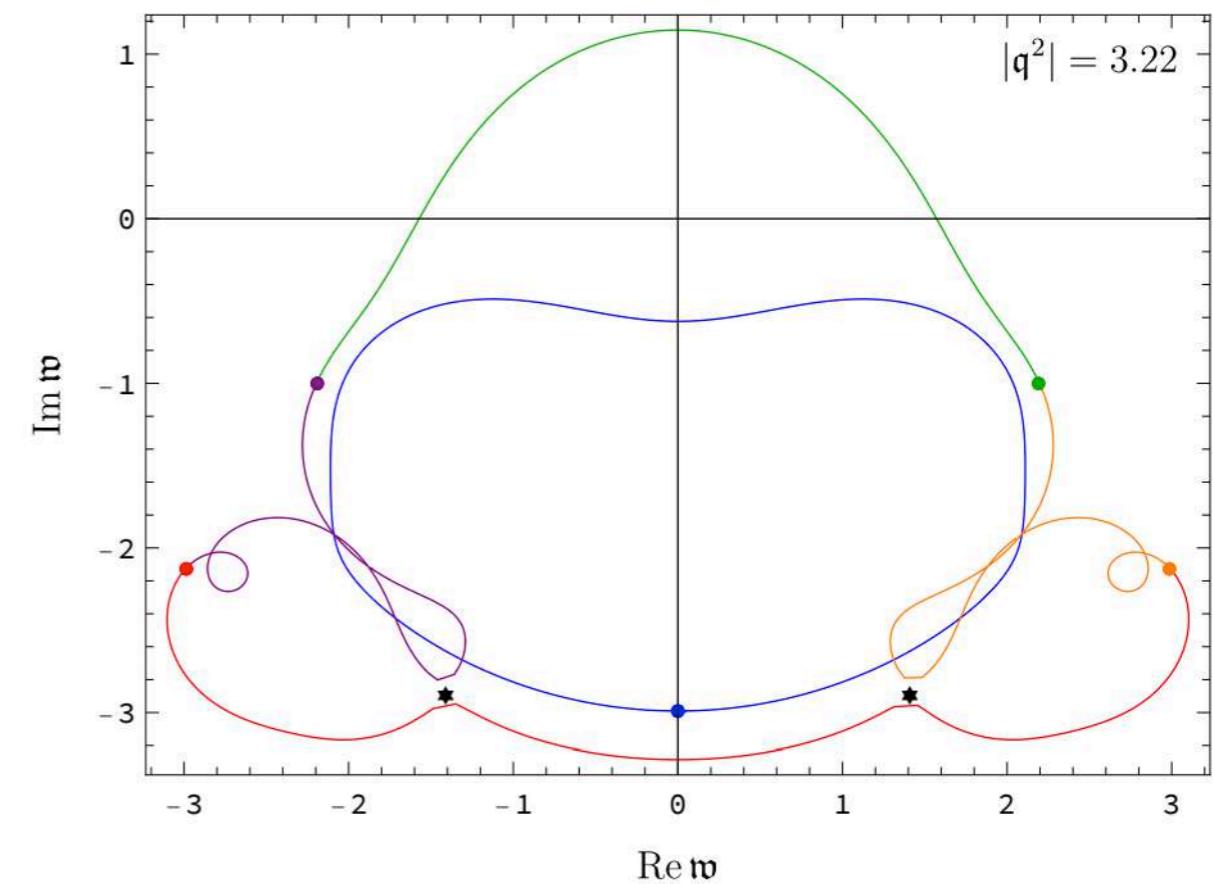
$$\text{SYM}$$

sound:

$$\mathfrak{q}_* = \sqrt{2} \approx 1.41421$$

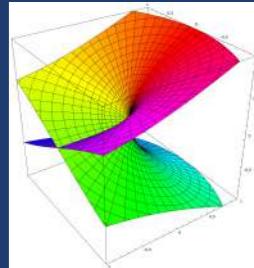
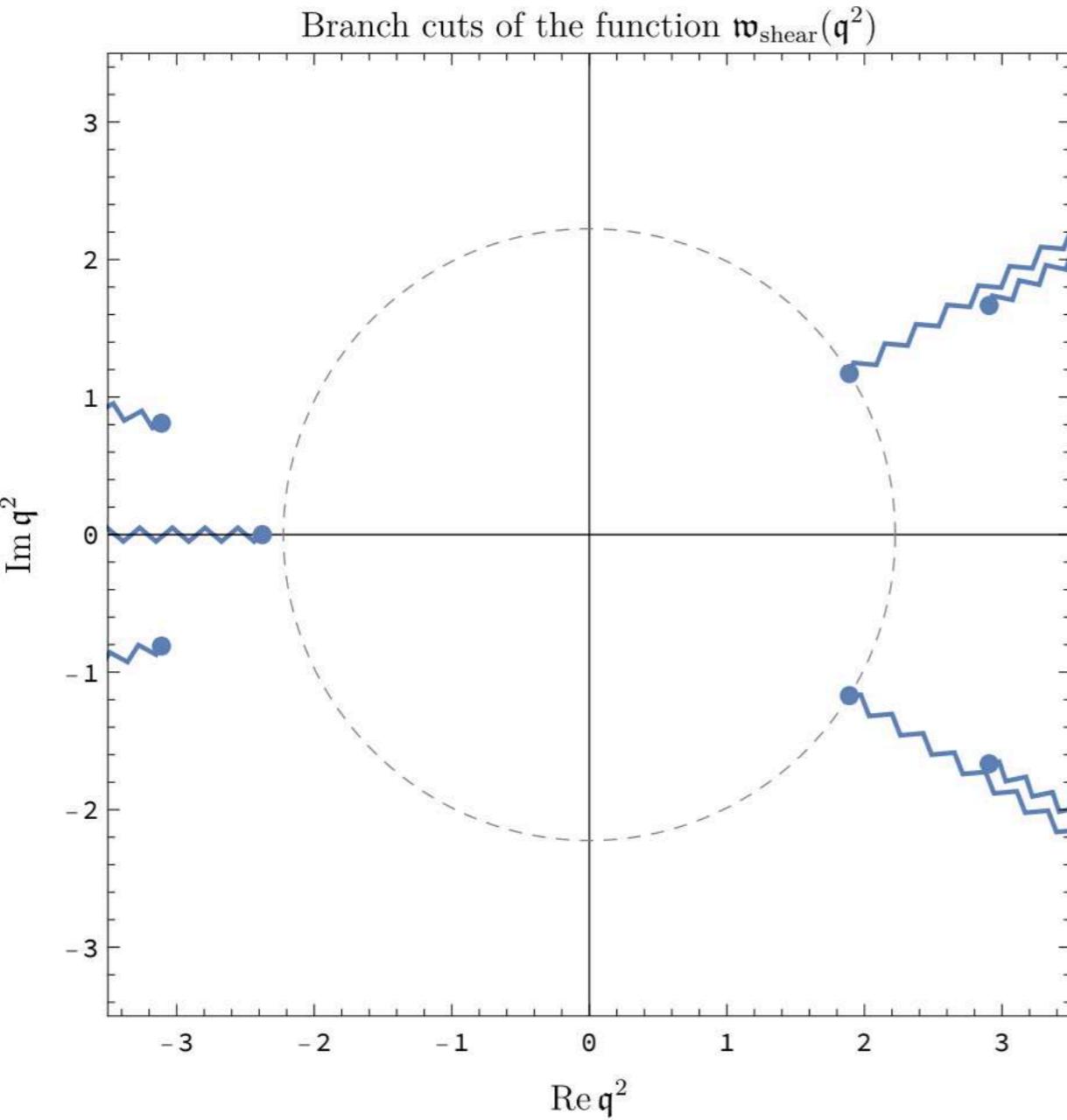
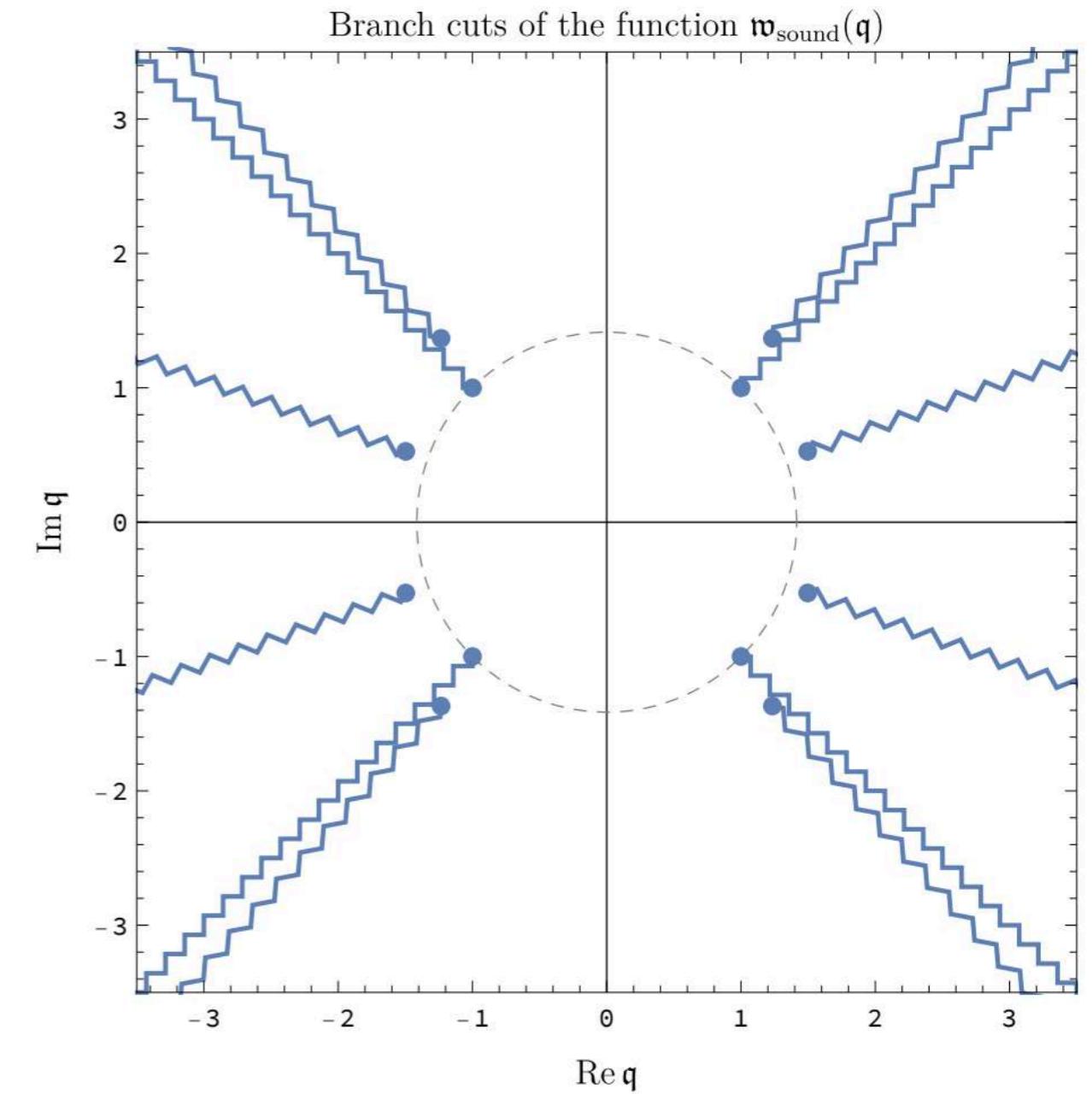
$$\mathfrak{w}(\mathfrak{q}_*) = \pm 1 - i$$

HIGHER CRITICAL POINTS (E.G. SHEAR/DIFFUSIVE CHANNEL)

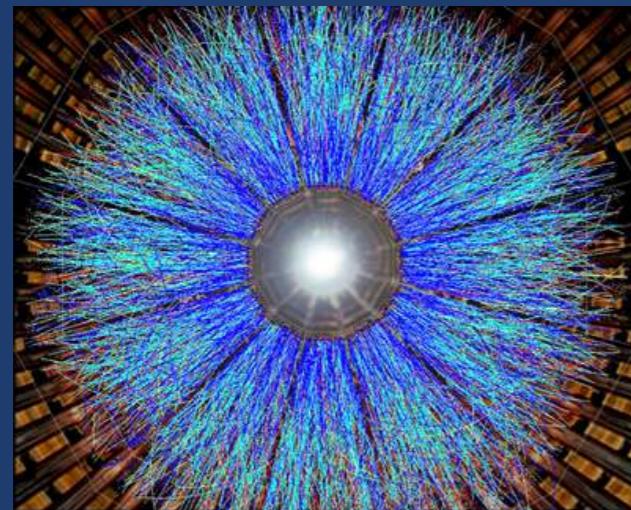


ANALYTIC STURCTURE

- analytic structure of dispersion relations in complexified momentum space
- dispersion relations are complicated, multi-sheeted Riemann surfaces
“connecting various modes in the spectrum into one entity”



UNREASONABLE EFFECTIVENESS



“unreasonable”: hydro works for large derivatives

$$\omega(q) = \sum_{n=1}^{\infty} \alpha_n q^n$$

radius of convergence in
 $N=4$ SYM at
infinite coupling

$$q/T \sim O(10)$$

microscopic input from holography

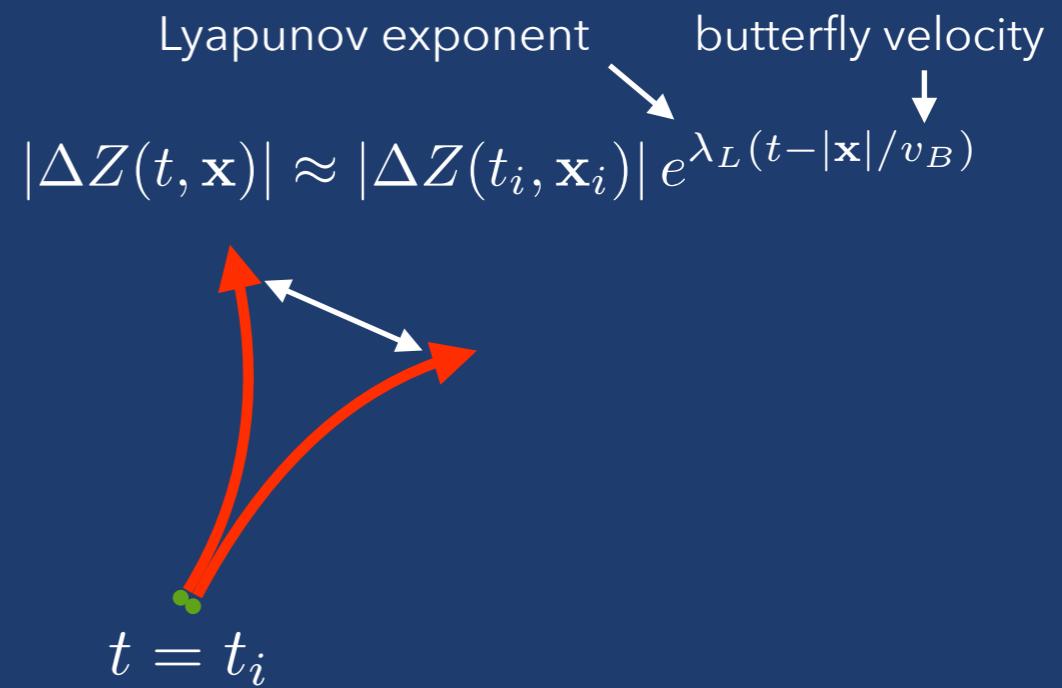
orders of magnitude larger radius of convergence than naive $q/T \ll 1$ – if this is true in general, it may explain the **“unreasonable effectiveness of hydrodynamics”**

hydrodynamics is neither convergent nor asymptotic; it depends on the observable!

II. QUANTUM CHAOS AND *POLE-SKIPPING*

CHAOS

- classical chaos means extreme sensitivity to initial conditions
- exponential **Lyapunov** divergence of trajectories and **the butterfly effect**
- in quantum systems, molecules collide chaotically
- “out-of-time-ordered” correlation functions [Larkin, Ovchinnikov; Kitaev]



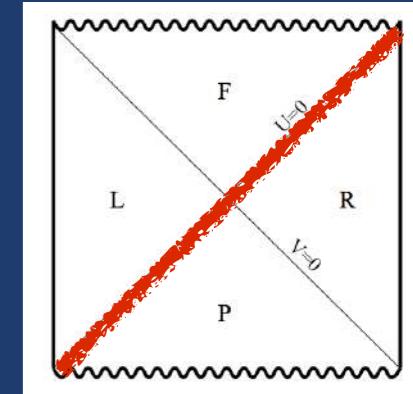
$$C(t, \mathbf{x}) = \langle [W(t, \mathbf{x}), V(0, \mathbf{0})]^\dagger [W(t, \mathbf{x}), V(0, \mathbf{0})] \rangle_T \sim \epsilon e^{\lambda_L(t - |\mathbf{x}|/v_B)}$$

scrambling time $t_* = \frac{1}{\lambda_L} \ln N$ ← typically, $\epsilon = 1/N_c^2 \ll 1$ Lyapunov exponent butterfly velocity

- its “build-up” describes the **quantum butterfly effect**
- standard lore: “*microscopic quantum information is smeared out at large distances*”

QUANTUM CHAOS

- **Exponential Lyapunov Chaos** – Lyapunov exponent and butterfly velocity in holographic theories can be computed from holography
- Lyapunov exponent saturates the Maldacena-Shenker-Stanford bound



OTOC of
 $\mathcal{O}(t, x)$

$$C(t, x) \sim \epsilon e^{\lambda_L(t-x/v_B)}$$

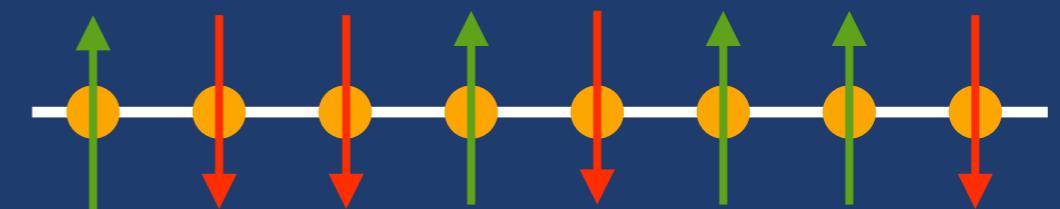
$$\lambda_L \leq 2\pi T$$

- in lattice spin systems, quantum chaos is not exponential (Lyapunov), but spreads polynomially with a bounded rate of maximal power-law growth –

Weak Quantum Chaos [Kukuljan, Grozdanov, Prosen, PRB (2017)]

OTOC of
 $\int d^d x \mathcal{O}(t, x)$

$$c(t) \leq At^{3d}$$



- all these theories exhibit macroscopic collective transport: hydrodynamics
- what is the precise connection between hydrodynamics and chaos [Hartnoll; Blake]?

$$D \sim v_B^2 / \lambda_L \geq "?"$$

POLE-SKIPPING

- the phenomenon of pole-skipping makes precise the analytic connection between hydrodynamics and exponential chaos – true in “all” holographic theories [Grozdanov, Schalm, Scopelliti, PRL (2017); Blake, Lee, Liu, JHEP (2018); Blake, Davison, Grozdanov, Liu, JHEP (2018); Grozdanov, JHEP (2019)]
- resumed all-order hydrodynamic series (e.g. the sound channel)

$$\omega(q) = \sum_{n=1}^{\infty} \alpha_n q^n$$

passes through a special “chaos point” at **imaginary momentum**

$$\mathcal{P}_c : \quad \omega(q = iq_0) = i\lambda_L, \quad \lambda_L = 2\pi T, \quad q_0 = \lambda_L/v_B$$

defined through the fact that the associated two point function has both a pole and a zero at this point (e.g. in the sound channel, this is the energy density correlator)

$$G_{T^{00}T^{00}}^R(\omega, q) = \frac{b(\omega, q)}{a(\omega, q)}, \quad \lim_{(\omega, q) \rightarrow \mathcal{P}_c} a(\omega, q) = \lim_{(\omega, q) \rightarrow \mathcal{P}_c} b(\omega, q) = 0$$

POLE-SKIPPING

- simple example: the Sachdev-Ye-Kitaev chain [Gu, Qi, Stanford (2017)]

$$G_{T^{00}T^{00}}^R(\omega, q) = C \frac{i\omega \left(\frac{\omega^2}{\lambda_L^2} + 1 \right)}{-i\omega + D_E q^2}$$

pole (diffusion): $\omega = -iD_E q^2$ zero: $\omega = \pm i\lambda_L$

$$|q_0| = \frac{\lambda_L}{v_B} = \frac{\lambda_L}{\sqrt{\lambda_L D_E}}$$

- in $\mathcal{N} = 4$ SYM theory at infinite N_c :

$$q_0 = \sqrt{6}\pi T$$

$$v_B = \lambda_L/q_0 = \sqrt{2/3}$$

point of chaos is inside the
radius of convergence of

$$\omega(q) = \sum_{n=1}^{\infty} \alpha_n q^n$$

- the reason for pole-skipping in holography is a special, new property of Einstein's equations at the horizon
[Blake, Davison, Grozdanov, Liu, JHEP (2018)]

POLE-SKIPPING

- in $\mathcal{N} = 4$ SYM theory at infinite N_c and infinite coupling

$$\begin{aligned} \text{diffusion : } \omega_c &= \omega(q_c = q_0) = -i\lambda_L \\ \text{sound : } \omega_c &= \omega(q_c = iq_0) = i\lambda_L \end{aligned}$$

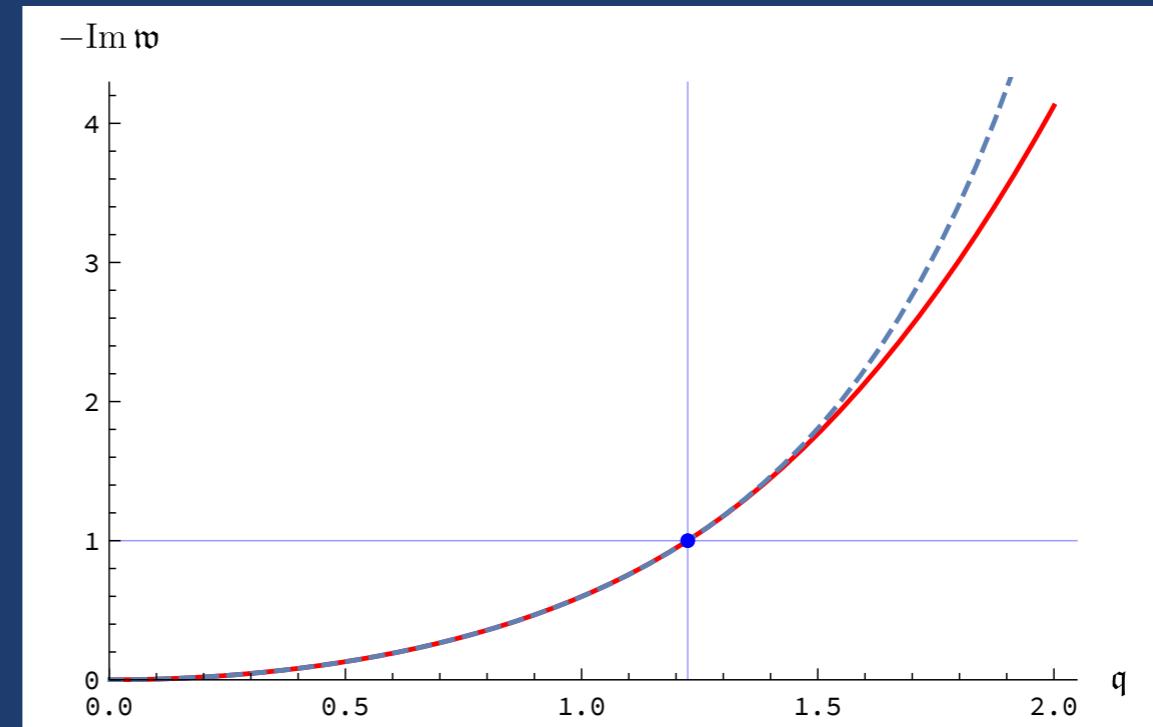
[Grozdanov, Kovtun, Starinets,
Tadić, JHEP (2019)]

$$q_0 \in \mathbb{R}$$

$$\begin{aligned} \text{Lyapunov exponent : } \lambda_L &= |\omega_c| = 2\pi T \\ \text{butterfly velocity : } v_B &= |\omega_c/q_c| \end{aligned}$$

shear (diffusion):

$$\langle T_{xz}(-\omega, -q_z), T_{xz}(\omega, q_z) \rangle$$



$$\begin{aligned} \omega = -\frac{i}{4\pi T}q^2 - \frac{i(1 - \ln 2)}{32\pi^3 T^3}q^4 - \frac{i(24 \ln^2 2 - \pi^2)}{96 (2\pi T)^5}q^6 \\ - \frac{i [2\pi^2(\ln 32 - 1) - 21\zeta(3) - 24 \ln 2(1 + \ln 2(\ln 32 - 3))]}{384 (2\pi T)^7}q^8 + \dots \end{aligned}$$

POLE-SKIPPING

- in $\mathcal{N} = 4$ SYM theory at infinite N_c and infinite coupling

diffusion : $\omega_c = \omega(q_c = q_0) = -i\lambda_L$
 sound : $\omega_c = \omega(q_c = iq_0) = i\lambda_L$

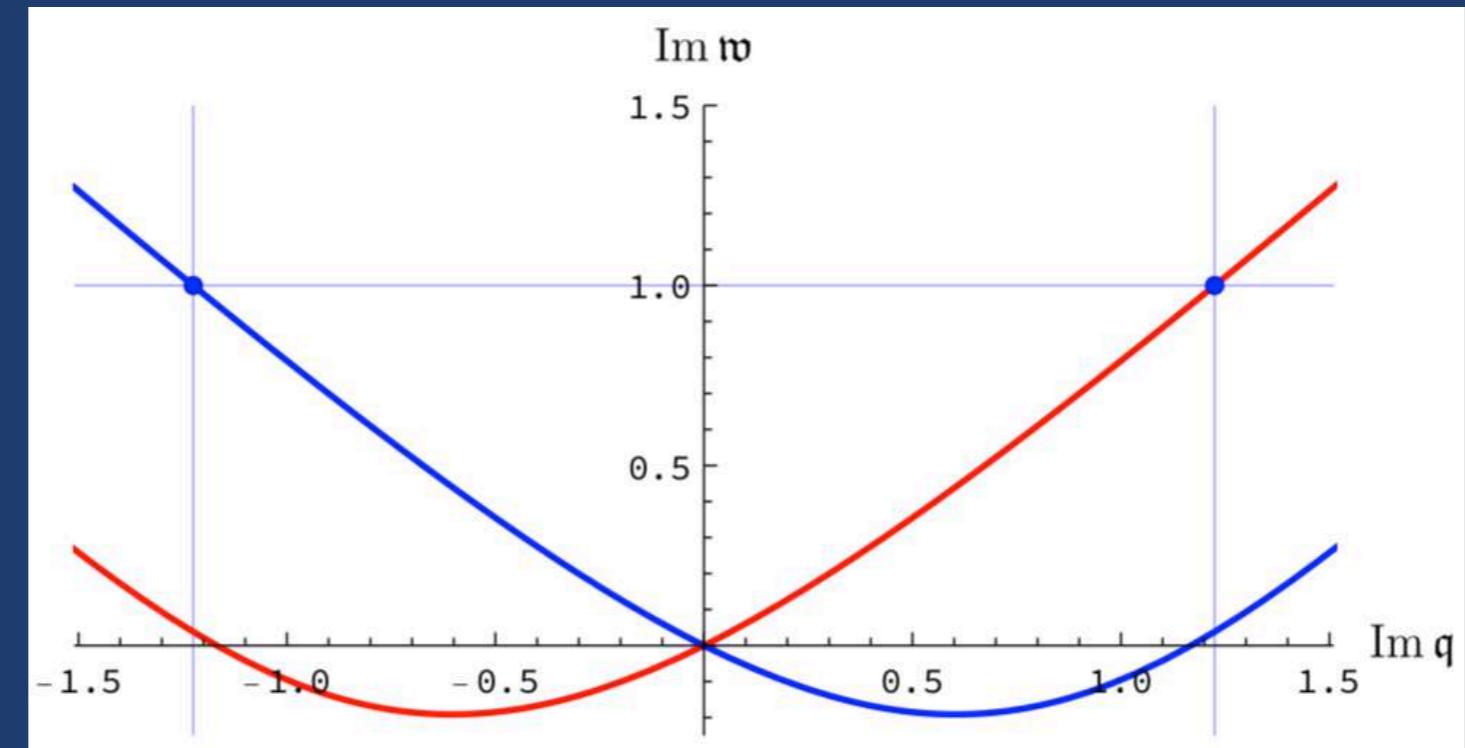
[Grozdanov, Kovtun, Starinets,
 Tadić, JHEP (2019)]

$$q_0 \in \mathbb{R}$$

Lyapunov exponent : $\lambda_L = |\omega_c| = 2\pi T$
 butterfly velocity : $v_B = |\omega_c/q_c|$

sound:

$$\langle T_{tt}(-\omega, -q_z), T_{tt}(\omega, q_z) \rangle$$



$$\omega = \pm \frac{1}{\sqrt{3}}q - \frac{i}{6\pi T}q^2 \pm \frac{3 - 2\ln 2}{24\sqrt{3}\pi^2 T^2}q^3 - \frac{i(\pi^2 - 24 + 24\ln 2 - 12\ln^2 2)}{864\pi^3 T^3}q^4 \pm \dots$$

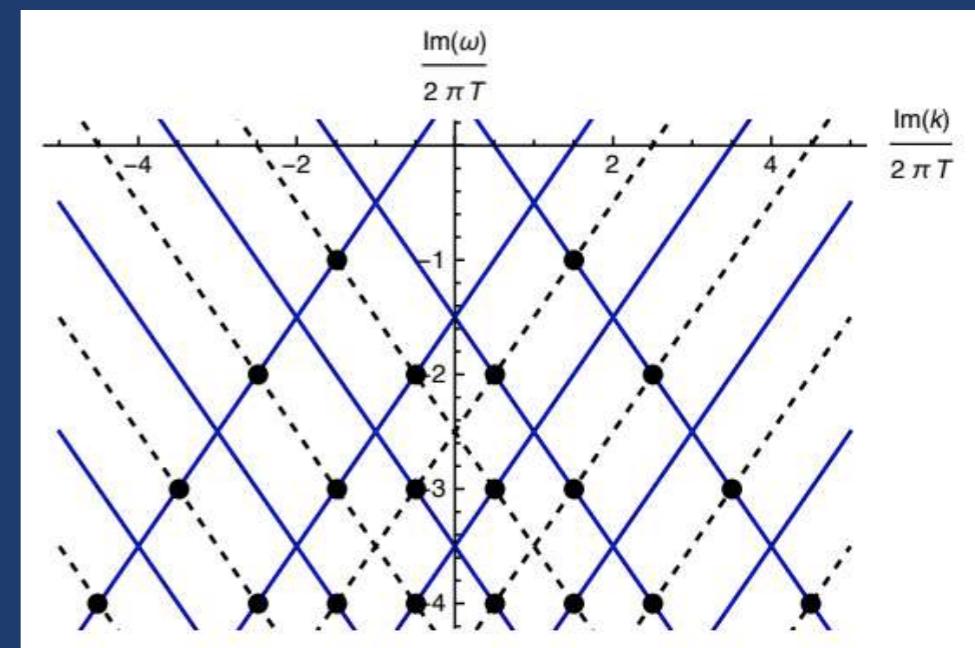
POLE-SKIPPING

- leading coupling corrections preserve pole-skipping [Grozdanov, JHEP (2019)]
- in general, multiple Lyapunov exponents, ... ?
- at weak coupling (kinetic theory), existence of pole-skipping is unknown [Grozdanov, Schalm, Scopelliti, PRE (2018)]
- (holographic) CFTs exhibit an infinite tower of pole-skipping points (various operators) [Grozdanov, Kovtun, Starinets, Tadić, JHEP (2019); Blake, Davison, Vegh, JHEP (2019); ...]
- frequencies are multiples of Matsubara frequencies
- pole-skipping imposes infinite constraints on the structures of field theory correlators
- example: 2d CFT dual to a 3d black hole

in $\mathcal{N} = 4$ SYM:

$$\lambda_L = 2\pi T$$

$$v_B = \sqrt{\frac{2}{3}} \left(1 + \frac{23\zeta(3)}{16} \frac{1}{\lambda^{3/2}} + \dots \right)$$



[plot from Blake, Davison, Vegh, JHEP (2019)]

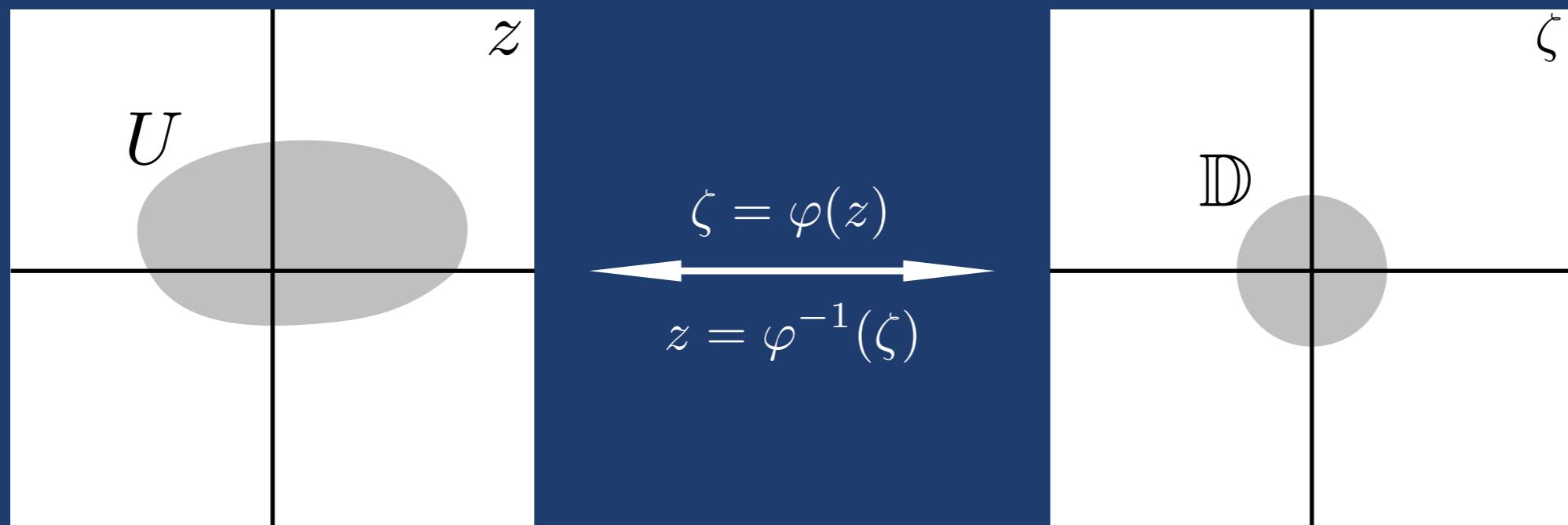
III. BOUNDS FROM UNIVALENCE

[Grozdanov, arXiv:2008.00888]

$$\lambda_L \leq 2\pi T \quad (?) \implies (?) \quad \frac{\eta}{s} \geq \mathcal{C}_? \frac{1}{4\pi}, \quad \mathcal{C}_? \frac{v_B^2}{\lambda_L} \leq D \leq \mathcal{C}_? v^2 \tau_{eq}, \quad v_s \leq \mathcal{C}_? \sqrt{\frac{1}{d-1}}$$

UNIVALENT FUNCTIONS

- univalent function $f(z)$, $z \in \mathbb{C}$ is a complex, holomorphic and injective function
- injectivity: $f(z_1) \neq f(z_2)$ for all $z_1 \neq z_2$
- assume that $f(z)$ has a finite (open) region of univalence U
- the Riemann mapping theorem:



- function is now univalent on the open unit disk: $\mathbb{D} = \{\zeta \mid |\zeta| < 1\}$

$$f(\zeta) = \zeta + \sum_{n=2}^{\infty} b_n \zeta^n$$

UNIVALENT FUNCTIONS

recall:

$$f(\zeta) = \zeta + \sum_{n=2}^{\infty} b_n \zeta^n$$

- holomorphic functions are “stiff”, univalent function even more so...

- the growth theorem:

$$\frac{|\zeta|}{(1 + |\zeta|)^2} \leq |f(\zeta)| \leq \frac{|\zeta|}{(1 - |\zeta|)^2}$$

- the famous Bieberbach conjecture (1916), now de Branges's theorem (1985):

$$|b_n| \leq n, \quad \text{for all } n \geq 2$$

- when is $f(z)$ univalent and what is U ?

- local univalence:

$$f'(z) \neq 0$$

- global univalence is tricky

$$\operatorname{Re} f'(z) > 0 \text{ in any convex } z \in U \subset \mathbb{C}$$

- if $\operatorname{Re} f'(\zeta) > 0$, $\zeta \in \mathbb{D}$, then

$$\begin{aligned} -|\zeta| + 2 \ln(1 + |\zeta|) &\leq |f(\zeta)| \leq -|\zeta| - 2 \ln(1 - |\zeta|) \\ |b_n| &\leq 2/n, \quad \text{for all } n \geq 2 \end{aligned}$$

$f(z)$ is univalent if

$$|\{f(z), z\}| \leq \frac{2}{(1 - |z|^2)^2}, \quad |z| < 1$$

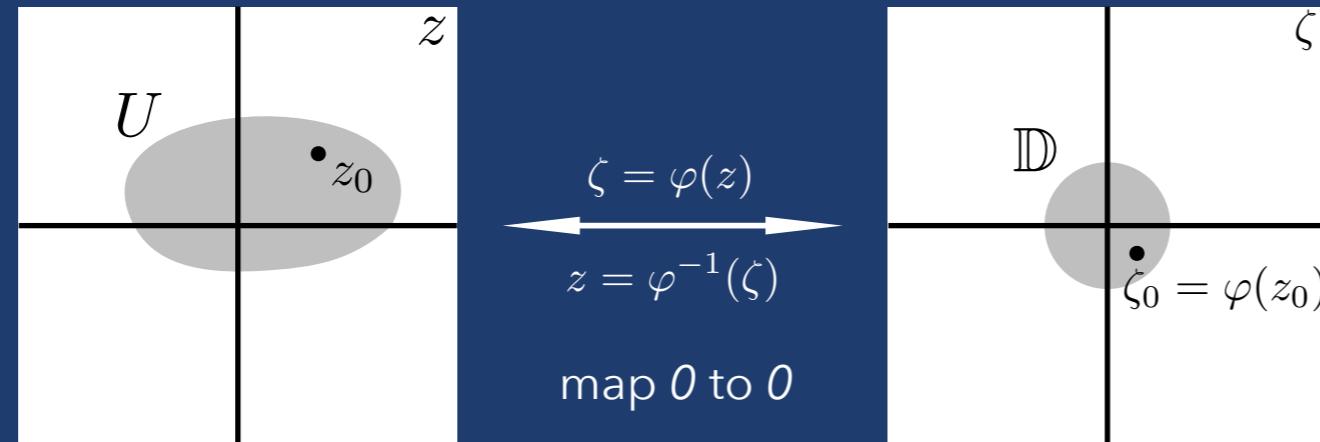
if $f(z)$ is univalent, then

$$|\{f(z), z\}| \leq \frac{6}{(1 - |z|^2)^2}, \quad |z| < 1$$

DIFFUSIVE DISPERSION RELATION

- diffusive Puiseux (Taylor) series $\omega_{\text{diff}}(z \equiv \mathbf{q}^2) = -i \sum_{n=1}^{\infty} c_n z^n, \quad c_1 = D$
- assume we know some $U \Rightarrow \varphi(z)$, and one value $\omega_0 \equiv \omega_{\text{diff}}(z_0), \quad z_0 \in U$

- define: $f_{\text{diff}}(z) = i\omega_{\text{diff}}(z) \longleftrightarrow f_{\text{diff}}(\zeta) \equiv \frac{i\omega_{\text{diff}}(\varphi^{-1}(\zeta))}{D\partial_{\zeta}\varphi^{-1}(0)} = \zeta + \sum_{n=2}^{\infty} b_n^{\text{diff}} \zeta^n$



- exact bounds immediately follow:

$$\frac{|\omega_0| (1 - |\zeta_0|)^2}{|\zeta_0| |\partial_{\zeta}\varphi^{-1}(0)|} \leq D \leq \frac{|\omega_0| (1 + |\zeta_0|)^2}{|\zeta_0| |\partial_{\zeta}\varphi^{-1}(0)|}$$

$$|b_n| \leq n \Rightarrow \left| c_2 + \frac{D}{2} \frac{\partial_{\zeta}^2 \varphi^{-1}(0)}{[\partial_{\zeta}\varphi^{-1}(0)]^2} \right| \leq \frac{2D}{|\partial_{\zeta}\varphi^{-1}(0)|}, \dots$$

- stronger bounds (logs, ...) exist if $\text{Re } f'(\zeta) > 0, \quad |\zeta| < 1$

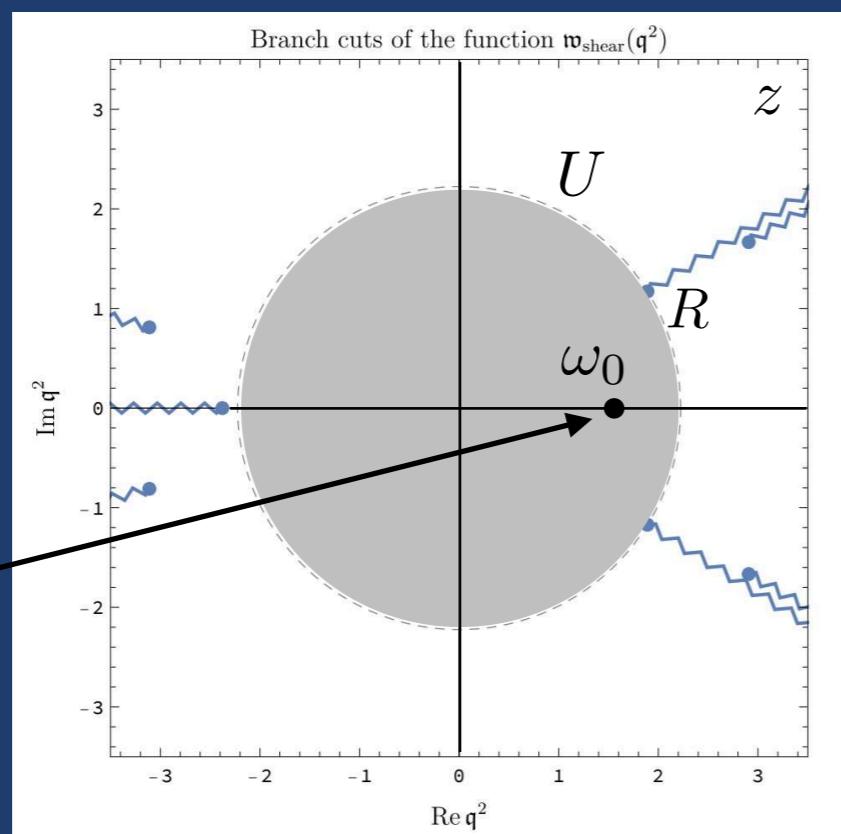
DIFFUSIVE DISPERSION RELATION

- are diffusive dispersion relations really univalent?
- function is holomorphic and invertible at $z = 0$ (Puiseux), hence locally univalent;
a **finite** $U = \{z \mid |z| < \min[|z_g|, R]\}$ with group velocity $v_g = \partial\omega/\partial q$ and

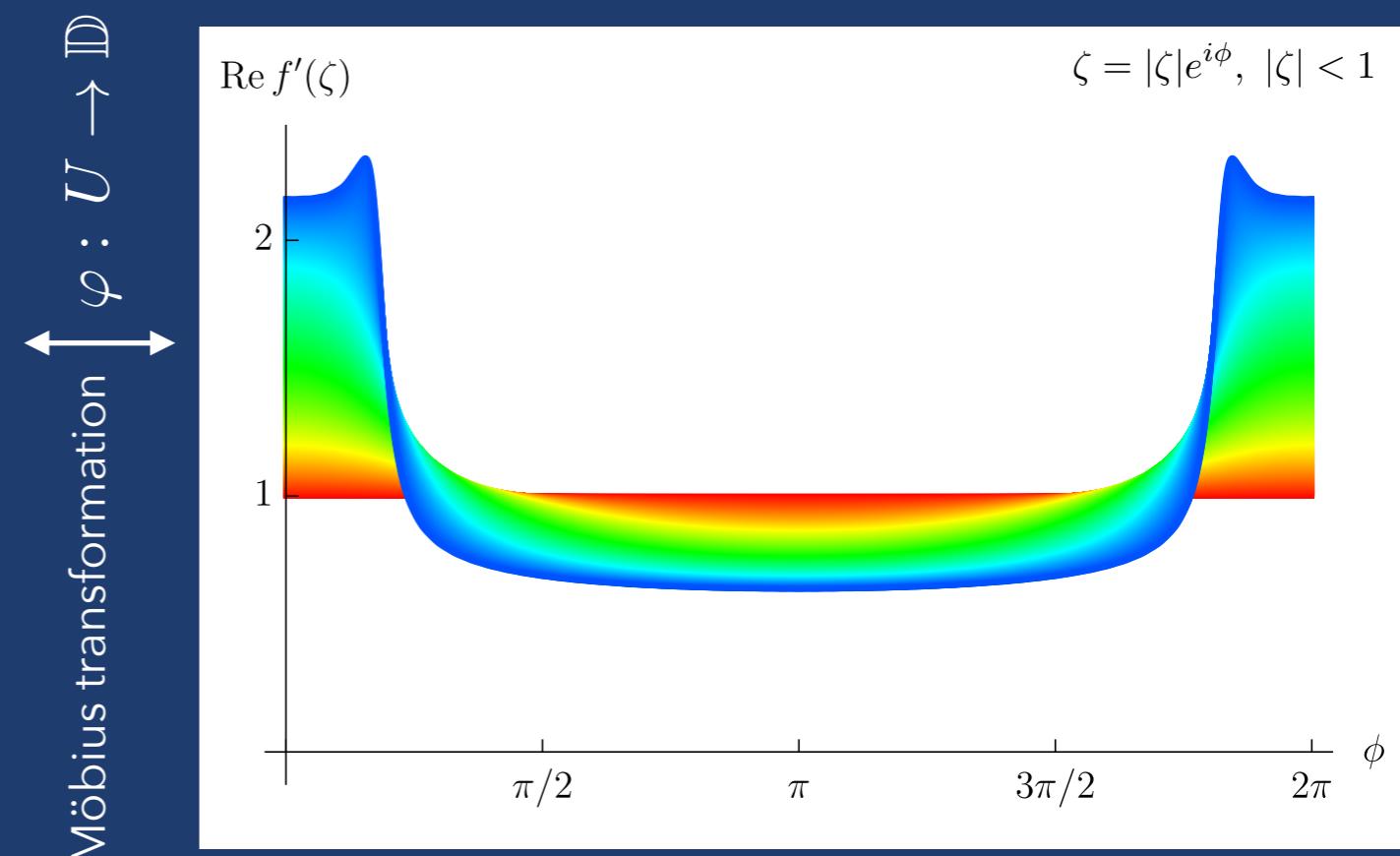
$$\operatorname{Re} f'(\zeta) > 0 \implies z_g = q_g^2 \equiv \min q^2 \mid \operatorname{Re} v_g \operatorname{Im} q = \operatorname{Im} v_g \operatorname{Re} q$$

- example: $\mathcal{N} = 4$ SYM theory

$$0.046/T \leq D = 1/4\pi T \approx 0.080/T \leq 0.201/T$$



pole-skipping



SIMPLEST BOUND ON DIFFUSION

- assume a dispersion relation that is univalent everywhere except at a single branch cut
- example: self-dual axion model [Andrade, Withers (2013); Davison, Gouteraux (2014)]

energy diffusion: $\omega(z = \mathbf{q}^2) = -i\pi T \left(1 - \sqrt{1 - \frac{z}{\pi^2 T^2}} \right)$

- optimal bounds (similar to Blake's proposal $D \gtrsim v_B^2/\lambda_L$):

energy diff: $z_0 = -\frac{\lambda_L^2}{v_B^2} < 0 : \frac{v_B^2}{\lambda_L} \leq D \leq \frac{v_B^2}{\lambda_L} + \frac{\lambda_L}{R}$

momentum diff: $0 < z_0 = \frac{\lambda_L^2}{v_B^2} < R : \frac{v_B^2}{\lambda_L} - \frac{\lambda_L}{R} \leq D \leq \frac{v_B^2}{\lambda_L}$

higher orders: $0 \leq c_2 \leq \frac{D}{R}, \dots$

- infinite radius of convergence:

$$\omega_{\text{diff}}(\mathbf{q}^2) = -iD\mathbf{q}^2 = -i\frac{v_B^2}{\lambda_L}\mathbf{q}^2$$

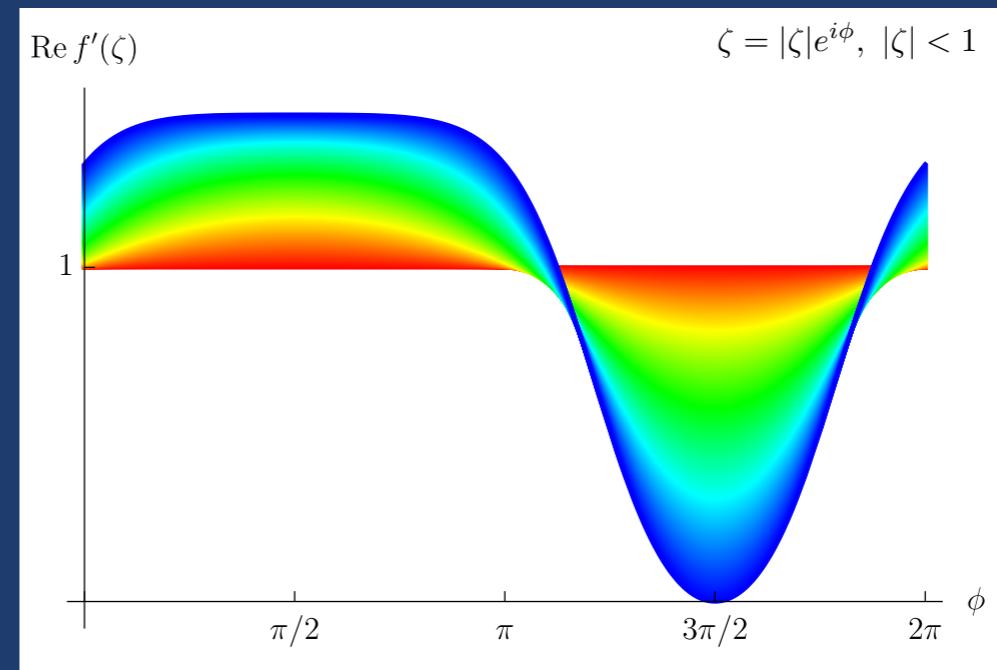
SOUND

- the story is analogous with univalence breakdown set by the local condition

$$f'(z) = 0 \implies v_g = 0$$

- example: $\mathcal{N} = 4$ SYM theory

$$\begin{aligned} z_g &= \sqrt{\mathbf{q}_g^2} \approx -3.791 iT \\ z_g &= \sqrt{\mathbf{q}_g^2} \approx -3iv_s/4D = -5.441 iT \end{aligned}$$



- construct a sufficient analyticity (univalence) condition for the conformal bound on the speed of sound [Cherman, Cohen, Nellore (2009); Hohler, Stephanov (2009)]

$$|\partial_\zeta \varphi^{-1}(0)| = 4\sqrt{3}|\omega_0(z_0)| \wedge |\zeta_0| = |\varphi(z_0)| \rightarrow 1 \implies 0 \leq v_s \leq \sqrt{\frac{1}{3}}$$

CONCLUSIONS AND FUTURE DIRECTIONS

CONCLUSIONS AND FUTURE DIRECTIONS

- complex analytic structures of transport can reveal new physical properties
- dispersion relations converge in momentum space, in x -space they sometimes converge and sometimes diverge [see Heller, Serantes, Spaliński, Svensson, Withers (2020)]
- pole-skipping imposes strong chaos constraints on transport and Green's functions
- what is the physical meaning of pole-skipping or "0/0" in QFT correlators?
- pole-skipping or its generalisation in weakly coupled QFTs and kinetic theory?
- chaos in heavy ion collisions?
- new methods that allow for rigorous derivations of lower and upper bounds on *all* coefficients of hydrodynamic dispersion relations
- we can find precise analytic conditions of a theory that lead to certain bounds
- further physical implications? equations of state vs. the conformal bound, ...?
[QCD, neutron stars, etc., see e.g. Annala, Gorda, Kurkela, Näyttälä, Vuorinen (2020)]
- fluctuations, quantum corrections, long-time tails, "1/ N " ... what remains of this story?

THANK YOU!