Heavy quark dynamics in QCD matter
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O Introduction

0 Quark Gluon Plasma - the primordial fluid

0 Heavy quark transport coefficients — Raa and v=

0 Heavy quark momentum evolution and hadronization

O Initial stage effects — EM field, Angular momentum, Glasma

0 Summary and outlook



Heavy Quark & QGP
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’Z' relaxation time

M c.b >> AQCD Produced by pQCD process (before equilibrium)
’ (Early production)

Tc,b >> TQGP
I\/IC,b >> T,

They go through all the QGP life time

No thermal production



Boltzmann Kinetic equation
e absence of any
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where we have defined the kernels

A = _fd3ka)(p, k)k; — Drag Coefficient

- _f d’ka(p, K)k;k;, _, Diffusion Coefficient



Langevin Equation

The Fokker-Planck equation can be recast to Langevin equation:

_P
dr—Edt

dp with < i (1)4, (') >=Do(t 1) 5,

a=—7(p)p+§

where 7 is the deterministic friction (drag) force

C; is stochastic force

For the bulk evolution: Hydrodynamics/Transport

Transport coefficients are connected by Fluctuation Dissipation Theorem.

Moore, Teaney, PRC 71 (2005) 064904
Van Hees, Greco, Rapp, PRC 73 (2006) 034913

Heavy quark initialization

< r-space: N_coll (Glauber mode)
< p-space: NLO (pQCD)



Heavy quark physics at different scales

low p; medium p; high p;
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Study thermalization Study hadronizatio Study parton energy
process of HQ process of HQ loss and mass effect

Constrai.n.diffusion Constrain hadron || Constrain jet transport
coefficient D wave-function parameter ¢




Studying the HF at RHIC and LHC

Bulk pre-equilibrium
att,=1/2m_,<0.1 fm/c

e initial prod.

pQCD-NLO
Shadowing e Dynamics in QGP

Pre-equilibrium Heavy quark QGP interaction

Effect/Glasma Transp. coeff. of QCD matter * hadronization:
coalescence and/or

Electromagnetic -> thermalization ?!

fi ) . fragmentation.
lled Mass & color in Jet quenching g .
Hadronic rescattering

Heavy quark momentum evol.

(Langevin/Boltzmann/E. loss model)



Heavy flavor at RHIC (2007)
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At RHIC energy heavy flavor suppression
is similar to light flavor

Simultaneous description of RAA and v2 is a tough challenge for all the models.
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= Simultaneous description of Rasand vz is challenging in the whole measured pr range! ey

= Experimental measurements start to provide constraint to the models for the characterization of
the charm and beauty interaction with the medium

=constraints on plasma transport parameters, such as the heavy-quark diffusion coefficient

Terrevoli (SQM 2019)



Time evolution of Heavy quarks observables
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J. Phys. Conf. Ser. 668 (2016) 012051
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[ 0<p,<5 GeV — ] -
( — S% ] RaA and dN/d?® developed during the
Lok (=3 fin ] early stage of the evolution » Ti
3 — =4 fm ]
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dAN/dp

V2 developed duringing the later stage of
the evolution Tc

T dependence of the interaction i.e the transport
-t Coefficients are the essential ingradiant for the
@ symultanious description of HQ observabbles




Impact of T dep. interaction on R,, — v,

Drag vy [fm]
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Looking at it beyond the specific modelings

> ’Y = T2 [Ads/CFT, pQCD o, .=const]
>’Y =T [pacCD strong ol running]

>’y = const. [QPM, PHSD, T-matrix]

vy rescaled to fit R,,(p;), D from FDT

0.12}
 0.08}

0.04 |-

PHENIX
yconst. - BM
v=const. - LV
=T

y=T

p; (GeV)
Das, Scardina, Plumari, Greco
Phys. Lett. B 747 (2016)260-264




Raa VS. Vv, puzzle

Different temperature dependence of the interaction strength may
lead to different v, for the same R,,.
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Semi-quark-gluon monopole plasma model increases (z around 7_ and enhances
hard probes’ v,.

J. Xu, J. Liao and M. Guylassi
Chin. Phys. Lett. 32, 092501 (2015)



T-matrix developments [TAMU]:

¢ Relaxation rate (drag coefficient)
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> Infrared enhancement due to long range force Radiative loss in T-matrix approach
> Different (slightly reversed) T dependence at low p Large suppression due to thermal mass
> Recover usual T dependence at high p Impact on observables yet to see

S.S. F liuand R. Rapp
JHEP 08 (2020) 168



Bayesian model to data analysis [Duke]:

Simultaneously calibrate all model parameters through model-to-data comparison.

Extract the probability distribution of all parameters which best describe the data.
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Approach from low to high pt
from heavy to light (high-pt) [LBL-CCNU]
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Spectrum of medium-induced gluon (higher-twist formalism):

_ . b )
. ﬂ'\.i" = Qfl"“b’zpf‘r} r}( 5 Llﬂ, _,,) sin’ (t _ t‘*’) Linearized Boltzmann transport model
drdiLd L kL + oM 27y Both collisional and radiative loss
Ky = 1+ ;*l;;ff_lﬂlg-"'lgfrﬁh (T-matrix like featurs)
' « _(T-T.\*/2s2  (Catania-QPM, PHSD, T-matrix)
JIHT:l—;lTE." €f e

T and p dependent K factor needed starting from pQCD
Cao, Luo, Qin and Wang, PRC, 94, 014909 2016
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From R A(py) and v, (p;) of D mesons
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Brambilla et. al 2007.10078 [hep-lat]
Altenkort et al. 2009.13553 [hep-lat]

Heavy quark transport coefficients computed within Polyakov loop plasma showing
similar T and p-dependence of heavy quark transport coefficients like T-matrix, QPM
and PHSD.

Singh et al. PRD 100 (2019)114019



A systematic attempts are going on within the EMMI-RRTF and “JET-HQ"
working groups to find a common agreement between different groups:
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New observables:

Heavy-light event-by-event correlation
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Very large sensitivity to T dep. of Ds

This can put further constrain on heavy quark transport coefficients

Plumari Coci, Minissale, Das, Sun, Greco

PLB 805 (2020) 135460



System size scan of D meson Ra and v:

129 Yo Xe 5.44 TeV

® CMS Pb-Pb Solid lines: Langevin —1%0-0 6.5 TeV = —— ;3
Dashed: Energy loss

== 40Ar Ay 5.85 ToV —— spirae Xe-Xe 5.44 TeV
— 208Ph Pb 5.02 TeV

......

30-50%

50

(a) — :EO—O 6.? T:&V _ Solid lines: Langevin
T oLt S F e O Do By o -

§ spher Xe-Xe 5.44 TeV e CMS Pb-Pb
0.1 = 208PhH-Pb 5.02 TeV 7

=
0.05 -
~ -y ﬂ'dn‘-%. e T
0 . Ll R et -~ ———]
2 10 50 2 10 50
pr (GeV)

In central collisions the v2 is independent of system size.
System size vs Eccentricity

R. Katz et. al, arxiv:1907.03308



dN/dp

Evolution: Boltzmann vs Langevin (Charm)

Momentum evolution starting from a 8 (Charm) in a Box
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In case of Langevin the distributions are
Gaussian as expected by construction
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In case of Boltzmann the charm quarks does
not follow the Brownian motion

Das, Scardina, Plumari and Greco
PRC,90,044901(2014)



Momentum evolution starting from a o (Bottom)

dN/dp
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Hadronization: Coalescence plus Fragmentation
Fragmentation function gives the probability to get a hadron from a parton:

fH (pT) — Zp fp(pT /Z):_:_Dp—>H (Z)

<z>n~0.9 for charm quark and <z>~0.5 for light quark
Coalescence is the convolution of two /three parton distribution folded by a wave function:
dNME"EUH
d’ Pr

\ Hadron wave function
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Impact of heavy baryon to meson ratio on heavy quark suppressions

RHIC Au-Au @200 GeV , b=7.5 fm
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R, Of D° decreases because part of charm quark makes coalescence in
charmed Lambdas, while in pp charm quarks fragment mainly in D mesons

Minissale at.al (SQM-2019)



Heavy Baryon to meson ratio

(Serve as a tool to disentangle different hadronization mechanisms)
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Impact of EM field on heavy quark dynamics at LHC

dpj =

—T'p,dt++/dtC, (t, p+&dp) o, + F.dt

F.=09(E +vxB)
E'=~4(E+vxB)—(y-1)(E-v)v

BI‘

TLHC: Pb+Pb@2.76 TeV
b=9.5 fm

— 6=0.0 fin""
— 5=0.023 fm""

2 3
t (f/c)

Gursoy, Kharzeev and Rajagopal
PRC 89, 054905 (2014)

4

=y(B—vxE)-(v—-1)(B-0)0

Electromagnetic field has been included in the
Langevin equation as a external force.

We consider both E and B.
Bx=Bz=0
And Ey=Ez=0

P
Pr

Das, Plumari, Chartarjee, Scardina, Greco, Alam
Phys. Lett. B, 768 (2017) 260
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Heavy quark vi@LHC
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Heavy quark vi is larger than light quark vi.

Recent data from ALICE indicates splitting s

in D and Dbar vi.

ALICE Collaboration, PRL 125 (2020) 2, 022301
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Initial vorticities and electromagnetic field

Au+Au \'s =200 GeV, 10-80%
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Impact of tilt bulk: Forward backward asymmetry

Chartarjee and Bozek, PRL 120 (2018) 192301
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Oliva, Plumari, Greco, arxiv:2009.11077 [hep-ph]
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Heavy quark Transport coefficient in Magnetic field:

K. Fukushina at al. PRD,93 (2016) 074028
M. Kurin at al. PRD, 101 (2019) 074003
B. Singh at al. arXiv:2004.11092
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Heavy quark in small system (p-nucleus)
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What mechanism could build up v, without energy loss?



Heavy quarks as probes of the evolving Glasma

|
Lormation ~ 2_ ~ ().06 fm/ C

me
[ Talk by Mueller on Monday ]

[Talk by Boguslavski on Tuesday]

HQs can probe the very early evolution

(Adapted from M. Ruggieri) ‘
of the Glasma fields

Hamilton equations of motion of c-quarks:

dZIZ@ _bi E=+/p*+m? .
dt E
dp

(Relativistic) Velocity

)=

dp = E+ g (v v B) Lorentz force

: _gQCL wp dat

Gauge-invariant conservation of the color

dQ a . g Q . £ cha A p D)UJ J CILLL — O Current carried by charm quaks + gluons

d Wong (1979)

JI'=ey'T,e

Equations of motion of heavy quarks are solved in the background
given by the evolving Glasma fields
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P-Pb @ 5.02TeV  Nuclear modification factor (R,;,) for p-Pb collisions
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Heavy quark dynamics in Expanding Glasma
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Impact of Glasma on a heavy quark observables at LHC
(Heavy quark dynamics in Glasma plus Plasma)

Pb+Pb @ 5.02 TeV, 30-50%, y=0 Pb+Pb @ 5.02 TeV, 30-50%, y=0

18— e T Y 0.3 1.8 e I T 0.3
- fTﬂﬂ utraammg s g D from t=0.1 fmic — Glasma at = .
_;Taln:a:n: p & cpermend 1 - __;I':;z’:; ® cxperimental
“ 0.140.3 fimls
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0.6 0.1 0.6 -/t 175101
0.0 0.0 0.0 A 0.0
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Gain in v,: larger interaction

in QGP stage to have same R A(py)

This indicates an initial pre-thermal stage is unlikely to be described in terms of a
standard drag and diffusion dynamics, because even if one tune such coefficients
to reproduce the same Raa(pr) this would imply a significantly smaller v..

Sun, Coci, Das, Plumari, Ruggieri, Greco
PLB, 798 (2019) 134933



Few recent works on heavy quark diffusion in pre-equilibrium phase

S. Mrowczynski, EPJA 54 (2018) 3, 4
M. Carrington et al. NPA 1001 (2020) 121914

K. BOgUSIaVSkiat. al. JHEP 09 (2020) 077 Talk by K. BOgUSIaVSki on Tuesday

A. IPP at al. 2009.14206 [hep-ph] [ Talk by D. Mueller on Monday ]

Within Kinetic Theory:

S. K. Das et al. JPG, 44 (2017) 095112

T. Song et al. PRC, 101 (2020), 044901

Impact of pre-equilibrium phase is significant



Conclusions and Perspectives:

< Open Heavy Flavor Physics at RHIC and LHC
Raa and v2 — Ds(T)—IQCD

% More precision data and New Observables
Vn(HQ)-Vn(LQ), A, dN/dD, System size scan and bottom quark
observables, will allows significant advantage to understand
the hot QCD matter

% Heavy quark Vi — EM field and Angular momentum

< Heavy quark as a probe of the pre-equilibrium phase — Glasma
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R,a @and v2 at RHIC

(With near isotropic cross-section)
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Das, Scardina, Plumari and Greco
PRC,90,044901(2014)

At fixed Raa Boltzmann approach generate larger v2.
(depending on mo and M/T)

With isotropic cross section one can describe both Raa and V2
simultaneously within the Boltzmann approach
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Impact of Glasma on a heavy quark observables at LHC
(Glasma vs Plasma)

Pb+Pb @ 5.02 TeV, 30-50%, y=0 ,,

Pb+Pb @ 5.02 TeV, 30-50%, y=0
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Glasma induce a diffusion of charm quarks in momentum space
resulting in a tilt of their spectrum without a significant drag.

Sun, Coci, Das, Plumari, Ruggieri, Greco
PLB, 798 (2019) 134933



Heavy quark suppression in pPb: Glasma vs Plasma

I:{pr

m LHCb proton side

== = (Glasma (gE|.le=3.4 GeV)

m—— (Glasma (gE|.le=5.2 GeV)
e QGP (T=500 MeV)
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3
p; [GeV]

In Plasma: high momentum particle loose energy shifted to low momentum domain.
In Glasma: low momentum particle get accelerated and shifted to high momentum domain

Liu, Das, Ruggieri, Plumari, Greco
Under preparation



Boltzmann vs Langevin (Charm)

T=400 MeV

Angular dependence of ¢

Mometum transfer vs P
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Decreasing m, makes the ¢ more Smaller average momentum
anisotropic transfer

Hees,Greco,Rapp,PRC,73,034913 (2006) Das, Scardina, Plumari and Greco

PRC,90,044901(2014)



R, and v2 at RHIC at mD=gT
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At fixed RAA Boltzmann approach generate larger v2 .
(depending on mD and M/T)



Bottom

2] B B | | T
B — t=t0 7]
— t=2fi
1,5 T= 400 MeV 4 fm —
— t=6 fm
= mp=0.83 GeV =
= | i
0,5+ |
0 | ﬁOttI:OITI oy
0 1 2 3 4 5 6 7
p (GeV)
107 T
; o= b (m =04 GeV) ]
i -—- b(m,=0.85 GeV) {]
101 b (m,=1.6 GeV) ,"}
o ;JJ‘_:
3 "; ]
D8k =
%10 _ '::'
102 :_F____________________-.sf-f"-.;‘ —
1007 03 0 03 1
cos(0)

: Boltzmann = Langevin

2

1,5

0,5

LV/BM
[y

— t=t0
— t=2fm

T= 400 MeV — t-4fm -
— t=6fm

m,=0.4 GeV .

e

Bottom
0 A N MR AN TR NN N NN RN N B B
0 1 2 3 4 5 6 7
2 T T T 1 T [ T ] T T 1
[ — t=t0 |
— t=2 fm
1.5 t=4 fm —
— t=6 fm
>
E 1+ S e Y
> /—,’
J —
0.5 —
i mD=1.6 GeV |
0 A Y T NN AN TN NN SN AN MO M|
0 1 2 3 4 5 6 7

p (GeV)

But Larger M, /T (= 10) the better Langevin approximation works
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