Homogeneity results for invariant distributions on p-adic symmetric spaces

Joint with Jeffrey Adler and Eitan Sayag
January 11, 2024

Characters

$\mathrm{G}(F) p$-adic reductive group: F local field, G / F connected reductive.
Character of $\pi: \mathrm{G}(F) \rightarrow \mathrm{GL}_{\mathbb{C}}(V)$, finite length smooth representation, is the $\operatorname{lnt} \mathrm{G}(F)$-invariant distribution:

$$
\Theta_{\pi}: C_{c}^{\infty}(\mathrm{G}(F)) \rightarrow \mathbb{C}
$$

$f \mapsto \operatorname{tr}\left(v \mapsto \int_{G(F)} f(g) \pi(g) \cdot v d g\right)$

Fact (Harish-Chandra, Raphaël Beuzart-Plessis):
$\Theta_{\pi}(f)=\int_{\mathrm{G}(F)} \Theta_{\pi}(g) f(g) d g, \quad \Theta_{\pi} \in L_{\mathrm{loc}}^{1}(\mathrm{G}(F)), \quad$ locally const. on $\mathrm{G}(F)_{\text {reg }}$.

Why characters?

- Have linear independence of characters.
- Crucially used in trace formula, endoscopy theory of L-packets, work on Gan-Gross-Prasad conjectures etc.
- Characters reflect properties: e.g., growth of Θ_{π} near $1 \in \mathrm{G}(F)$ tells us how "big" of a representation π is, existence of Whittaker models etc.
- Study characters near 1, by pulling them down to Ad $\mathrm{G}(F)$-invariant distributions $\mathfrak{g}(F):=\operatorname{Lie} \mathrm{G}(F)$.

$$
\mathfrak{g}(F) \stackrel{\text { open }}{\supset} \underset{\sim}{\mathcal{U}} \underset{\sim}{\mathcal{U}} \xrightarrow{\underset{\sim}{\text { exp }}} \underset{1}{\mathcal{V}} \stackrel{\text { open }}{\subset} \mathrm{G}(F) .
$$

$\left.\Theta_{\pi}\right|_{\mathcal{V}} \leadsto \theta_{\pi}:=\left.\Theta_{\pi}\right|_{\mathcal{V}} \circ \exp$ on \mathcal{U} or on $\mathfrak{g}(F)$.

- "Slogan:" Lie algebra analogue of characters = Fourier transforms of orbital integrals, $\hat{\mu}_{\mathcal{O}_{X}}, X \in \mathfrak{g}^{*}$ (defined in next two slides).

Fourier transforms

Fourier transform on a f.d.v.s V / \mathbb{R} :

$$
\hat{f}(x)=\int_{V} f(y) \exp (i\langle x, y\rangle) d y
$$

$\langle\cdot, \cdot\rangle$ Euclidean inner product.
Similarly, $C_{c}^{\infty}(\mathfrak{g}(F)) \ni f \mapsto \hat{f} \in C_{c}^{\infty}(\mathfrak{g}(F))$:

$$
\hat{f}(X)=\int_{\mathfrak{g}(F)} f(Y) \psi(B(X, Y)) d Y
$$

- $B: \mathfrak{g} \times \mathfrak{g} \rightarrow F$, symmetric nondegenerate Ad G-invariant bilinear form;
- $\psi: F \rightarrow \mathbb{C}^{\times}$nontrivial additive character.

Better: $C_{c}^{\infty}(\mathfrak{g}(F)) \ni f \mapsto \hat{f} \in C_{c}^{\infty}\left(\mathfrak{g}^{*}(F)\right), \quad X \mapsto \int_{\mathfrak{g}(F)} f(Y) \psi(\langle X, Y\rangle) d Y$.
Fourier transform for distributions: $\hat{T}(f):=T(\hat{f})$.

Orbital integrals

Orbital integral: if $\mathcal{O}:=\operatorname{Ad} \mathrm{G}(F)(X)=$ adjoint orbit of $X \in \mathfrak{g}(F)$,
$O_{X}(f):=\mu_{\mathcal{O}}(f):=\int_{\mathrm{G}(F) / \mathrm{G}^{X}(F)} f(\operatorname{Ad} g(X)) \frac{d g}{d g^{X}}=\int_{\mathcal{O}:=\operatorname{AdG}(F)(X)} f(X) d \mu_{\mathcal{O}}$.
This is well-defined if F has characteristic zero (or if $p \gg 0$):

- The centralizer $\mathrm{G}^{X}(F)=\{g \in \mathrm{G}(F) \mid \operatorname{Ad} g(X)=X\}$ is unimodular \Rightarrow have a $G(F)$-invariant measure $d g / d g^{X}=d \mu_{\mathcal{O}}$ on \mathcal{O};
- $\forall f \in C_{c}^{\infty}(\mathfrak{g}(F))$, the integral $\mu_{\mathcal{O}}(f)$ conv. (Ranga Rao if char $F=0$). Of partic. interest: when $\mathcal{O} \in \mathcal{O}(0):=\{$ nilpotent $\operatorname{Ad} \mathrm{G}(F)$-orbits in $\mathfrak{g}(F)\}$, i.e., when $\mathcal{O} \subset \mathcal{N}(\mathfrak{g}):=$ the set of nilpotent elements of $\mathfrak{g}(F)$,

Fact: $J(\mathcal{N}(\mathfrak{g})):=$ the set of $\operatorname{Ad} G(F)$ - invariant distribns supported on $\mathcal{N}(\mathfrak{g})$ $=\bigoplus_{\mathcal{O} \in \mathcal{O}(0)} \mathbb{C} \cdot \mu_{\mathcal{O}}=$ sum of nilpotent orbital integrals.
Similarly, have nilp. orb. int. on $\mathfrak{g}^{*}(F):=\operatorname{Hom}(\mathfrak{g}(F), F)$ with "Ad""-action.

Fourier transforms of orbital integrals

Set $\hat{O}_{X}:=\hat{\mu}_{\mathcal{O}}:=$ the Fourier transform of $\mu_{\mathcal{O}}$.

$$
\mathfrak{g}(F) \stackrel{\text { open }}{\supset} \underset{0}{\mathcal{U}} \xrightarrow{\text { exp }} \underset{1}{\underset{\sim}{\mathcal{W}}} \stackrel{\text { open }}{\subset} \mathrm{G}(F)
$$

$\Rightarrow\left(\Theta_{\pi}: C_{c}^{\infty}(\mathrm{G}(F)) \rightarrow \mathbb{C}\right) \leadsto\left(\Theta_{\pi} \mid \mathcal{V}: C_{c}^{\infty}(\mathcal{V}) \rightarrow \mathbb{C}\right) \stackrel{\exp }{\sim}\left(\theta_{\pi}: C_{c}^{\infty}(\mathcal{U}) \rightarrow \mathbb{C}\right)$,
or $\theta_{\pi}: C_{c}^{\infty}(\mathfrak{g}(F)) \rightarrow \mathbb{C}$, supported on \mathcal{U}. Informally: $\theta_{\pi}=\Theta_{\pi} \circ \exp$.
Howe-Harish-Chandra character expn: \mathcal{U} sufficiently small $\Rightarrow \forall f \in C_{c}^{\infty}(\mathcal{U})$:

$$
\theta_{\pi}(f):=\Theta_{\pi}(f \circ \log)=\sum_{\mathcal{O} \in \mathcal{O}(0)^{*}} \underbrace{c_{\mathcal{O}}}_{\in \mathbb{C}} \cdot \hat{\mu}_{\mathcal{O}}(f)
$$

if we assume that F has characteristic zero.
In other words: $\theta_{\pi}\left|\mathcal{U} \in J\left(\widehat{\mathcal{N}\left(\mathfrak{g}^{*}\right)}\right)\right| \mathcal{U}$.
Question: How big can \mathcal{U} be so this holds ("range of validity of the character expansion")?

Crude comments on the Howe-Harish-Chandra argument

H.-C. proves the expansion, more generally, for "admissible distributions" Θ. If $K_{0} \subset \mathrm{G}(F)$ compact open subgroup such that $\pi^{K_{0}} \neq 0$ (say π irreducible):

$$
\left.\pi\right|_{K_{0}}=\bigoplus_{\xi \in \operatorname{Irr}\left(K_{0}\right)} n_{\xi} \xi,
$$

where $n_{\xi}=0$ unless $\exists g \in G(F)$ s.t. ξ has a nonz. $g K_{0} g^{-1} \cap K_{0}$-fixd vector. Rephrase: $\Theta_{\pi} * \xi=0$ unless $\exists g$ s.t. ξ has a nonz. $g K_{0} g^{-1} \cap K_{0}$-fixd vector. Very crude idea, if Θ satisfies this: This forces the Fourier transform of $\theta=\Theta \circ \exp$, near 0 , to have support near nilpotent cone $\mathcal{N}\left(\mathfrak{g}^{*}\right)$.

- Given π with a K_{0}-fixed vector, the above gives information on $\left.\pi\right|_{K_{0}}$.
- Rep. th. of $K_{0}=\exp \left(L_{0}\right) \leftrightarrow K_{0}$-orbits on $\mathfrak{g}^{*} / L_{0}^{\perp}$ (Howe's Kirillov th.).
- Information about Θ_{π} near 1 , or θ_{π} near 0 .

Recall the question: How big can \mathcal{U} be so the character expansion holds?

Moy-Prasad filtrations

If $x \in \mathcal{B}(\mathrm{G})=$ (enlarged) Bruhat-Tits building of G , have Moy-Prasad filtration subgroups (for $r \geqslant 0$) and sublattices (for $r \in \mathbb{R}$):

$$
\mathrm{G}(F)_{x, r} \subset \mathrm{G}(F), \quad \mathfrak{g}(F)_{x, r} \subset \mathfrak{g}(F), \quad \mathfrak{g}^{*}(F)_{x, r} \subset \mathfrak{g}^{*}(F)
$$

Exm: If $\mathrm{G}=\mathrm{GL}(V) / F, x$ is given by a \downarrow filtration $\left\{L_{s}\right\}_{s \in \mathbb{R}}$ of lattices in V :

$$
\mathfrak{g}(F)_{x, r}=\left\{X \in \operatorname{End}(V) \mid X\left(L_{s}\right) \subset L_{s+r} \forall s\right\} .
$$

Have Moy-Prasad G-domains:

$$
\mathrm{G}(F)_{r}:=\bigcup_{x \in \mathcal{B}(\mathrm{G})} \mathrm{G}(F)_{x, r} \stackrel{\text { open }}{\subset} \mathrm{G}(F), \quad \mathfrak{g}(F)_{r}:=\bigcup_{x \in \mathcal{B}(\mathrm{G})} \mathfrak{g}(F)_{x, r} \stackrel{\text { open }}{\subset} \mathfrak{g}(F),
$$

similarly $\mathfrak{g}^{*}(F)_{r}$. Open, closed, $G(F)$-invariant, and have

$$
\mathfrak{g}(F)_{r}=\bigcap_{x \in \mathcal{B}(\mathrm{G})}\left(\mathfrak{g}(F)_{x, r}+\mathcal{N}(\mathfrak{g})\right)
$$

(Part of Moy-Prasad theory, take by Adler and DeBacker).

$$
\begin{aligned}
\exp : \mathfrak{g}(F)_{x, r} & \rightarrow \mathrm{G}(F)_{x, r}, \quad \mathfrak{g}(F)_{r} \rightarrow \mathrm{G}(F)_{r}, & \text { if } p \gg 0 . \\
\mathfrak{g}(F)_{x, r+}:=\bigcup_{s>r} \mathfrak{g}(F)_{x, s}, & \mathfrak{g}(F)_{r+}:=\bigcup_{x \in \mathcal{B}(\mathrm{G})} \mathfrak{g}(F)_{x, r+}, & \text { etc. }
\end{aligned}
$$

Moy-Prasad Depth, consequences for $\hat{\theta}_{\pi}$

Definition (My and Prasad)

The depth of π is the smallest $\rho(\pi) \geqslant 0$ such that π has a nonzero $\mathrm{G}(F)_{x, \rho(\pi)+}$-fixed vector, for some $x \in \mathcal{B}(\mathrm{G})$.

Conjecture (Hales-Moy-Prasad)

For "good" p, the character exp. for $\theta_{\pi}=\Theta_{\pi} \circ \exp$ holds on $\mathfrak{g}(F)_{\rho(\pi)+}$, ie., the "range of validity" of character expansion contains $\mathfrak{g}(F)_{\rho(\pi)+}$. DeBacker: True if $p \gg 0$. (Applies more gen. to " r-admissible distribns").

$$
\left(\mathrm{G}(F)_{x, r} / \underset{\underset{\xi}{\mathrm{G}}}{\mathrm{G}}(F)_{x, r+}\right)^{\wedge} \stackrel{\log }{=}\left(\mathfrak{g}(F)_{x, r} / \mathfrak{g}(F)_{x, r+}\right)^{\wedge} \cong \mathfrak{g}^{*}(F)_{x,-r} / \mathfrak{g}^{\underset{\hat{\xi}}{*}}(F)_{x,(-r)+\cdot}
$$

Moy-Prasad \Rightarrow For $r>\rho(\pi)$, if ξ occurs in π, then $\hat{\xi} \cap \mathcal{N}\left(\mathfrak{g}^{*}\right) \neq 0$. Thus, if $\hat{\theta}_{\pi}\left(\mathbb{1}_{\hat{\xi}}\right) \neq 0$, then $\hat{\xi} \cap \mathcal{N}\left(\mathfrak{g}^{*}\right) \neq 0$.
Gener.: $f \in C_{c}\left(\mathfrak{g}^{*}(F)_{x,-s} / \mathfrak{g}^{*}(F)_{x,(-r)+}\right)\left(\hat{f} \in C_{c}\left(\mathfrak{g}(F)_{x, r} / \mathfrak{g}(F)_{x, s+}\right)\right), s \geqslant r$, if $\hat{\theta}_{\pi}(f) \neq 0$, then supp f intersects $\mathfrak{g}^{*}(F)_{x,(-s)+}+\mathcal{N}\left(\mathfrak{g}^{*}\right)$ (uses exp).

Steps

Rename $r \leadsto-r, s \leadsto-s$. Have $T=\hat{\theta}_{\pi}$ distribution on

$$
\operatorname{FT}\left(C_{c}^{\infty}\left(\mathfrak{g}(F)_{-r}\right)\right)=\sum_{x \in \mathcal{B}(\mathrm{G})} \sum_{s \leqslant r} C_{c}\left(\mathfrak{g}^{*}(F)_{x, s} / \mathfrak{g}^{*}(F)_{x, r+}\right)=: \mathcal{D}_{r},
$$

some nice behavior, for all $s \leqslant r$, on $C_{c}\left(\mathfrak{g}^{*}(F)_{x, s} / \mathfrak{g}^{*}(F)_{x, r+}\right)$.
Let $\tilde{J}(r):=$ the space of such distributions, "Waldspurger-DeBacker space".
To show: it is a linear combination of nilpotent orbital integrals, i.e.,

Show: $\left.\tilde{J}(r)\right|_{\mathcal{D}_{r}}=\left.J\left(\mathcal{N}\left(\mathfrak{g}^{*}\right)\right)\right|_{\mathcal{D}_{r}}$.

Strategy (Waldspurger-DeBacker)

Show: $\left.J(\mathcal{N})\right|_{\mathcal{D}_{r}}=\left.\tilde{J}(r)\right|_{\mathcal{D}_{r}}, \quad \mathcal{D}_{r}:=\sum_{x \in \mathcal{B}(\mathrm{G})} \sum_{s \leqslant r} C_{c}\left(\mathfrak{g}^{*}(F)_{x, s} / \mathfrak{g}^{*}(F)_{x, r+}\right)$ (set $\mathcal{N}=\mathcal{N}\left(\mathfrak{g}^{*}\right)$, may informally think $\mathfrak{g}(F)_{\chi, r}=\mathfrak{g}^{*}(F)_{x, r}$ etc. $)$.

- Easier steps:
- Easy inclusion: $J(\mathcal{N}) \subset \tilde{J}(r)$, so also when restricted to \mathcal{D}_{r}.
- For good $p, \operatorname{dim}_{\mathbb{C}} J(\mathcal{N})=\# \mathcal{O}(0)^{*}:=$ number of nilpotent orbits in $\mathfrak{g}^{*}(F)$, basis $=$ nilpotent orbital integrals (also when restricted to \mathcal{D}_{r}).
- Therefore, enough to show: $\left.\operatorname{dim}_{\mathbb{C}} \tilde{J}(r)\right|_{\mathcal{D}_{r}} \leqslant \# \mathcal{O}(0)^{*}$.
- "Descent and recovery": Can replace $\mathcal{D}_{r} \leadsto \rightarrow$ the smaller $\mathcal{D}_{r}^{r+}:=$ $\sum C_{c}\left(\mathfrak{g}^{*}(F)_{x, r} / \mathfrak{g}^{*}(F)_{x, r+}\right):\left.\left.\tilde{J}(r)\right|_{\mathcal{D}_{r}} \rightarrow \tilde{J}(r)\right|_{\mathcal{D}_{r}^{r+}}$ is an isomorphism.
- Every element of $\left.\tilde{J}(r)\right|_{\mathcal{D}_{r}^{r+}}$ is uniquely determined by its values on a set of $\left\{X_{i}+\mathfrak{g}^{*}(F)_{x_{i}, r+}\right\}_{i}$, where $\left\{X_{i}\right\}$ runs over a set of representatives for nilpotent orbits in $\left.\mathfrak{g}^{*}(F) \quad \Rightarrow \operatorname{dim}_{\mathbb{C}} \tilde{J}(r)\right|_{\mathcal{D}_{r}} \leqslant \# \mathcal{O}(0)^{*}$.
The last step uses DeBacker's classification of nilp. orbits in terms of

$$
\left\{X+\mathfrak{g}^{*}(F)_{x, r+} \mid x \in \mathcal{B}(G), X \in \mathfrak{g}^{*}(F)_{x, r}\right\}
$$

(identify $\mathfrak{g}=\mathfrak{g}^{*}$; sort of an affine version of the Bala-Carter classification).

Spherical characters

Abstract setting. Let \mathcal{G} finite group, $\mathcal{H} \subset \mathcal{G}$ subgroup. Consider "relative harmonic analysis", for the \mathcal{G}-space $\mathcal{G} / \mathcal{H}$, in terms of representations (π, V) of \mathcal{G} such that $V^{\mathcal{H}} \neq 0$.

A spherical character is associated to $\left(\pi, V, \ell, \ell^{\vee}\right)$, where (π, V) rep of \mathcal{G}, $\ell^{\vee} \in V^{\mathcal{H}}, \ell \in\left(V^{\vee}\right)^{\mathcal{H}} \quad$ (equiv., $\ell: V \rightarrow \mathbb{C}, \ell^{\vee}: V^{\vee} \rightarrow \mathbb{C} \quad \mathcal{H}$-invariant):

$$
g \mapsto\left\langle\ell, \pi(g) \ell^{\vee}\right\rangle=: \Theta_{\pi, \ell, \ell^{\vee}},
$$

a function on $\mathcal{H} \backslash \mathcal{G} / \mathcal{H}$, i.e., an \mathcal{H}-invariant function on $\mathcal{G} / \mathcal{H}$.
Example: ("Group case") $\mathcal{G}=\mathcal{H} \times \mathcal{H} \supset \mathcal{H}$ 'diagonally', $\mathcal{H} \subset \underset{\mathcal{G} / \mathcal{H}}{\mathcal{H}} \underset{\Psi}{\mathcal{H}} \curvearrowleft \mathcal{H}$ (conjugation).
$\pi=\sigma \otimes \sigma^{\vee}, \pi^{\vee}=\sigma^{\vee} \otimes \sigma($ of $\mathcal{G}=\mathcal{H} \times \mathcal{H}), \quad \ell, \ell^{\vee}=$ "obvious pairings".
Then $\Theta_{\pi, \ell, \ell^{v}}$ on $\mathcal{G} / \mathcal{H}=$ the character Θ_{σ} of the representation σ of \mathcal{H}.

Our setting (p-adic symmetric spaces)

$\theta \in \operatorname{Aut}(\mathrm{G}), \theta^{2}=1,\left(\mathrm{G}^{\theta}\right)^{0} \subset \mathrm{H} \subset \mathrm{G}^{\theta} . \quad \mathfrak{g}=\mathfrak{g}^{\theta=1} \oplus \mathfrak{g}^{\theta=-1}=: \mathfrak{h} \oplus \mathfrak{p} \underset{\text { Ad }}{\bigcirc_{\mathrm{d}} \mathrm{H} .}$
(π, V) smooth fin. length representation of $\mathrm{G}(F), \mathrm{H}(F)$-invariant functionals

$$
\ell: V \rightarrow \mathbb{C}, \quad \ell^{\vee}: V^{\vee} \rightarrow \mathbb{C}
$$

The spherical character of $\left(\pi, V, \ell, \ell^{\vee}\right)=$ the distribution

It is an $\mathrm{H}(F)$-bi-invariant distribution on $\mathrm{G}(F)$, i.e., an $\mathrm{H}(F)$-invariant distribution on $\mathrm{G}(F) / \mathrm{H}(F)$.

Rader and Rallis, 1996: In characteristic zero, local character expansion at $0 \in T_{e}(\mathrm{G}(F) / \mathrm{H}(F))=\mathfrak{g}(F) / \mathfrak{h}(F)=\mathfrak{p}(F)$ (though not generally loc. int.):

$$
\theta_{\pi, \ell, \ell^{\vee}}(f)=\sum_{\mathcal{O} \in \mathcal{N}\left(\mathfrak{p}^{*}\right) / \operatorname{AdH}(F)=: \mathcal{O}^{*}(0)} c_{\mathcal{O}} \hat{\mu}_{\mathcal{O}}(f)\left(f \in C_{c}^{\infty}(\mathfrak{p}(F), \text { supp. near } 0) .\right.
$$

Moy-Prasad domains, bringing down to the Lie algebra

Assume $p \neq 2$, recall $\mathfrak{g}(F)=\mathfrak{h}(F) \oplus \mathfrak{p}(F)$. For $x \in \mathcal{B}(\mathrm{H}) \stackrel{\text { Prasad-Yu }}{=} \mathcal{B}(\mathrm{G})^{\theta}$,

$$
\begin{aligned}
& \mathfrak{g}(F)_{x, r}=\left(\mathfrak{h}(F) \cap \mathfrak{g}(F)_{x, r}\right) \oplus\left(\mathfrak{p}(F) \cap \mathfrak{g}(F)_{x, r}\right)=\underbrace{\mathfrak{h}(F)_{x, r}}_{\text {fact }} \oplus \underbrace{\mathfrak{p}(F)_{x, r}}_{\text {defn }} . \\
& \mathfrak{p}(F)_{r}:=\bigcup_{x \in \mathcal{B}(\mathrm{H})} \mathfrak{p}(F)_{x, r} \xrightarrow{\exp } \bigcup_{x \in \mathcal{B}(\mathrm{H})} \mathrm{H}(F)_{x, r} \backslash \mathrm{G}(F)_{x, r} \stackrel{\text { open }}{\subset} \mathrm{H}(F) \backslash \mathrm{G}(F)
\end{aligned}
$$

(for good p)
\Rightarrow have $\theta_{\pi, \ell, \ell^{\vee}}$ on $\mathfrak{p}(F)_{r} \quad$ (descended via \exp from $\Theta_{\pi, \ell, \ell^{\vee}}$ on $\mathrm{H}(F) \backslash \mathrm{G}(F)$).

Hope:

$$
\theta_{\pi, \ell, \ell^{v}}(f)=\sum_{\mathcal{O} \in \mathcal{N}\left(\mathfrak{p}^{*}\right) / \mathrm{H}(F)} c_{\mathcal{O}} \hat{\mu}_{\mathcal{O}}(f), \quad \forall f \in C_{c}^{\infty}\left(\mathfrak{p}(F)_{r}\right),
$$

whenever $r>\rho(\pi):=$ the depth of π.
i.e., the range of validity of the character expansion contains $\mathfrak{p}(F)_{\rho(\pi)+}$.

Rough idea of the results

We cannot yet prove this in the most general case (even with $p \gg 0$):

- Can show (for $p \gg 0$) the analogue of $\left.\operatorname{dim}_{\mathbb{C}} \tilde{J}(r)\right|_{\mathcal{D}_{r}} \leqslant \# \mathcal{O}^{p^{*}}(0)$: essentially following the 'group case'.
- But $\operatorname{dim}_{\mathbb{C}} J\left(\mathcal{N}\left(\mathfrak{p}^{*}\right)\right)$ may be strictly less than $\# \mathcal{O}^{\mathfrak{p}^{*}}(0)$:
- There may not be an invariant measure on some $\mathcal{O} \in \mathcal{O}^{p^{*}}(0)$: stabilizers may no longer be unimodular.
- Even if \exists inv. meas. $\mu_{\mathcal{O}}$ on $\mathcal{O}, \mu_{\mathcal{O}}(f)$ may not convg. for $f \in C_{c}^{\infty}\left(\mathfrak{p}^{*}(F)\right):$ e.g., $G=\mathrm{PGL}_{2} \supset \mathbb{G}_{m}=\mathrm{H}, \mathfrak{p}=F^{2}$, $h \cdot(x, y)=\left(h x, h^{-1} y\right)$.
- Where these two issues don't arise, and $p \gg 0$, have the expected range of validity result.
- In rank one situations - $\mathrm{SL}_{n} / \mathrm{GL}_{n-1}, \mathrm{SO}_{2 n} / \mathrm{SO}_{2 n-1}, \mathrm{SO}_{2 n+1} / \mathrm{SO}_{2 n}$, $\mathrm{Sp}_{2 n} / \mathrm{Sp}_{2} \times \mathrm{Sp}_{2 n-2}, \mathrm{~F}_{4} / \mathrm{Spin}_{9}$ - can establish the expectd range of validity result using dirct computation + features particular to rank one.
- So one hopes to establish the desired range of validity (i.e., $\left.\mathfrak{p}(F)_{\rho(\pi)+}\right)$ in general, but we don't have a general approach to proving it.

Some ingredients

- Moy-Prasad theory: A lot of the results regarding lattices, nilpotents etc. hold in somewhat general settings: a "rational" representation V of H together with a suitable collection of lattices $V_{x, r} \ldots$, but to connect to harmonic analysis on $G(F)$ (e.g., to relate 'degenerate cosets' for $\mathrm{H}(F) \subset \mathfrak{p}^{*}(F)$ and $\left.\mathrm{G}(F) \subset \mathfrak{g}^{*}(F)\right)$ we of course do make use of our special situation.
- Classification of "nilpotent orbits" using the building: Known by the work of Ricardo Portilla, involves $\mathcal{B}(\mathrm{H})$ with polysimplicial structure inherited from $\mathcal{B}(\mathrm{G})$. This is a crucial input for us.
- Like Portilla, one works a lot with normalized $\mathfrak{s l}_{2}$-triplets (Y, M, X), where the 'neutral element' M belongs to $\mathfrak{h}(F)$, the 'nilpositive element' X belongs to $\mathfrak{p}(F)$.

