Best arm identification, through fluid based methods

Sandeep Juneja, TIFR, Networks, ICTS Feb 1, 2024

Joint work with Agniv Bandyopadhyay,

Shubhada Agrawal, Karthikeyan Shanmugam and Arun Suggala

Best arm selection problem

Given K unknown probability distributions that can be sampled from, find the distribution with the largest mean, using fewest samples while keeping the probability of false selection to $\leq \delta$

- An intuitive overview
- Optimal top 2 algorithm - chasing the fluid limit

Which coin has the highest probability of heads?

 Stop sampling when you are 95% sure

Applications: Clinical trials

- Four vaccines (or experimental drugs). Which ones to give to patients
- 'it seems apparent that a considerable saving of individuals otherwise sacrificed to the inferior (drug) treatment might be effected' Thompson, 1933

Applications

- Placing advertisements on a Google search
- Web construction amongst many options
- Recommendation systems
- Movies to recommend
- Facebook posts to show

- News paper articles to bring to your attention
- Price to offer for a digital good
- Travel route to recommend amongst many

Selecting the best player

To separate prob. 0.6 from 0.4 with 95% certainty need around 150 samples

Popular algorithm

Our friend: Hoeffding

Each $X_{i} \in[-1,1]$ are iid with zero mean.
Hoeffding's -

$$
P\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq \epsilon\right) \leq \exp \left(-n \epsilon^{2} / 2\right) .
$$

$$
P\left(\text { there exists t: } \frac{1}{t} \sum_{i=1}^{t} X_{i} \geq \alpha_{t}\right) \leq \sum_{t} P\left(\frac{1}{t} \sum_{i=1}^{t} X_{i} \geq \alpha_{t}\right) \leq \delta .
$$

Where $\quad \alpha_{t}=\sqrt{\frac{4 \log t / \delta}{t}}$
$\bar{X}_{t} \in \mu \pm \alpha_{t}$ for all \dagger with probability $1-\delta$

The successive rejection algorithm for arm rewards in $[0,1]$

Dar, Mannor, Mansour 2006

1. Sample each arm once
2. If at sample t,

$$
\begin{aligned}
& \bar{X}_{\max }(t)-\bar{X}_{j}(t) \geq 2 \alpha_{t} \\
& \text { then remove arm } \mathrm{j} \text { from consideration. } \alpha_{t}=\sqrt{\frac{4 \log (K t / \delta)}{t}}
\end{aligned}
$$

Repeat till one arm left

Isolating the high probability tubes that contain sample averages

$$
\alpha_{t}=\sqrt{\log \left(K t^{2} / \delta\right) / t}
$$

Best arm never rejected

$$
\bar{X}_{1}(t) \geq \mu_{1}-\alpha_{t}
$$

$$
\bar{X}_{a}(t) \leq \mu_{a}+\alpha_{t}
$$

So

$$
\bar{X}_{a}(t)-\bar{X}_{1}(t) \leq 2 \alpha_{t}-\left(\mu_{1}-\mu_{a}\right)
$$

Samples needed

Consider tubes

$$
\bar{X}_{t} \in \mu \pm 2 \alpha_{t}
$$

Lower bounds and algorithms that match even the constant in the lower bounds

A trivial lower bound

- Suppose each arm receives $\log (1 / \delta)^{\alpha}$ samples for $\alpha \in(0,1)$.
- Consider large deviations approximation for sample average

$$
P\left(\bar{X}_{n} \approx a\right) \approx \exp (-n I(a)) \text { where } I(a)>0 \text { for } a \neq E X
$$

- If $n=\log (1 / \delta)^{\alpha}$, then $P\left(\bar{X}_{n} \approx a\right) \approx \delta^{\frac{I(a)}{\log (1 /)^{1-\alpha}}}>\delta$ for small δ
- Thus order $\log (1 / \delta)$ samples necessary

Large deviations result (Sanov's Thm.)

Green is the true distribution μ. Red is the empirical distribution ν (based on generated samples

$$
\left.\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)
$$

Probability of seeing empirical distribution ν when the true distribution is μ is

$$
\approx \exp (-n K L(\nu \mid \mu))
$$

where $K L(\nu \mid \mu)=\sum_{i=1}^{4} \nu_{i} \log \left(\frac{\nu_{i}}{\mu_{i}}\right)$

Lower bound: A heuristic argument

Two arms: Observed distributions from N_{1} and N_{2} samples are $\hat{\mu}_{1}\left(N_{1}\right)$ and $\hat{\mu}_{2}\left(N_{2}\right)$

With high probability, each $\hat{\mu}_{i}\left(N_{i}\right) \approx \mu_{i}$, so that if
$m\left(\hat{\mu}_{1}\right)>m\left(\hat{\mu}_{2}\right)$ suggests that $m\left(\mu_{1}\right)>m\left(\mu_{2}\right)$
As a skeptical scientist, you wonder its likelihood if true distributions are

$$
\left(\nu_{1}, \nu_{2}\right): m\left(\nu_{1}\right)<m\left(\nu_{2}\right)
$$

Likelihood under alternate hypothesis

Let $A^{c}=\left\{\nu_{1}, \nu_{2}: m\left(\nu_{1}\right)<m\left(\nu_{2}\right)\right\}$
Worst-case likelihood of incorrect assessment

$$
\begin{aligned}
& \max _{\left(\nu_{1}, \nu_{2}\right) \in A^{c}} e^{-N_{1} K L\left(\hat{\mu}_{1} \mid \nu_{1}\right)} e^{-N_{2} K L\left(\hat{\mu}_{2} \mid \nu_{2}\right)} \\
\approx & \max _{\left(\nu_{1}, \nu_{2}\right) \in A^{c}} e^{-N_{1} K L\left(\mu_{1} \mid \nu_{1}\right)+N_{2} K L\left(\mu_{2} \mid \nu_{2}\right)}
\end{aligned}
$$

This needs to be kept less than δ

In many arms setting

$$
\text { Let } A^{c}=\left\{\nu=\left(\nu_{1}, \ldots, \nu_{K}\right): m\left(\nu_{1}\right)<\max _{i \geq 2} m\left(\nu_{i}\right)\right\}
$$

Worst-case likelihood of incorrect assessment.

$$
\max _{\nu \in A^{c}} e^{\left.-\sum_{i \leq K} N_{i} K L\left(\mu_{i} \mid \nu_{i}\right)\right)}
$$

This needs to be less than δ.

The lower bound optimisation problem

Minimize $\sum N_{a}$
 a

s.t.

$$
\inf _{\left\{\nu: m\left(\nu_{1}\right)<\max _{i \geq 2} m\left(\nu_{i}\right)\right\}} \sum_{a \leq K} N_{a} K L\left(\mu_{a} \mid \nu_{a}\right) \geq \log (1 / \delta)
$$

The Data Processing Inequality

$$
K L\left(P_{X} \mid Q_{X}\right) \geq K L\left(P_{g(X)} \mid Q_{g(X)}\right) .
$$

Consider bandit algorithm output $X=\left(a_{1}, R_{a_{1}, N_{a_{1}}(1)}, \ldots, a_{T}, R_{a_{T}, N_{a_{T}}(T)}\right)$ till time T.

Let P_{μ} correspond to the measure associated with X when arms dist. is $\mu=\left(\mu_{a}: a \leq K\right)$.
P_{ν} when the arms distribution is $\nu=\left(\nu_{a}: a \leq K\right)$.

Then, from Data PI

$$
\begin{gathered}
K L\left(P_{\mu}(X) \mid P_{\nu}(X)\right) \geq K L\left(P_{\mu}\left(I_{E}\right) \mid P_{\nu}\left(I_{E}\right)\right) \\
K L\left(P_{\mu}(X) \mid P_{\nu}(X)\right)=\sum_{a=1}^{K} E_{P_{\mu}} N_{a}(T) K L\left(\mu_{a} \mid \nu_{a}\right) .
\end{gathered}
$$

$K L\left(P_{\mu}(X) \mid P_{\nu}(X)\right)=E_{P_{\mu}}\left(\sum_{t=1}^{T} \log \frac{d \mu_{a_{t}}}{d \nu_{a_{t}}}\left(R_{a_{t} N_{a_{t}}(t)}\right)\right)=E_{P_{\mu}}\left(\sum_{t=1}^{T} \sum_{a=1}^{K} \log \frac{d \mu_{a}}{d \nu_{a}}\left(R_{a, N_{a}(t)}\right) I\left(a_{t}=a\right)\right)$.

Now, the conditional expectation
$E\left(\left.\log \left(\frac{d \mu_{a}}{d \nu_{a}}\left(R_{a, N_{a}(t)}\right)\right) I\left(a_{t}=a\right) \right\rvert\, \mathscr{F}_{t}\right)=K L\left(\mu_{a} \mid \nu_{a}\right) I\left(a_{t}=a\right)$
and thus through iterative conditioning over time periods,

$$
K L\left(P_{\mu}(X) \mid P_{\nu}(X)\right)=\sum_{a=1}^{K} E_{P_{\mu}} N_{a}(T) K L\left(\mu_{a} \mid \nu_{a}\right)
$$

The lower bound optimisation problem

Minimize $\sum N_{a}$
 a

s.t.

$$
\inf _{\left\{\nu: m\left(\nu_{1}\right)<\max _{i \geq 2} m\left(\nu_{i}\right)\right\}} \sum_{a \leq K} N_{a} K L\left(\mu_{a} \mid \nu_{a}\right) \geq \log (1 / \delta)
$$

Good time to Summarise!

Simplifying the lower bound optimisation problem

$$
\begin{gathered}
\text { Minimize } \sum_{a} N_{a} \\
\inf _{\nu: m\left(\nu_{1}\right)<m\left(\nu_{a}\right)} N_{1} K L\left(\mu_{1} \mid \nu_{1}\right)+N_{a} K L\left(\mu_{a} \mid \nu_{a}\right) \geq \log (1 / \delta), \text { for } a \geq 2 \\
N_{1} K L\left(\mu_{1} \mid x_{1, a}\right)+N_{a} K L\left(\mu_{a} \mid x_{1, a}\right) \geq \log (1 / \delta), \text { for } a \geq 2 \quad x_{1, a}=\frac{N_{1} \mu_{1}+N_{a} \mu_{a}}{N_{1}+N_{a}}
\end{gathered}
$$

Since $\left\{\nu: m\left(\nu_{1}\right)<\max _{a \geq 2} m\left(\nu_{a}\right)\right\}=\cup_{a \geq 2}\left\{\nu: m\left(\nu_{1}\right)<m\left(\nu_{a}\right)\right\}$
And distributions restricted to single parameter exponential family

When to stop: Generalized likelihood ratio based

Compute logarithm of
Maximum likelihood of data
Maximum likelihood of data under alternate hypthesis
This equals $\min _{\nu \in \hat{A}^{c}}\left(\sum_{a \leq K} N_{a} K L\left(\hat{\mu}_{a} \mid \nu_{a}\right)\right)$

Stop when the statistic exceeds $\log (1 / \delta)+$ smaller order terms

Top-2 algorithms

Top two β optimal algorithms are gaining interest (DR 16, JDBHK 22)

Index \mathscr{J}_{a} empirical version of $N_{1} K L\left(\mu_{1} \mid x_{1, a}\right)+N_{a} K L\left(\mu_{1} \mid x_{1, a}\right)$

1. Please don't starve any arm
2. Select arm with largest sample mean with prob β.
3. Select challenger arm with smallest index with prob $1-\beta$
4. Stop (generalised likelihood ratio test) when

$$
\min _{a} \mathscr{F}_{a} \geq \log (1 / \delta)+\text { smaller order terms }
$$

Recall the lower bound problem minimise $\sum_{a \leq K} N_{a}$

$$
\text { S.t. } N_{1} K L\left(\mu_{1} \mid x_{1, a}\right)+N_{a} K L\left(\mu_{a} \mid x_{1, a}\right) \geq \log (1 / \delta) \quad \forall a
$$

Has a unique strictly positive solution that satisfies

$$
\begin{gathered}
N_{1} K L\left(\mu_{1} \mid x_{1, a}\right)+N_{a} K L\left(\mu_{a} \mid x_{1, a}\right)=\log (1 / \delta) \quad \forall a \\
\sum_{a} \frac{K L\left(\mu_{1}, x_{1, a}\right)}{K L\left(\mu_{a}, x_{1, a}\right)}=1
\end{gathered}
$$

Optimal top 2 algorithm

g denotes empirical $\sum_{a} \frac{K L\left(\mu_{1}, x_{1, a}\right)}{K L\left(\mu_{a}, x_{1, a}\right)} . \mathscr{I}_{a}$ empirical $N_{1} K L\left(\mu_{1} \mid x_{1, a}\right)+N_{a} K L\left(\mu_{1} \mid x_{1, a}\right)$

1. Please don't starve any arm
2. If $g>1$, sample arm 1
3. If $g<1$ sample arm with the empirical smallest index \mathscr{F}_{a}
4. Stop when $\min \mathscr{F}_{a} \geq \log (1 / \delta)+$ smaller order terms

After enough samples, the algorithm closely tracks a fluid path

Under fluid path

1) Empirical dist. $\hat{\mu}$ is equal to μ
2) Once $g=1$ it stays one
3) Once two indexes become equal they stay equal

Fluid view

$$
\text { Suppose after initial exploration, } g=\sum_{a} \frac{K L\left(\mu_{1}, x_{1, a}\right)}{K L\left(\mu_{a}, x_{1, a}\right)}>1
$$

Then samples given to arm 1 till $\sum_{a} \frac{K L\left(\mu_{1}, x_{1, a}\right)}{K L\left(\mu_{a}, x_{1, \alpha}\right)}=1$
Indexes have order

Feed arm 1 and minimum index(s) while maintaining $\sum_{a} \frac{K L\left(\mu_{1}, x_{1, a}\right)}{K L\left(\mu_{a}, x_{1, a}\right)}=1$
(Recall index $\mathscr{F}_{a}=N_{1}(n) K L\left(\mu_{1} \mid x_{1, a}\right)+N_{a}(n) K L\left(\mu_{a} \mid x_{1, a}\right)$ for total samples n)

- Smallest indexes increase at least linearly
- Larger ones increase sub linearly
- Once they meet they move together
- System becomes stationary once all
 indexes are equal

Key analysis step: Implicit function theorem

It shows that the fluid solution satisfies ODEs concatenated together

The algorithm after sufficiently large samples closely tracks the fluid path

Implicit function thm works because Jacabian of constraints

$$
\begin{aligned}
& \sum_{a} \frac{K L\left(\mu_{1}, x_{1, a}\right)}{K L\left(\mu_{a}, x_{1, a}\right)}=1 \text { And } \\
& N_{1} K L\left(\mu_{1} \mid x_{1, a}\right)+N_{a} K L\left(\mu_{a} \mid x_{1, a}\right)=I \text { for } a \in B
\end{aligned}
$$

$$
N_{1}+\sum_{a \in B} N_{a}+\sum_{a \in B^{c}} N_{a}=N
$$

with respect to ($N_{1}, N_{a}, a \in B, I$) after transformations is invertible.
Thus ($N_{1}, N_{a}, a \in B$) of perturbed system are close by.

Due Implicit Function Theorem, we have $\left(\frac{d N_{b}}{d N}=N_{b}^{\prime}\right)$

$$
\begin{aligned}
& N_{1}^{\prime}=\frac{N_{1} h_{B}}{\left(N_{1}+\sum_{a \in B} N_{a}\right) h_{B}+d_{B}^{-1} h(N)} \\
& N_{b}^{\prime}=\frac{N_{b} h_{B}+d_{b, b}^{-1} h(N)}{\left(N_{1}+\sum_{a \in B} N_{a}\right) h_{B}+d_{B}^{-1} h(N)} \text { for all } b \in B
\end{aligned}
$$

Let $h_{a}=\frac{\partial g}{\partial N_{a}}, \quad d_{1, a}=d\left(\mu_{1}, x_{1, a}\right)$ and $d_{a, a}=d\left(\mu_{a}, x_{1, a}\right) h_{B}=\sum_{a \in B} h_{a} d_{a, a}^{-1}, h(N)=\sum_{a \in B^{c} / 1} h_{a} N_{a} \quad$ and $d_{B}=\left(\sum_{a \in B} d_{a, a}^{-1}\right)^{-1}$.

Simulation

Indexes

Due Implicit Function Theorem, we have $\left(\frac{d N_{b}}{d N}=N_{b}^{\prime}\right)$

$$
\begin{aligned}
& N_{1}^{\prime}=\frac{N_{1} h_{B}}{\left(N_{1}+\sum_{a \in B} N_{a}\right) h_{B}+d_{B}^{-1} h(N)} \\
& N_{b}^{\prime}=\frac{N_{b} h_{B}+d_{b, b}^{-1} h(N)}{\left(N_{1}+\sum_{a \in B} N_{a}\right) h_{B}+d_{B}^{-1} h(N)} \text { for all } b \in B
\end{aligned}
$$

Let $h_{a}=\frac{\partial g}{\partial N_{a}}, \quad d_{1, a}=d\left(\mu_{1}, x_{1, a}\right)$ and $d_{a, a}=d\left(\mu_{a}, x_{1, a}\right) h_{B}=\sum_{a \in B} h_{a} d_{a, a}^{-1}, h(N)=\sum_{a \in B^{c} / 1} h_{a} N_{a} \quad$ and $d_{B}=\left(\sum_{a \in B} d_{a, a}^{-1}\right)^{-1}$.

Simulation

Delta $=0.01$

Delta=0.0001

Controlling the probability of error

Recall we stop when $\min _{\nu \in \hat{A}^{c}}\left(\sum_{a \leq K} N_{a} K L\left(\hat{\mu}_{a} \mid \nu_{a}\right)\right) \geq \log (1 / \delta)+$ small

If you stop wrong, \hat{A}^{c} contains the true probability vector μ.
Need to bound $P\left(\sum_{a \leq K} N_{a} K L\left(\hat{\mu}_{a} \mid \mu_{a}\right)\right) \geq \log (1 / \delta)+$ small, for any $\left.n\right)$ by δ.

Dual representations, exponential concave inequalities and mixture martingales cleverly used for this.

Extending to general distributions

- Consider

$$
\mathscr{L}:=\left\{\eta \in \mathscr{P}(\mathfrak{R}): \mathbb{E}_{X \sim \eta}\left(|X|^{1+\epsilon} \leq B\right\}\right.
$$

. Define $K L_{i n f}\left(\mu_{a}, x\right)=\inf _{\nu \in \mathscr{L}: m(\nu)>x} K L\left(\mu_{a}, \nu\right)$

Some conditions on the underlying distributions are necessary

Easy to find two distributions whose
KL distance is arbitrarily close, but means are arbitrarily far.

These are difficult to separate
Some restrictions on distributions necessary - bounded, have subGaussian tails, variance or other

moments bounded

Understanding $K L_{\text {inf }}(\eta, x)$

It equals $\inf _{\kappa} \sum_{i} \log \left(\frac{\eta_{i}}{\kappa_{i}}\right) \eta_{i}$ such that
$\sum_{i}\left|y_{i}\right|^{1+\epsilon} \kappa_{i} \leq B, \quad \sum_{i} y_{i} \kappa_{i} \geq x$ and $\sum_{i} \kappa_{i}=1$.
This is a convex program and is solved through Lagrangian duality.

Using duality, $K L_{\text {inf }}(\eta, x)$ can be seen to equal

$\max _{\left(\lambda_{1}, \lambda_{2}\right) \in \mathscr{R}_{2}} E_{\eta} \log \left(1-(X-x) \lambda_{1}-\left(B-|X|^{1+\epsilon} \lambda_{2}\right)\right.$, where

For empirical distribution $\hat{\mu}_{a}(n)$ we have $K L_{\text {inf }}\left(\hat{\mu}_{a}(t), m\left(\mu_{a}\right)\right)$ equals
$\left.\max _{\left(\lambda_{1}, \lambda_{2}\right) \in \mathscr{R}_{2}} \frac{1}{N_{a}(n)} \sum_{i=1}^{N_{a}(n)} \log \left(1-\left(X_{i}-m\left(\mu_{a}\right)\right) \lambda_{1}-\left(B-\left|X_{i}\right|^{1+\epsilon}\right) \lambda_{2}\right)\right)$.
In developing concentration inequality for this, the maximum function poses difficulties. We observe that inside the maximum we have a sum of exp-concave functions.

Sum of exp concave functions: a useful inequality

Let $\Lambda \subseteq \Re^{d}$ be a compact and convex subset and q be the uniform distribution on Λ. Let $g_{t}: \Lambda \rightarrow \Re$ be any series of exp-concave functions. Then

$$
\max _{\lambda \in \Lambda} \sum_{t=1}^{T} g_{t}(\lambda) \leq \log E_{\lambda \sim q} e^{\sum_{t=1}^{T} g_{t}(\lambda)}+d \log (T+1)+1
$$

Thus $\max _{\lambda \in \Lambda} \exp \left(\sum_{t=1}^{T} g_{t}(\lambda)\right)$ is close to the expectation $E_{\lambda \sim q} e^{\Sigma_{t=1}^{T} g_{t}(\lambda)}$.
The latter is a mixture of super-martingales and hence is a super martingale.

Ville's inequality

Ville's inequality: For a non-negative super martingale ($M_{n}: n \geq 0$),

$$
P\left(\exists n: M_{n} \geq x\right) \leq \frac{E M_{0}}{x}
$$

Conclusion

Discussed the best arm identification problem, applications and a popular algorithm

Introduced the optimal top-2 approach and discussed its fluid behaviour

Argued that our algorithm closely tracks the fluid behaviour when generated samples are large

Outlined how δ guarantees are shown

