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1) Risk Minimisation

min
θ∈Θ

CVaR1−β[L(X, θ)]

 is a set of service requirementsΘ

Portfolio Optimisation

L(X, θ) = − θ⊺X

 Θ = {θ : μ⊺θ ≥ r}

mean vector of returns μ →
Target return r →
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2) Mean-CVaR Optimisation

1) Risk Minimisation

min
θ∈Θ

CVaR1−β[L(X, θ)]

min
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λE[L(X, θ)] + (1 − λ)CVaR1−β[L(X, θ)]
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Risk appetite. λ ∈ [0,1] →

Portfolio Optimisation

Two stage problem

L(X, θ) = − θ⊺X
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L(X, θ) = c⊺θ + Q(X, θ)
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Q(x, θ) = inf
y∈S(θ)
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Minimise the tail risk of a loan 
portfolio while meeting target 
return guarantees 
 
Rockafellar and Uryasev 2002, 
Krohkhmal et al. 2002,…

Manage supply and price risk in 
service operations


Blanchet et al. 2019

Managing power operations 
subject to line failures, supply 
and demand fluctuations


Bienstock et al. 2014,  Summers et al. 
2015,…

Finding classifiers which don’t 
penalise minority subpopulations


Williamson and Menon, 2019…

Find a risk-minimizing decision: min
θ : R(θ) ≥ r

ρ
β [L(X, θ)]

Minimize default risk in loan 
portfolios while meeting target 
return requirement

Managing power operations 
subject to volatile supply, demand 
and price risks

Minimize excess latency subject 
to supply and price risks

Finding a loan classifier which 
does not excessively penalise 
small sub-populations
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Find a risk-minimizing decision: min
θ : R(θ) ≥ r

ρ
β [L(X, θ)]

Minimize default risk in loan 
portfolios while meeting target 
return requirement

Managing power operations 
subject to volatile supply, demand 
and price risks

Minimize excess latency subject 
to supply and price risks

Finding a loan classifier which 
does not excessively penalise 
small sub-populations

Find a risk minimising decision: min
θ:S(θ)≥r

CVaR1−β[L(X, θ)]



Conventional Stochastic 
Optimisation

i.i.d. samples ⟹ Loss realisations

Minimise Sample Averages

min
θ∈Θ

1
n ∑

i≤n

L(Xi, θ)

min
θ∈Θ

E[L(X, θ)]



Conventional Stochastic 
Optimisation

excess-loss 
probability     = β
excess-loss 
probability     

CVaR1−β[L(X, θ)]

Optimisation with tail 
risk measures

i.i.d. samples ⟹ Loss realisations
excess-loss 
scenarios      

Lack of representative tail samples 
(Lim et al. 2011, Caccioli et al. 2018) 

Minimise Sample Averages

min
θ∈Θ

1
n ∑

i≤n

L(Xi, θ)

min
θ∈Θ

CVaR1−β[L(X, θ)]min
θ∈Θ

E[L(X, θ)]

Curse of Rarity
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excess-loss 
probability     

Optimisation with tail 
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excess-loss 
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Requirement 

Adaptive Importance 
Sampling Paradigm

Algorithm is scalable
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CVaR minimisation: min
u≥0, θ∈Θ

(u + β−1E[L(X, θ) − u]+)
Assumption: The distribution of  is knownX
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model 
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distribution)

Step 1: Propose an 
"good" distribution 

family

Step 2: Set up OPT 
for the best 

candidate in the 
family  

sampler

informed by large 
deviations analysis

Step 3: 

Solve OPT

?

Importance Sampling 

Traditional Work Flow
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What is a good sampler for one decision 

is often not good for other

a bottleneck in design of IS 
algorithms

CVaR minimisation: min
θ

CVaR1−β[L(X, θ)]
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optimisation. 

‣ Use exponential twisting 

‣ Applied to a communication 
networks problem.
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‣ Develop an adaptive IS 
algorithm for stochastic 
optimisation. 

‣ “Tuning” the IS distribution leads 
to a significantly improved 
performance

Overcoming circularity: Adaptive IS



Adaptive IS-SAA

Get IS distribution
Pk = P(uk−1, θk−1)

INPUT: Family of distributions  such that  
is a “good” IS distribution for decision  

P( ⋅ ) P(u, θ)
(u, θ)

CVaR minimisation: min
u≥0, θ∈Θ

(u + β−1E[L(X, θ) − u]+)
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Adaptive IS-SAA

Get IS distribution
Pk = P(uk−1, θk−1)

Solve 
RM

Generate samples:


 (Znk−1
, …, Znk−1) ∼ Pk

INPUT: Family of distributions  such that  
is a “good” IS distribution for decision  

P( ⋅ ) P(u, θ)
(u, θ)
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nkβ
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∑
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(L(Zi, θ) − u)+ℒi}



Adaptive IS-SAA

INPUT: Family of distributions  such that  
is a “good” IS distribution for decision  

P( ⋅ ) P(u, θ)
(u, θ)

Update solution: (uk, θk)

Get IS distribution
Pk = P(uk−1, θk−1)

Solve 
RM

Generate samples:


 (Znk−1
, …, Znk−1) ∼ Pk

RM = min
(u,θ) {u +

1
nkβ

nk

∑
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(L(Zi, θ) − u)+ℒi}
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Adaptive IS-SAA

Why adaptive IS works


1) Iterates  converge to optimal solution 

2) In turn, this causes the IS distribution to be “more 
suitable” for the optimal decision 

(uk, θk)

INPUT: Family of distributions  such that  
is a “good” IS distribution for decision  

P( ⋅ ) P(u, θ)
(u, θ)

Update solution: (uk, θk)

Get IS distribution
Pk = P(uk−1, θk−1)

Solve 
RM

Generate samples:


 (Znk−1
, …, Znk−1) ∼ Pk



Known Results


1) He et al. (2021) derive a CLT for the solution iterates 

2) With a good choice of , significant variance 
reduction obtained

P( ⋅ )

Adaptive IS-SAA

INPUT: Family of distributions  such that  
is a “good” IS distribution for decision  

P( ⋅ ) P(u, θ)
(u, θ)

Update solution: (uk, θk)

Get IS distribution
Pk = P(uk−1, θk−1)

Solve 
RM

Generate samples:


 (Znk−1
, …, Znk−1) ∼ Pk
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implementing IS-SAA

Step 1: Propose a 
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Step 2: Set up OPT 
for the best 
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sampler
Step 3: 


Solve OPT

informed by large 
deviations analysis
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Difficulty 1: What is a “good” family of IS distributions??

Challenges in 
implementing IS-SAA

Step 1: Propose a 
"good" distribution 

family

Step 2: Set up OPT 
for the best 

candidate in the 
family  

sampler
Step 3: 


Solve OPT

Partial resolutions: Exponential/Hazard Rate Twisting 
(Glasserman et al. 2002, Juneja et al. 2008,  He et al. 2021…)

informed by large 
deviations analysis

model 
(objective + 

distribution)

INPUT: Family of distributions  such that  
is a “good” IS distribution for decision  

P( ⋅ ) P(u, θ)
(u, θ)



Difficulty 2: How to solve “OPT”??

Challenges in 
implementing IS-SAA

Step 1: Propose a 
"good" distribution 

family

Step 2: Set up OPT 
for the best 

candidate in the 
family  

sampler
Step 3: 


Solve OPT

Can be non-convex (or) combinatorially very challenging

informed by large 
deviations analysis

model 
(objective + 

distribution)

INPUT: Family of distributions  such that  
is a “good” IS distribution for decision  

P( ⋅ ) P(u, θ)
(u, θ)



Machine Learning


exponential family

log-concave densities

Portfolio Credit Risk


Gaussian, 
multivariate-t


elliptical densities

Risk Management 

Multivariate Weibull 

Copula Models

Commonly used 
models for X

Our Solution: Tail events occur in 
structurally similar ways



samples of X ∣ L(X, θ) > lIn blue:

In red: samples of X ∣ L(X, θ) > t

u); in other words, Pu is just the law of X conditioned on the event {L(X) Ø u}. We show

that the distributions Pl and Pu are similar in the sense that they concentrate their mass on

identical sets, upon suitably scaling, even if the level l > 0 is only a fraction of the level u.

Figure 1 below o�ers an illustration of this self-similarity property.

Figure 1: Illustration of the notion of self-similarity of optimal IS distributions: Samples
from the distributions Pl, Pu (displayed in blue and red respectively) reveal that they share
similar concentration properties for three distribution choices of X informed by a Gaussian
copula with correlation fl. The levels l, u are such that the probabilities of L(X) exceeding
these levels are approximately 10≠3 and 10≠5.5

. The contours (drawn in green) represent level
sets of L(x) = 1|(Ax ≠ b)+ derived from a ReLU neural network with weights given by the
matrix A with rows (0.3, 1), (1, 0.3), (0, 1.1), (1.1, 0) and vector b = 0.

(a) Normal marginals, fl = 0.5 (b) Weibull marginals, fl = 0.3 (c) Exponential marginals, fl = 1
2

The distribution-oblivious transformation T (·) employed in the IS scheme is carefully

chosen such that it exploits this self-similarity property. Irrespective of the underlying prob-

ability distribution, we show that the employed transformation T (·) replicates the concen-

tration properties of the theoretically optimal IS distribution by learning from observations

which are not as rare. The notion of self-similarity utilized here is based on the theory of

large deviations and is of di�erent nature compared to the weak convergence based notion

used widely in the statistical estimation of extreme events in Embrechts et al. (1997), Resnick

(1987), de Haan & Ferreira (2010). A weak convergence based IS distribution selection is ex-

plored in Deo & Murthy (2020) and is not suited to result in asymptotically optimal variance

reduction showcased in this paper.

The main contributions of this paper can be summarized as follows.

1) (Novel & generically applicable IS) We present an entirely novel IS scheme

which exhibits asymptotically optimal variance reduction in black-box IS estimation
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(a) Gaussian marginals,
correlation= 0.5

(b) Exponential marginals,
correlation= 0.5

(c) Weibull marginals with
↵ = (0.5, 0.5), correlation= 0
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Figure 3. Figures (A) - (C) plot independent samples from the zero-variance distri-
bution (in red) and that of the IS vector Z |L(Z) � u (in blue). Contours indicate the
level sets of the respective joint distributions. Figures (D) - (F) indicate the respective
histograms for (X) | L(Z) � u involved in the transformation Z = T (X)

More importantly, the zero variance and the IS samples tend to concentrate in the same
neighborhoods in all the three cases considered in Figures 3(A) - 3(C) as asserted by Proposition
5. Regardless of the region where the zero-variance distribution concentrates in Figures 3(A) -
3(C), the IS transformation Z = T (X) replicates the concentration in the same neighborhood
by implicitly learning from the samples which are not as rare. Indeed, the verification of
asymptotics (22a) - (22b) makes this observation rigorous in the light-tailed case.

To gain intuition behind this phenomenon, we first see that the multiplicative factor
(u/l)(x) � 1 in the transformation T (x) = (u/l)(x)x ensures that the IS vector T (X) is
more likely to take more extreme values than X. Here the exponent (X) ensures that the
components are magnified only to the extent necessary. Indeed, a quick examination by apply-
ing the definition,

(x) :=
log(1 + |x|)

⇢k log(1 + |x|)k1
,

to the red points in the respective cases in Figure 3 reveals the following observation: The
distribution of (X) |L(Z) > u concentrates in the neighborhood of the points {(1, 0), (0, 1)}
in Figure 3(F), unlike those in Figures 3(D) - 3(F) where its concentration is in the vicinity of
(1, 1). While a naive multiplication by the factor (u/l) will result in both components (X1, X2)
being magnified, the introduction of (u/l)(X) lets the conditional distribution of Z concentrate
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, samples {Tr( ⋅ ) : r ∈ [1,∞)} X1, …

Questions

1. How to identify this scaling?

2. How to use it in adaptive IS?
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