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Optimisation formulations that
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Optimisation formulations that
incorporate extreme risks:

1) Risk Minimisation ~ Portfolio Optimisation
: L(X,0) = — 01X

min CVaR_g[L(X, 0)]

00 ©=1{0:u10>r)

O is a set of service requirements
. 4 — mean vector of returns

r — Target return

...............................................................................................................................................................................................................................................................



Optimisation formulations that
incorporate extreme risks:
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2) Mean-CVaR Optimisation Two stage problem

. . LX,0) =c"0+ 0, 6)
min AE[L(X, 0)] + (1 — A)CVaR|_4| L(X, 0)] |

0cO where

O(x,0) = 1inf ylx

A € [0,1] — Risk appetite. LES(0)



Optimisation formulations that
incorporate extreme risks:

1) Risk Minimisation

min CVaR_g[L(X, 0)]
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O is a set of service requirements
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Find a risk minimising decision: min CVaR;_g[L(X, 0)]

Minimise the fail risk of a loan
portfolio while meeting target
return guarantees

Rockafellar and Uryasev 2002,
Krohkhmal et al. 2002,...

15

0:5(0)>r

Managing power operations
subject to line failures, supply
and demand fluctuations

Bienstock et al. 2014, Summers et al.
2015,... -

£2REHK

Manage supply and price risk in
service operations

Blanchet et al. 2019

Finding classifiers which dont
penalise minority subpopulations

Williamson and Menon, 2019...
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Conventional Stochastic
Optimisation

min E[L(X, 0)]
0O

i.i.d. samples ——=> Loss realisations
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Conventional Stochastic
Optimisation

min E[L(X, 0)]
0O

i.i.d. samples —=> Loss realisations

Minimise Sample Averages

min — L
oe® Nn Z (

Optimisation with tail
risk measures

min CVaR_g[L(X, 0)]
0cO

excess-loss
scenarios

excess-loss
probability = A

CVClRl_ﬁ[L(X, 6)]

Curse of Rarity

Lack of representative tail samples
(Lim et al. 201 1, Caccioli et al. 2018)



Conventional Stochastic
Optimisation

min E[L(X, 0)]
0O

i.i.d. samples —=> Loss realisations

Minimise Sample Averages

min — L
oe® Nn Z (

Optimisation with tail
risk measures

min CVaR_g[L(X, 0)]
0cO

excess-loss
scenarios

excess-loss
probability = A

CVClRl_ﬁ[L(X, 6)]

Curse of Rarity

~ 30 years of data required for CVaR
optimisation at f = 0.1
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1>0, €O

Assumption: The distribution of X is known

Reduction in Sample
Requirement

Adaptive Importance
Sampling Paradigm

Algorithm is scalable
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Importance Sampling

given distribution Jx) Alt. distribution fi(X)

tall event
of interest

CVaR minimisation: min (u + ' E[L(X,0) — u]*)
u>0, e®
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Importance Sampling

given distribution Jx) Alt. distribution fi(X)

tall event
of interest

Reweigh objective to eliminate bias

CVaR minimisation: min (u + ,B_IE ([L(Z, 0) — u]t?))
u>0, e®



Importance Sampling

model
(objective +
distribution)

given distribution  f(x)

—

Y

~ "~

Step I: Propose an
“good"” distribution -

Alt. distribution f;(X)

family y

informed by large
deviations analysis

tail event
of interest

4 Y

Step 2: Set up OPT Yy
for the best Step 3:
¢ >
candifdatcoaI in the {s°"’e OPT_J; sampler
ami
9 y y
?
................................................................................................................................. >

Traditional Work Flow
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model
(objective +
distribution)

the loss

—

L(X,0) = 0.2X, + 0.8X,

P

Y

Step |: Propose an
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What is a good sampler for one decision

the loss

L(X,0) = 0.2X, + 0.8X,

s often not good for other

model
(objective +
distribution)

P

Y

Step |: Propose an
—i "good" distribution

N

family y

—>4

L(X,0) = 0.8X, + 0.2X,

::> a bottleneck in design of IS

algorithms
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CVaR minimisation: min CVaR_g[L(X, 0)]

0

Step 3:
Solve OPT

-"-‘

level curves of

>

o

- sampler



A brief literature review

D " " Optimization
Variance NN\ g & under
Reduc.:tlon \"‘!'ﬁ?%?’ - taint
Techniques oo W i uncertainty
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with sample-averaging

Dantzig & Glynn 90

Dantzig & Infanger '93

Rubinstein & Shapiro '93
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Kozmik & Morton '14

Parpas et al "5

Birge 'l 2, Homem-de-Mello & Bayraskan "I 5 (reviews)
Blanchet , Zhang & Zwart 20

He, Jiang , Lam & Fu, "2 |
Image credit: Frits Ahlefeldt J 5
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Overcoming circularity: Adaptive IS

{  Optimization

Variance Sy X 3= 7\ under
Reduction L
Techniques ' e " = uncertainty
— minimizing CVaR,
= chance-constraints
o | v with sample-averaging
» Develop an adaptive IS
algorithm for stochastic
optimisation. Dantzig & Glynn 90
Dantzig & Infanger '93
» “Tuning’ the IS distribution leads Rubinstein & Shapiro '93
to a significantly improved Shapiro & Homem-de-Mello '98
performance Nemirovski & Shapiro '06

Barrera et al '4
Kozmik & Morton '14
Parpas et al 'I5
Birge 'l 2, Homem-de-Mello & Bayraskan "I 5 (reviews)
Blanchet , Zhang & Zwart 20
CHe,Jiang Lam & Fu, 21 )

Image credit: Frits Ahlefeldt



Adaptive IS-SAA

INPUT: Family of distributions P( - ) such that P(u,0)

is a “good” IS distribution for decision (u, 0)
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Get IS distribution
P, = P(uy_y, 0 _1)
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CVaR minimisation: min (u + ' E[L(X,0) — u]*)

u>0, e®
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Adaptive IS-SAA

INPUT: Family of distributions P( - ) such that P(u,0)
is a “good” IS distribution for decision (u, 0)
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Get IS distribution
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(u,0)

{

U +—Z (L(Z,0) — u)* &,

=1

}
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Adaptive IS-SAA

INPUT: Family of distributions P( - ) such that P(u,0)
is a “good” IS distribution for decision (u, 0)

-~

\

Get IS distribution
P, = P(uy_y, 0 _1)

)

v
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Generate samples:

(Z

nk_l’ e o
-

"an—l) ~ Pk

'""\!

Update solution: (i, 6,)

1) Iterates (u;,0,) converge to optimal solution

Why adaptive IS works

2) In turn, this causes the IS distribution to be “more
suitable” for the optimal decision



Adaptive IS-SAA

INPUT: Family of distributions P( - ) such that P(u,0)
is a “good” IS distribution for decision (u, 0)

-~

\

Get IS distribution
P, = P(uy_y, 0 _1)

)

v

("’"
Generate samples:

(Z

N1

-

""an—l) ~ Pk

""‘\!

Update solution: (i, 6,)

Known Results

1) He et al. (2021) derive a CLT for the solution iterates

2) With a good choice of P( - ), significant variance

reduction obtained



Challenges in
implementing IS-SAA

INPUT: Family of distributions P( - ) such that P(u, 0)
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Difficulty 1: What is a "good” family of IS distributions??



Challenges in
implementing IS-SAA

INPUT: Family of distributions P( - ) such that P(u, 0)
is a "good” IS distribution for decision (u, 0)

model
(objective +
- "~

distribution) Step I: Propose a
—>{ "good" distribution —>

famil
5 y __)!

informed by large
deviations analysis

Difficulty 1: What is a "good” family of IS distributions??

Partial resolutions: Exponential/Hazard Rate Twisting
(Glasserman et al. 2002, Juneja et al. 2008, He et al. 2021...)



Challenges in
implementing IS-SAA

INPUT: Family of distributions P( - ) such that P(u, 0)
is a "good” IS distribution for decision (u, 0)

model
(objective +
distribution)

—>i "good” distribution -

P
Step I: Propose a

famil
% ) 4

-~

—>4

i

informed by large
deviations analysis

-

# )
Step 2: Set up OPT

i Solve OPT
{ } sampler

for the best
candidate in the
family

Step 3:

.

Difficulty 2: How to solve "OPT"??

Can be non-convex (or) combinatorially very challenging



Our Solution: Tail events occur in
structurally similar ways

Portfolio Credit Risk

Gaussian,
multivariate-t
elliptical densities

Machine Learning

exponential family
log-concave densities

N

Commonly used
models for X

Risk Management

Multivariate Weibull
Copula Models




Our Solution: Tail events occur in
structurally similar ways
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Tail events occur in structurally
similar ways

0B

Objective: min CVaR|_g[L(X, 0)]

) . C' ~-, s
b ® o
AR, A

1 4 <
Crupd o L ;
-~ e
%008

Sample Average Approximation
only uses this data

In blue:samples of X | L(X, 60) > [
In red: samples of X | L(X, 0) > t




Tail events occur in structurally
similar ways

0B

Objective: min CVaR|_g[L(X, 0)]
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Tail events occur in structurally
similar ways

0B

Objective: min CVaR|_g[L(X, 0)]
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Can leverage information in
this data

Blue samples seen =~ 10° times
more frequently in data than red
ones

In blue:samples of X | L(X, 60) > [
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Tail events occur in structurally
similar ways

Objective: min CVaR|_g[L(X, 0)]
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Can leverage information in
this data

Theorem [D and Murthy 21]: Red In blue:samples of X | L(X, 6) > [

and blue points follow a large In red: samples of X | L(X, 0) > t
deviations principle with the same

rate function




Tail events occur in structurally

similar ways

Objective: min CVaR|_g[L(X, 0)]
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Self-Similarity — Efficient
Samplers

Objective: min CVaR|_g[L(X, 0)]
0e®

Questions
1. How to identify this scaling?
2. How to use it in adaptive IS?




Self-Structuring

transformation
Er" i’

T.(x) = r"™x
9 _J
where

log|x |
K(x) =
plog ||x||

r = scalar stretch
parameter

Questions

W, How to identify this scaling?
2. How to use it in adaptive IS?
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Conditions under which 7 ( -

self structuring

Asymptotically homogenous loss:

. L(nx, 6’)
lim = L*(x,0)

n— 00 nr

pdf of X : Jx(x) = exp(=¢(x))

. pnx) . .
lim = @*(x) — Light Tails
n— 00 gp(nl)

. flnx)

lim = f*(X) — Heavy tails
oo f(n1) 7

eg. + correlated multivariate normal

A{x  L*x,0) > 1}

X9 A2
.‘r.g,_{i:
¥ . ; o8 o %Y Q:. =>
© o ”»v".,"’ %
P )
[ t X1

in blue: samples of X | L(X,0) > ¢
in red: samples of X | L(X,0) > u
X: Rate point



Conditions under which 7 ( -

self structuring

Asymptotically homogenous loss:

. L(nx, 6’)
lim = L*(x,0)

n— 00 nr

pdf of X : Jx(x) = exp(=¢(x))

. pnx) . .
lim = @*(x) — Light Tails
n— 00 gﬂ(lfll)

. f(nx)

lim = f* i
oo fnl) J*(X) = Heavy tails

) is

eg. + correlated multivariate normal

A{x  L*x,0) > 1}

X9 A2
. q,:'g-..
4 . ; ot o ) Q:. =>
g %
%::
[ t X1

in blue: samples of X | L(X,0) > ¢
in red: samples of X | L(X,0) > u

Proposition [D & Murthy “21] (informal version): The theoretically
“optimal” sampler and the transformed excess loss samples concentrate
their mass on the same set of points




Incorporating Self-Structuring Transformations

into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring fransformations:

\(r(-):rell,o)}, samples X;, ...

Solve

RM

J—

4 ~ )
\ " Generate importance
, Get “best” stretch | P
re= Py, O ) scenarios:
. - y \hZi =T, (X)) :m_; <i< nkj; -

Update solution: (i, 6,)

1. How to identify this scaling?
Yl How to use it in adaptive IS?

Questions




Incorporating Self-Structuring Transformations

into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring fransformations:

\(r(-):rell,o)}, samples X;, ...

-

\

Get “best” stretch
re = r*(y_y, 01

)

.

P, = Law(T ,,k(X )

(""

Z

o

"'\!

Generate importance
scenarios:

;= Tl’k(Xi) - Ny <1 < nkj!

-

Solve

J—

need




Incorporating Self-Structuring Transformations

into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring fransformations:

\(r(-):rell,o)}, samples X;, ...

Solve

RM

J—

4 ~ )
\ " Generate importance
, Get “best” stretch | P
re= Py, O ) scenarios:
. . y \hZi =T, (X)) :m_; <i< nkj; -

Update solution: (i, 6,)

1 <&
BRM=min< u+— ) (IL(Z,0) —u)*Z,
(u,0) { np 2

=1



Incorporating Self-Structuring Transformations

into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring fransformations:

\(r(-):rell,o)}, samples X;, ...

-

\

Get “best” stretch
re = r*(y_y, 01

)

.

(""

Z

o

"'\!

Generate importance
scenarios:

;= Tl’k(Xi) - Ny <1 < nkj!

-

Update solution: (i, 6,)

Solve

J—

need

r*(u,0) € arg min

r

LE(La,0,0-ut2,)’ ]



Incorporating Self-Structuring Transformations
into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring transformations:
{(T.(-):re€[l,00)}, samples X, ...

4 ~ )
\ " Generate importance
, Get “best” stretch | P | solve
ro= (6 ) scenarios: ’RM
. e \MZi =T, (X)) :m_; <i< nkj; "

Update solution: (i, 6,)

r*(u, ) € arg min {E (L(T,,(X), 0) — u)+3,,)2}

r

Replace expectation by a sample average to identify r,...



Incorporating Self-Structuring Transformations
into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring fransformations:
{(T.(-):re€[l,00)}, samples X, ...

4 ~ )

Generate importance
Get “best” stretch P | solve
> — scenarios: RM

r,=r*u, ,0,_ :
. ‘ Uhi-1: - J Z;=T,(X) :m_ <i<mi ™

. J

Update solution: (i, 6},)

How does this address traditional difficulties?

1. Only need access to samples of X

2. 1, can be identified easily




Incorporating Self-Structuring Transformations
into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring fransformations:
{(T.(-):re€[l,00)}, samples X, ...

- ™

4 A Generate importance
Get “best” stretch P _,| solve
> — scenarios: RM

r=l’*u_,(9_ '
X k (15 O 1) ) ;=T (X):m_ <i<m|

. J

Update solution: (i, 6,)

Theorem [D and Murthy, 2023]: Let n,;; be number of samples
required by ALG to solve the CVaR minimisation problem to within an
error of €. Then, for any 0 > 0,

n
SAA >

for all f < f,
Mig ﬁl—é




Incorporating Self-Structuring Transformations
into adaptive IS [D and Murthy 22°]

INPUT: Family of self-structuring fransformations:
{(T.(-):re€[l,00)}, samples X, ...

- ™

4 A Generate importance
Get “best” stretch P _,| solve
> — scenarios: RM

r=l’*bt_,(9_ '
X k (15 O 1) ) ;=T (X):m_ <i<m|

. J

Update solution: (i, 6,)

Theorem [D and Murthy, 2023]: Let n,;; be number of samples
required by ALG to solve the CVaR minimisation problem to within an
error of €. Then, for any 0 > 0,

n C
> feralf<fy g~ i~ (—log B

1y« B ﬁ1_5




Numerical Exploration Input: Initial guess 6y, ry

Solve CVaR optimisation with IS
weighted SAA

Up to g, error
tolerance

— pkG) 8 h
I'(x) =r""x Update parameter r by solving a one-

dimensional optimisation problem

N




Numerical Exploration Input: Initial guess 6y, ry

Solve CVaR optimisation with IS
weighted SAA

_ k(x) 8 N
I'(x) =r""x Update parameter r by solving a one-
dimensional optimisation problem

b
X — IS-RA++ X — IS
301 \
, -=- SAA 250004 TTT SAA
|| ..... IS \
25 + 1 ‘\
|| 200004 V
1 0 \
5 \ E 150001
o - \ w0
15 \ 2 X
o # 10000 - AN
Lk e
% %o e _
;| o S~ 50004 . TTTEm=- X
........ Mo e e
0 M B — —¢ X — —¢ ¥ X
T T T T T T T 0 T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025  0.030 0.005 0.010 0.015 0.020 0.025 0.030
beta

B

CVaR Optimisation with 15-
asset portfolio



Summary

‘Optimization

Rare event under
simulation = uncertainty
minimizing CVaR,

chance-constraints
with sample-averaging

IS based on self-

structuring maps | Dantzig & Glynn '90
Dantzig & Infanger '93

Rubinstein & Shapiro '93

» Importance Sampling & scenario Shapiro & Homem-de-Mello '98
generation in stochastic Nemirovski & Shapiro '06
programming; Barrera et al '14
Kozmik & Morton '14

Parpas et al 'I5

Birge 'l 2, Homem-de-Mello & Bayraskan "I 5 (reviews)
Blanchet , Zhang & Zwart 20

He, Jiang , Lam & Fu, 2|

Image credit: Frits Ahlefeldt



(All papers co-authored with Karthyek Murthy)

1. Importance Sampling for minimising tail risks: A tutorial (submitted to
WSC 2023)

2. Combining Retrospective Approximation with Importance Sampling for
Optimising Conditional Value at Risk (WSC 2022)

3. Achieving Efficiency in Simulation of Distribution Tails with Black Box
Importance Samplers (under Revision at Operations Research)

e Link to webpage
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