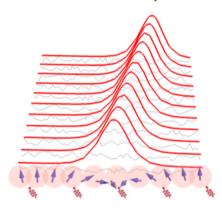
Superdiffusive hydrodynamics in isotropic spin chains

Romain Vasseur

(UMass Amherst)

ICTS workshop



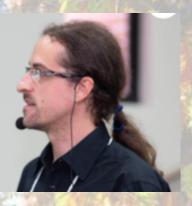
Gopalakrishnan & RV, PRL '19
Gopalakrishnan, RV & Ware, PNAS '19
De Nardis, Gopalakrishnan, Ilievski & RV, PRL '20
Ilievski, De Nardis, Gopalakrishnan, RV, Ware, PRX '21
De Nardis, Gopalakrishnan, RV, Ware, PRL '21

Acknowledgements

B. Ware (UMass-> NIST/JQI)

S. Gopalakrishnan (Penn State)

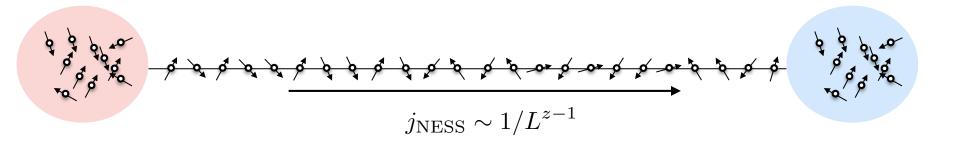
J. De Nardis (Cergy-Pontoise)



E. Ilievski (Ljubljana)

Also based on earlier works with:
U. Agrawal, V. Bulchandani, A. Friedman, D. Huse, C. Karrasch,
V. Khemani, J. Lopez, J. Moore...

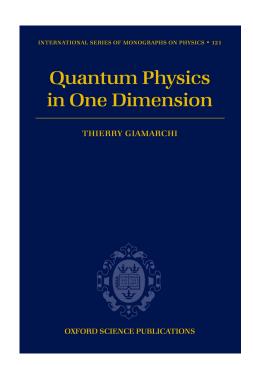
Spin transport



• Different pictures/setups: open (reservoirs), linear response to local perturbation, Kubo formula, ...

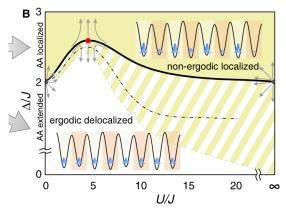
 $x \sim t^{1/z}$

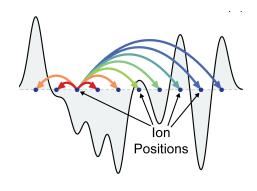
- Expected behavior:
 - ullet Diffusive: j=-D
 abla m , finite d.c. conductivity, z=2
 - Ballistic: $\sigma(\omega) = \pi D\delta(\omega) + \ldots$, finite Drude weight, z=1
 - Anomalous diffusion



Luttinger Liquids

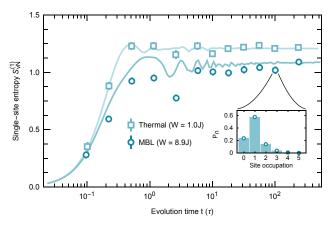
1D is special





Schrieber et al, Bloch group '15

Smith et al, Monroe group '15



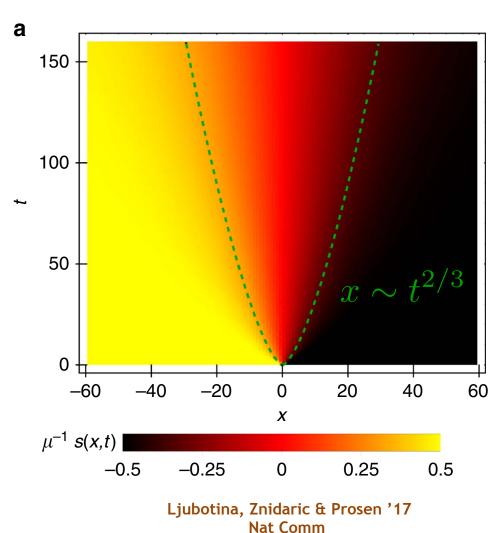
Many-body Localization

Lukin et al, Greiner group '18

Conventional Hydrodynamics breaks down

(Long time tails in Galilean-invariant gases)

Superdiffusion

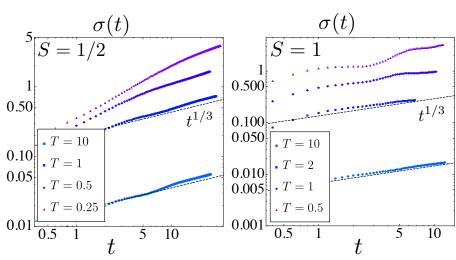


Heisenberg spin-1/2 antiferromagnet:

$$H = \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1}$$

Spin transport is superdiffusive!

$$x \sim t^{1/z} \quad z = 3/2$$

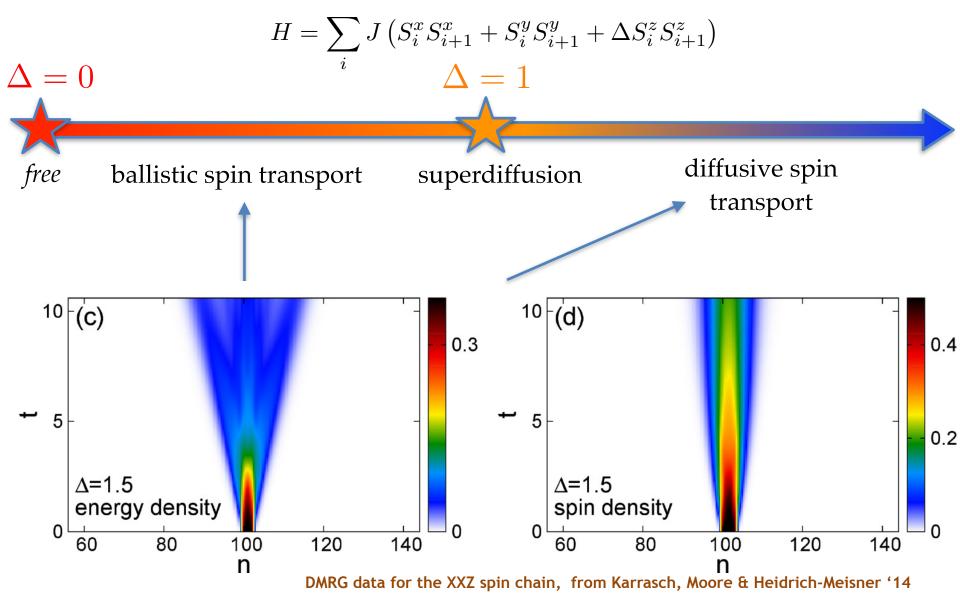


Integrable

Non-Integrable!

De Nardis, Medenjak, Karrasch & Ilievski, PRL '19

Dynamical phase transition



Spin diffusion coexisting with ballistic energy transport?

KPZ hydrodynamics

PHYSICAL REVIEW LETTERS

Highlights Recent A

Accepted Collections

Authors

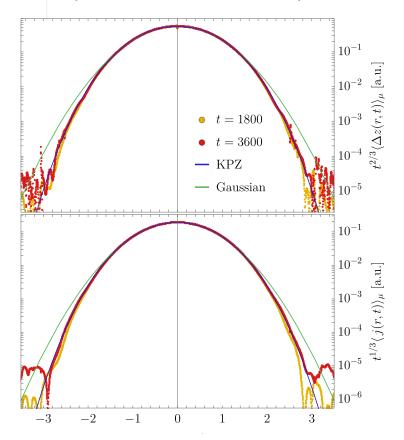
Referees

h P

Abou⁻

Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet

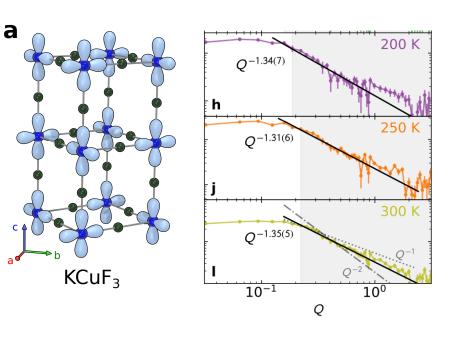
Marko Ljubotina, Marko Žnidarič, and Tomaž Prosen Phys. Rev. Lett. **122**, 210602 – Published 31 May 2019



$$\langle \hat{S}_n^z(t)\hat{S}_0^z(0)\rangle \simeq \frac{\chi}{(\lambda_{\text{KPZ}}\,t)^{2/3}} f_{\text{KPZ}}\left(\frac{n}{(\lambda_{\text{KPZ}}\,t)^{2/3}}\right)$$

$$\partial_t m + \partial_x (\lambda m^2 + \dots) = D_{\mathrm{reg}} \partial_x^2 m + \mathrm{noise}$$

Experiments



Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain

A. Scheie © 1.7, N. E. Sherman^{2,3,7}, M. Dupont © 2.3, S. E. Nagler © 1, M. B. Stone © 1, G. E. Granroth © 1, J. E. Moore ^{2,3} \boxtimes and D. A. Tennant © 4.5.6 \boxtimes

Neutron scattering

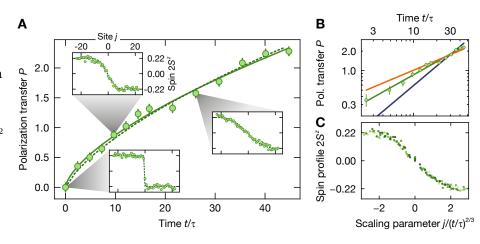
$$S(Q, \omega \to 0) \sim Q^{-z}$$

See Joel's talk

Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion

David Wei, ^{1,2} Antonio Rubio-Abadal, ^{1,2,*} Bingtian Ye, ³ Francisco Machado, ^{3,4} Jack Kemp, ³ Kritsana Srakaew, ^{1,2} Simon Hollerith, ^{1,2} Jun Rui, ^{1,2,†} Sarang Gopalakrishnan, ^{5,6} Norman Y. Yao, ^{3,4} Immanuel Bloch, ^{1,2,7} and Johannes Zeiher^{1,2}

Cold atoms



Superuniversality: see Enej's talk

See also Dupont & Moore, PRB '20, Krajnik, Ilievski, Prosen, Scipost '20

- Superdiffusive transport observed in a large class of quantum chains
- Key ingredients:
 - Spin rotation SU(2) symmetry (non-Abelian)
 - Integrability seems to play a key role (though superdiffusion has been observed in non-integrable models!)
- Question: How do we understand this? Start with integrable limit (Heisenberg chain), then add perturbations

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \left(\hat{c}_{\sigma,i}^{\dagger} \hat{c}_{\sigma,j} + h.c. \right) + U \sum_{i} \hat{n}_{\uparrow,i} \hat{n}_{\downarrow,i} \qquad \Delta x \propto t^{2/3} \text{ and } C(0,t) \propto t^{-2/3}$$

Fava, Ware, Gopalakrishnan, Vasseur, Parameswaran PRB '20

Ilievski, De Nardis, Gopalakrishnan, RV, Ware, PRX '2 See Enej's talk!

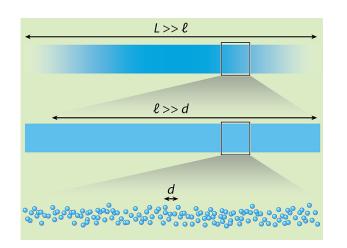
Also survives integrability breaking up to long times, more on this later...

Theory: Generalized hydrodynamics

New hydrodynamics framework:

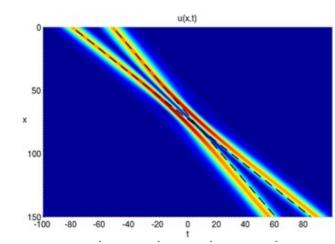
Castro-Alvaredo, Doyon & Yoshimura PRX '16 Bertini, Collura, De Nardis & Fagotti PRL '16

Picture credit: J. Dubail, Physics 9, 153 (2016)



Two complementary pictures

Hydrodynamic approach that takes all conserved quantities into account



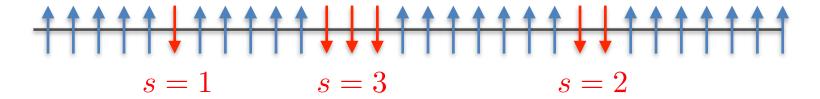
Kinetic theory approach for the stable quasiparticles (=solitons) of such models

Doyon, Yoshimura & Caux, PRL'17
V. Bulchandani, RV, C. Karrasch & J.E. Moore, PRB '17

Quasiparticles: magnons and strings

Start from reference ("vacuum") state:

Magnons and bound states of magnons ("string"), stable quasiparticles at finite T



Behave like semi-classical particles:

Density:
$$ho_s \sim \frac{1}{s^3}$$
 Velocity: $v_s \sim \frac{1}{s}$ Charge: $m_s = s$

ballistically moving charged quasiparticles —> ballistic transport?

Screening

 Magnon: spin down moving in a majority of spins up, becomes a spin up in a majority of spins down when scattering with a bigger "string" (cartoon in FM limit)

Spends half its time being up or down

$$\downarrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow$$
 $x \longrightarrow$

Quasiparticle "s" gets screened when it collides with a QP s' bigger than itself:

Density:
$$\sum_{s'>s} \rho_{s'} \sim 1/s^2$$

• Using velocity $\,v_s\sim 1/s\,$, this gives a screening time scale: $| au_s\sim s^3|$

$$\tau_s \sim s^3$$

Anomalous diffusion

At time t, only magnon bound states with $s \sim t^{1/3}$ contribute to transport!

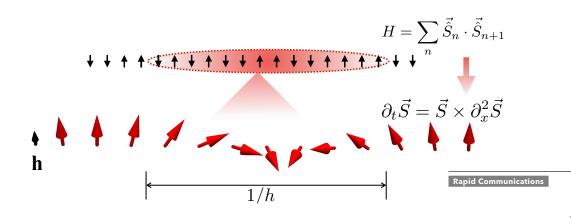
Kubo formula:

$$\sigma(\omega) = \int_0^\infty dt \mathrm{e}^{i\omega t} \langle J(t)j(0)\rangle \sim \int_0^\infty dt \mathrm{e}^{i\omega t} \sum_s \rho_s (v_s m_s)^2 \mathrm{e}^{-t/\tau_s}$$

$$\sigma(\omega) \sim \omega^{-1/3}$$
 Superdiffusion!

$$\sigma(\omega) \sim \omega^{-1/3}$$

Where does KPZ come from?



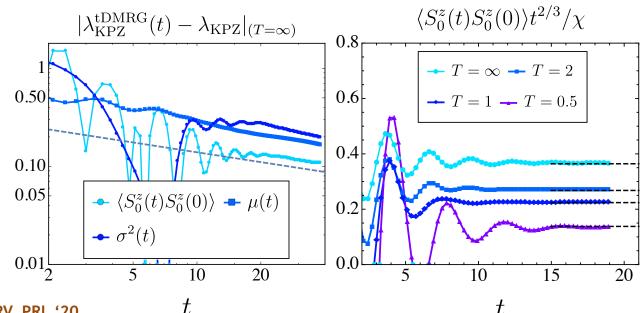
Quasiparticles constructed above reference vacuum state. SU(2) "gauge" Degree of freedom.

PHYSICAL REVIEW B 101, 041411(R) (2020)

Kardar-Parisi-Zhang universality from soft gauge modes

Vir B. Bulchandani Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA

- Mapping between soft goldstone modes
 And giant quasiparticles
- Can even compute the KPZ coupling ("superdiffusion constant")



KPZ coupling and superdiffusion constant

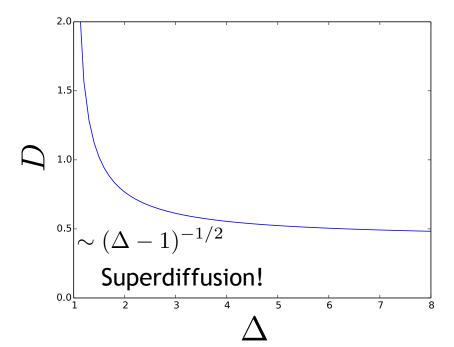


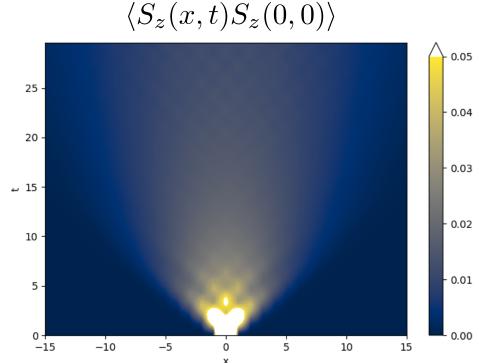
Breaking the SU(2) symmetry

$$H = \sum_{i} J \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z} \right)$$

Giant QP are exponentially suppressed, Finite d.c. conductivity (= diffusion)

De Nardis, Bernard, Doyon, Scipost '19 S. Gopalakrishnan & RV, PRL '19 S. Gopalakrishnan, RV & B. Ware, PNAS '19

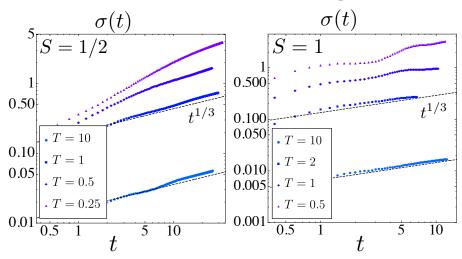




• Diffusion constant (large T):

$$D = \frac{2\sinh\eta}{9\pi} \sum_{s=1}^{\infty} (1+s) \left[\frac{s+2}{\sinh\eta s} - \frac{s}{\sinh\eta(s+2)} \right]$$
$$\eta = \cosh^{-1}(\Delta)$$

Integrability breaking



Integrable Non-Integrable!

De Nardis, Medenjak, Karrasch & Ilievski, PRL '19

A 200 K 200 K 250 K 250

Superdiffusion appears to be robust to breaking integrability?

Why?

SU(2) hydro: vanilla diffusion?
P. Glorioso, L. Delacretaz, X. Chen, R. Nandkishore, A. Lucas
Scipost '21

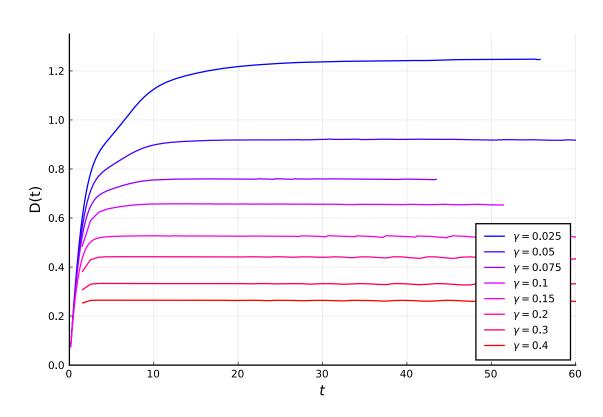
Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain

Integrability breaking: lifetimes

- Quasiparticles can decay, have a finite lifetime
- Fermi Golden Rule estimate: $\Gamma_s \sim \mathrm{d.}o.s. imes |V|^2$

For a generic perturbation breaking SU(2) (say noise coupling to Sz), rate Γ_s increases with s. Giant quasiparticles decay quickly...

Vanilla diffusive transport



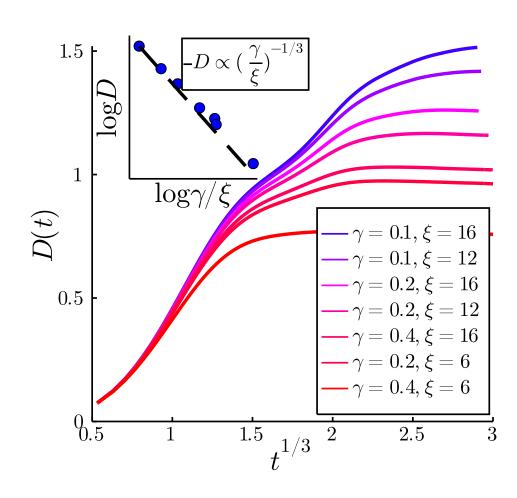
Non-analytic diffusion constant

$$H_{\eta} = H_0 + \sum_{j} \eta_j(t) O_j$$
$$\langle \eta_j(t) \eta_{j'}(t') \rangle = \gamma f(j - j') \delta(t - t')$$

Non-analytic dependence of D on the perturbation strength!

$$D \sim \gamma^{-1/3}$$

See also Znidaric PRL '20



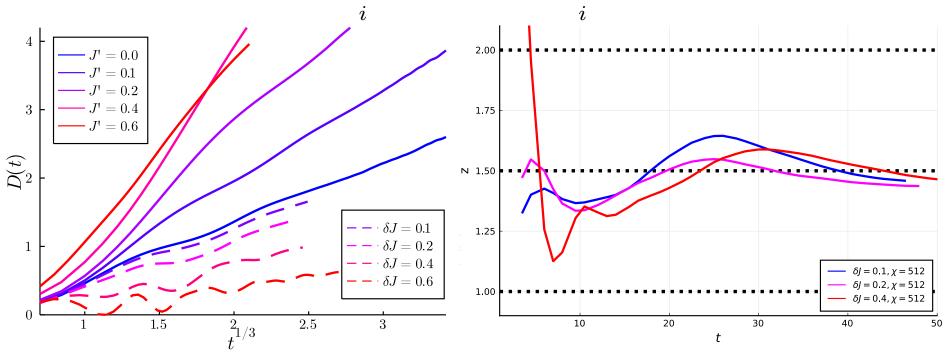
Integrability breaking: anomalous diffusion

De Nardis, Gopalakrishnan, RV, Ware PRL '21

BUT if perturbation preserves SU(2), matrix element suppressed as 1/s (Goldstone physics), and density of states factors can only suppress this further

z=3/2 for all accessible time scales!!

$$H = J \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + \delta J \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+2}$$



Integrability breaking: anomalous diffusion

See also: De Nardis, Medenjak, Karrasch & Ilievski PRL '20 for logs in a different regime

Noisy SU(2)-symmetric perturbation: energy is not conserved

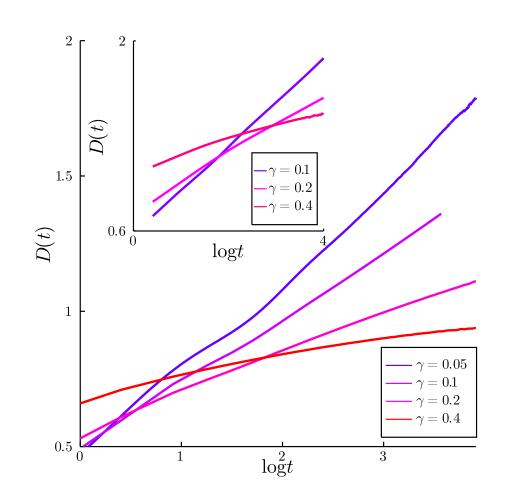
Giant quasiparticles are still long lived!

$$\Gamma_s \lesssim 1/s^2$$

$$\sigma(\omega) \sim \int dt e^{i\omega t} \sum_{s} \frac{1}{s^3} e^{-t/s^2}$$

$$\sigma(\omega) \sim |\log \omega|$$

Log (super)diffusion!



Conclusion

- Anomalous (superdiffusive) transport in integrable isotropic spin chains
- Relatively simple mechanism, integrability needed only to stabilize quasiparticle excitations at high temperature
- Remarkably stable to integrability-breaking perturbations
- KPZ? Non-perturbative effects? Higher-order processes?

