

Selected Reading

DJEM, "Axion Cosmology", Ch. 3.

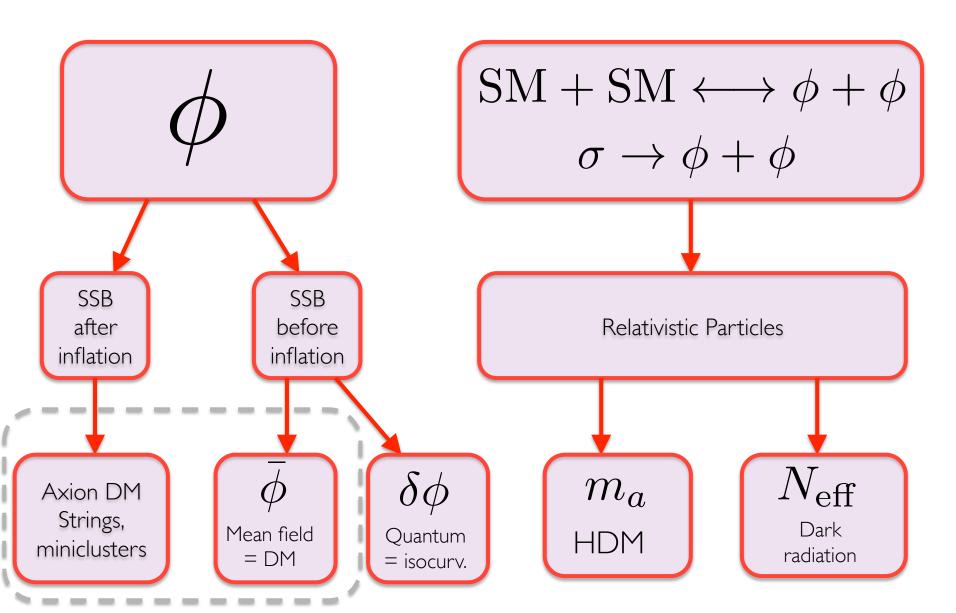
Kolb & Turner, Ch. 3, 10

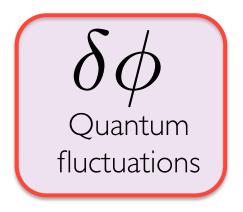
Sikivie, astro-ph/06 I 0440

Order of Service

- 1. PQ symmetry breaking T~ f_a
- 2. Shift symmetry breaking $T \sim \mu$
- 3. Axion field evolution H~ m

QI:When and how are initial conditions set?

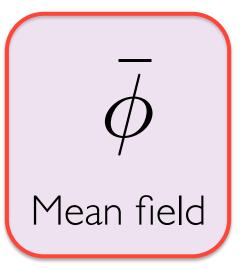

Q2: What produces relic axions?


Sources of Cosmic Axions

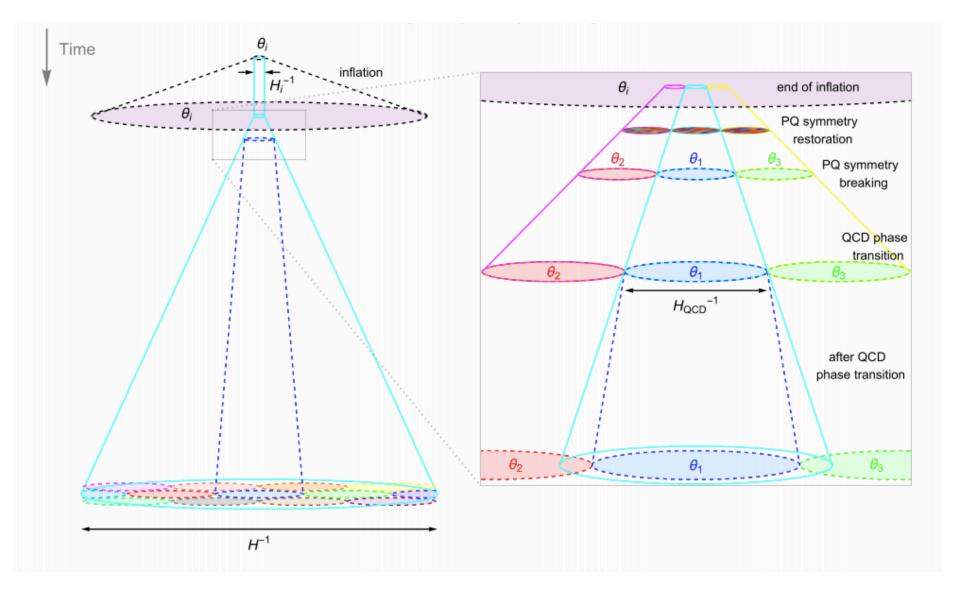
Classical Axion
Condensate

Thermal Production Non-thermal decays

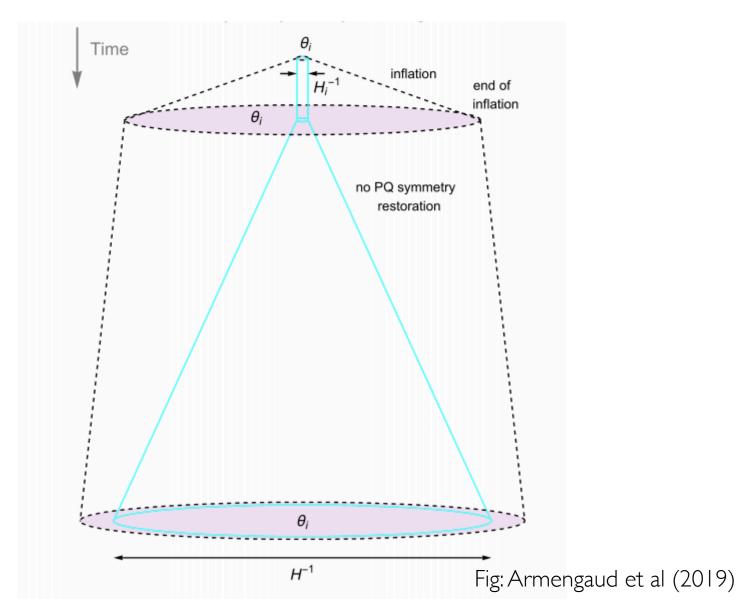
Sources of Cosmic Axions



See Vivian Poulin's lecture


Strings, domain walls, miniclusters

"Scenario A"
PQ Broken
After Inflation



"Scenario B"
PQ Broken
During Inflation

Scenario A

Scenario B

The Cosmic Axion Field

Scalar field action (canonical kinetic term) in curved space:

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \right]$$

Apply the Euler-Lagrange equations:

$$\partial_{\mu} \frac{\delta S}{\delta \partial_{\mu} \phi} - \frac{\delta S}{\delta \phi} = 0$$

The Cosmic Axion Field

Scalar field action (canonical kinetic term) in curved space:

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \right]$$

Apply the Euler-Lagrange equations:

$$\Rightarrow \Box \phi - \partial_{\phi} V = 0 \qquad \Box = \frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} g^{\mu\nu} \partial_{\nu})$$

In the FRW spacetime:

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a(t)^2 \mathrm{d}\vec{x}^2$$

$$\Box = -\partial_t^2 - 3H\partial_t + \nabla^2$$

For FRW we should strictly ignore this. We include it approximately when curvature is small (Scenario A)

Energy-Momentum Tensor

Einstein-Hilbert action:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{M_{pl}^2}{2} R + \mathcal{L}_M \right] \qquad R = g^{\mu\nu} R_{\mu\nu}$$
 Ricci scalar

Euler-Lagrange equations → Einstein field equations:

$$G_{\mu\nu} = M_{pl}^{-2} T_{\mu\nu}$$

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \qquad T_{\mu\nu} := \frac{\delta S_M}{\delta g^{\mu\nu}}$$

Components define the energy density, pressure and velocity:

$$T^{0}_{0} := -\rho \quad T^{i}_{i} := \delta^{i}_{j}P + \Sigma^{i}_{j} \quad T^{0}_{i} := (\rho + P)v_{i}$$

Energy-Momentum Tensor

This defines the energy momentum tensor for the scalar field:

$$T^{\mu}_{\ \nu} = g^{\mu\alpha}\partial_{\alpha}\phi\partial_{\nu}\phi - \frac{\delta^{\mu}_{\ \nu}}{2} \left[g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi + 2V \right]$$

In FRW only the energy density and pressure are non-vanishing:

$$\bar{\rho} = \frac{1}{2}\dot{\phi}^2 + V \quad \bar{P} = \frac{1}{2}\dot{\phi}^2 - V$$

"Relic Density"

Compute the final value of the energy density given the initial conditions for the Klein Gordon equation:

$$\rho(t_i) \to \rho(t_0)$$

The cosmic density parameter is:

$$\Omega_a h^2 := \frac{\rho(t_0)h^2}{3H_0^2 M_{pl}^2} \quad \text{ For DM: } \Omega_a h^2 = 0.120 \pm 0.001$$

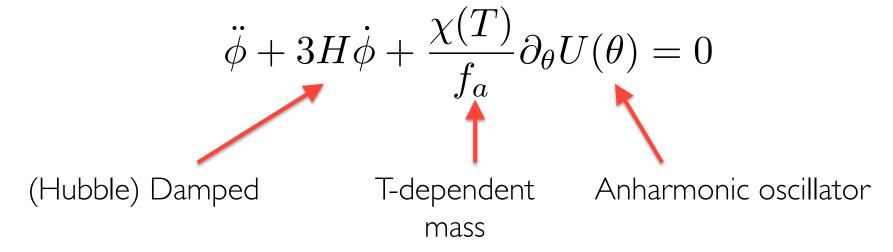
$$H_0 = 100h \text{ km s}^{-1} \text{ Mpc} = hM_H = 2.13h \times 10^{-33} \text{ eV}$$

Our task is to compute the function:

$$\rho(t_0) = f(\phi_i, \dot{\phi}_i, m_a, \cdots)$$

Selected Reading

DJEM, "Axion Cosmology", Ch. 4, App. C, D


Wantz & Shellard, arXiv:0910.1066

Fox, Pierce, & Thomas, hep-th/0409059

Borsanyi et al, arXiv:1606.07494

Klein-Gordon Equation

Inflation smoothes the background field \rightarrow neglect spatial derivatives

Key feature: Hubble friction dominates early until H~m and "freezes" field → Initial conditions show attractor behaviour:

$$\dot{\phi}(t_i) \to 0$$

Aside: for the cosine potential this is the e.o.m. of a circular pendulum on a table with time-dependent angle of inclination.

An Exact Solution

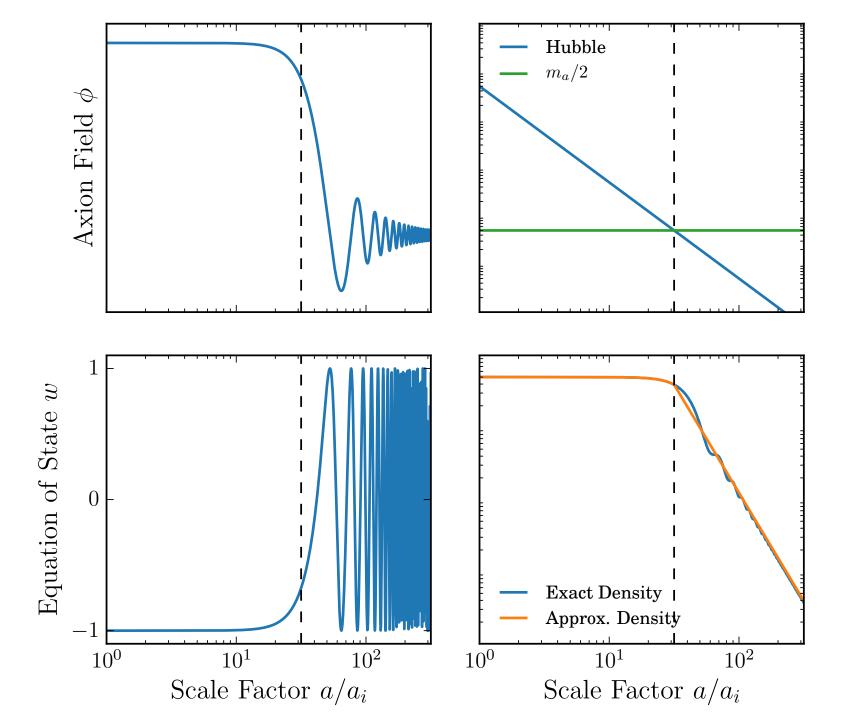
Start with the simplest version of this equation, which still displays all the key features:

- 1. T-independent mass. Relevant if H~m after T~ μ . QCD axion with fa >10¹⁶ GeV. String axions, since μ ~ M_{string} >> Λ .
- 2. No "back reaction" in the Friedmann equation. Relevant for axion DM, when H~m should occur before matter radiation equality.
- 3. Harmonic potential. Relevant for $\theta_i < I$.
- $2 \rightarrow$ can assume expansion is dominated by a single fluid:

$$a(t) \propto t^p \Rightarrow H = \frac{p}{t}$$

Standard hot big bang \rightarrow p=1/2. Matter dom \rightarrow p=2/3

An Exact Solution


$$\phi(t) = a^{-3/2} (t/t_i)^{1/2} [C_1 J_n(mt) + C_2 Y_n(mt)]$$

$$n = (3p - 1/2)$$

Constants CI and C2 set by i.c.'s such that initial field velocity =0 Harmonic equation is linear in ϕ , so the initial condition scales out.

Asymptotic behaviour:

$$t \ll t_i$$
 $\phi = \phi(t_i)$
 $t \gg t_i$ $\phi \propto a^{-3/2} \cos(mt)$

A Useful Approximation

Initial value

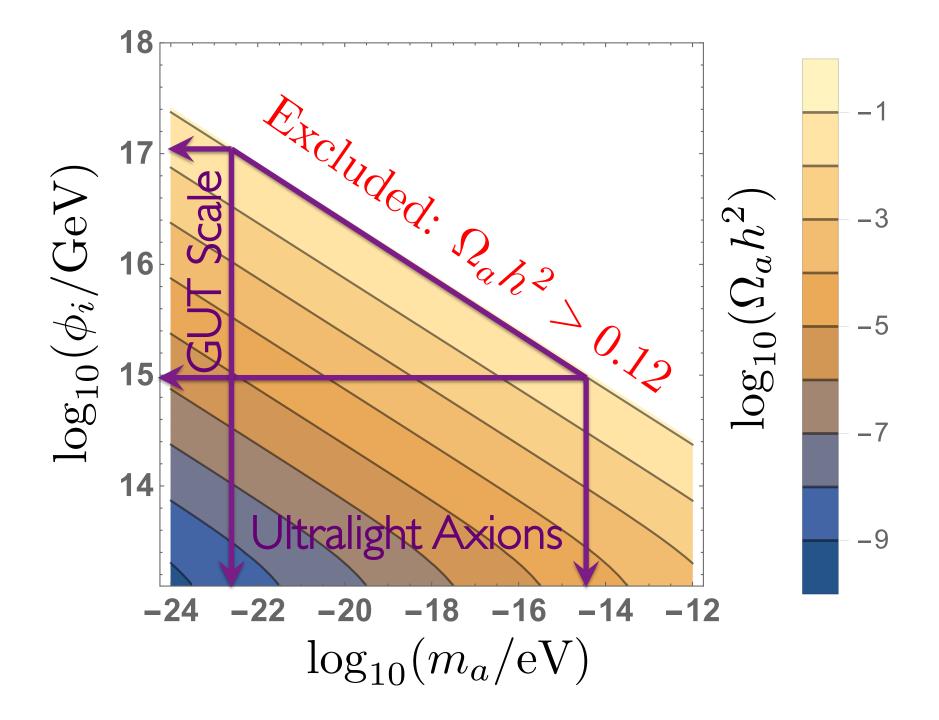
$$\rho(a_{\rm osc}) \approx \rho(t_i) = \frac{1}{2} m_a^2 \phi_i^2$$

Transition scale

$$3H(a_{\rm osc}) = m_a$$

Early time (DE-like)

$$\rho(a) \approx \rho(a_{\rm osc}) \qquad (a < a_{\rm osc})$$


Late time (DM-like)

$$\rho(a) \approx \rho(a_{\rm osc}) \left(\frac{a_{\rm osc}}{a}\right)^3 \ (a > a_{\rm osc})$$

A Useful Approximation

Closed form expression for relic density:

$$\Omega_a \approx \begin{cases}
\frac{1}{6} (9\Omega_r)^{3/4} \left(\frac{m_a}{H_0}\right)^{1/2} \left\langle \left(\frac{\phi_i}{M_{pl}}\right)^2 \right\rangle & \text{if } a_{\text{osc}} < a_{\text{eq}} \\
\frac{9}{6} \Omega_m \left\langle \left(\frac{\phi_i}{M_{pl}}\right)^2 \right\rangle & \text{if } a_{\text{eq}} < a_{\text{osc}} \lesssim 1 \\
\frac{1}{6} \left(\frac{m_a}{H_0}\right)^2 \left\langle \left(\frac{\phi_i}{M_{pl}}\right)^2 \right\rangle & \text{if } a_{\text{osc}} \gtrsim 1
\end{cases}$$

Initial Field Value: Caution!

Normally we simply take this as a free parameter. But don't forget the inflationary fluctuations!

$$\phi(t_i) = \sqrt{\langle \phi_i^2 \rangle} = \sqrt{\theta_i^2 f_a^2 + H_I^2/4\pi^2} \approx \theta_i f_a$$

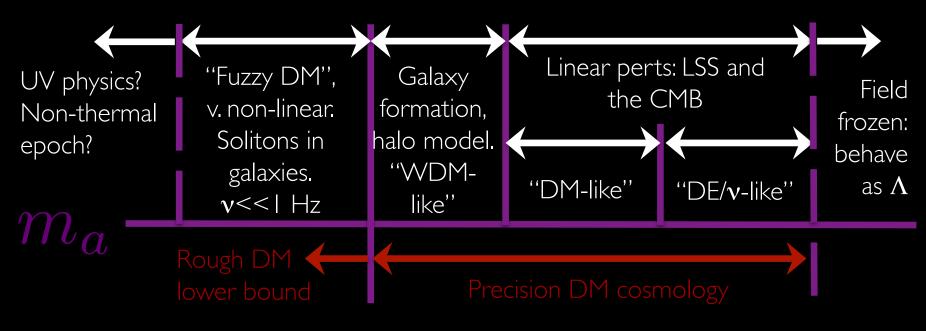
$$\uparrow$$
 Only valid if $\theta_i f_a \gg H_I$

- \rightarrow Cannot set ϕ =0 by tuning θ even if fa>10¹⁴ GeV
- → There is a minimum contribution to the relic density
- \rightarrow If fa<10¹⁴ GeV the inflation contribution can dominate for θ if tensor to scalar ratio is large.

Important Lessons

Axions behave like DM (density $\sim a^{-3}$) whenever H<m. Axions behave like DE (negative pressure) whenever H>m.

Axion DE (or axion inflation), V needs to dominate H:


$$3H^2M_{pl}^2 \approx \frac{1}{2}m_a^2\theta_i^2f_a^2$$

H>m → f must be of order the Planck scale. For a single axion, this runs into the "Weak Gravity Conjecture", and is a subject of intense study. Inflation needs long, flat potentials (60 e-folds). DE easier since we only see ~ few e-folds.

What about axion Dark Matter?

Axion DM Scales

Consider the Hubble scale at different epochs:

Physics:

Hubble:

[eV]

BBN

 10^{-15}

Size of dSph

 10^{-22}

Non-

linear

 10^{-24}

Equality

Today

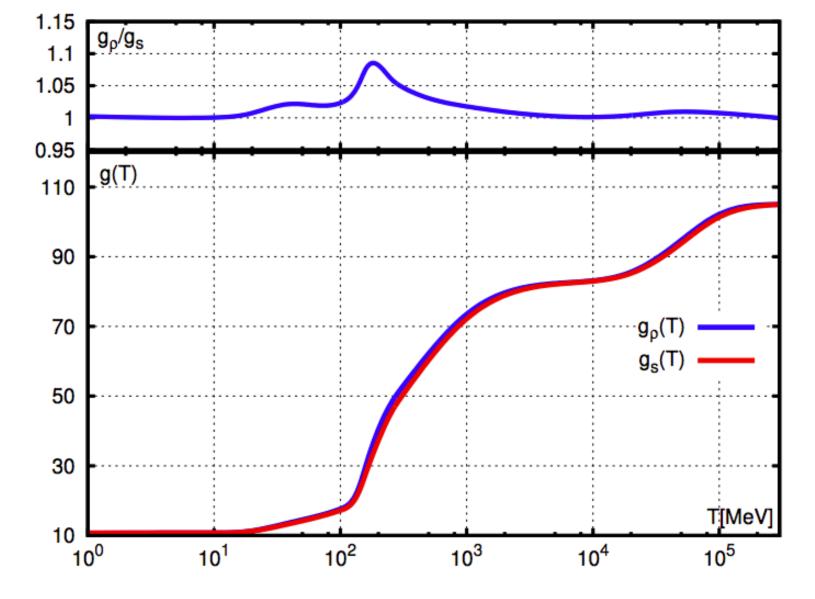
 10^{-28}

 10^{-33}

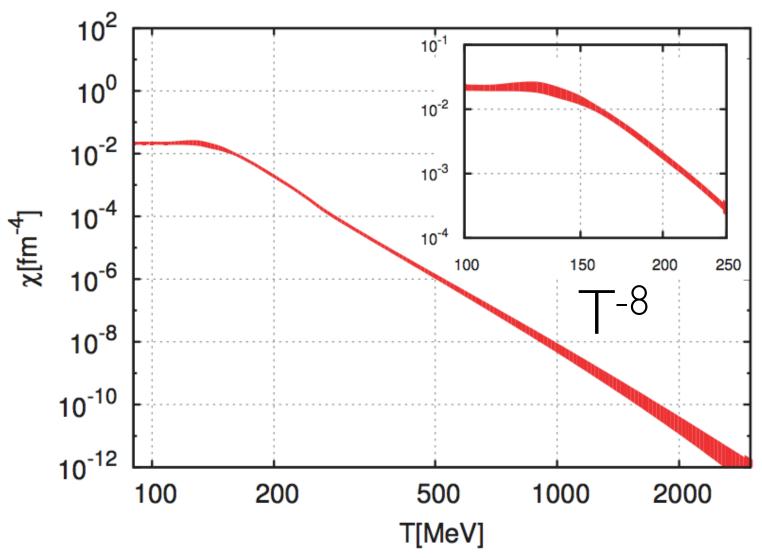
David J. E. Marsh

The QCD Axion

We must revoke all of our simplifying assumptions:

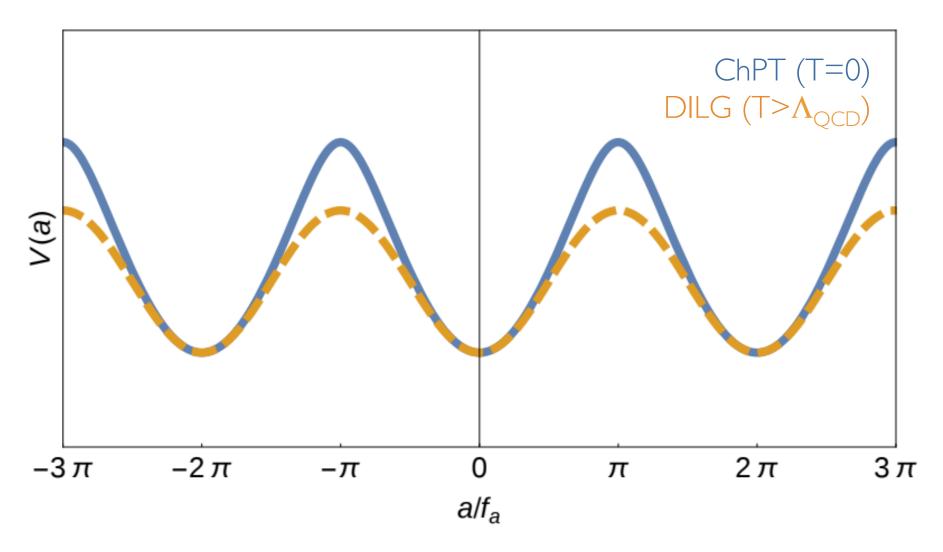


The QCD Axion


We must revoke all of our simplifying assumptions:

- Hubble not simple fluid, $g^*(T)$ needed during QCD phase transition.
- Topological susceptibility important, since $H\sim m(T)$ occurs while m(T) still growing.
- Anharmonicities are known, so we may as well use the full potential.
- Relic density can be achieved for f<10¹⁴ GeV →
 HI contribution can dominate.

We covered all these points last lecture...



Lattice QCD $g^*(T)$ from Borsanyi et al (2016) \rightarrow table fits. See also Wantz & Shellard (2009) for analytic fits and calculation.

 $\chi(0) = (75.6 \text{ MeV})^4$

Borsanyi et al (2016) See tabulated fitting functions

di Cortona et al (2015)

Oscillation Temp. and f Scaling

Define:

$$3H(T_{\rm osc}) = m_a(T_{\rm osc})$$

Recall:

$$3H^{2}M_{pl}^{2} = \frac{\pi^{2}}{30}g_{\star,R}(T)T^{4}$$

$$m_{a}(T) = m_{a,0} \left(\frac{T}{\Lambda_{QCD}}\right)^{-n}$$

$$m_{a,0} \approx 5.9 \times 10^{-6} \text{ eV} \left(\frac{10^{12} \text{ GeV}}{f_{a}}\right)$$

Approximating g* as a series of step functions:

$$T_{\rm osc} \propto f_a^{-1/(n+2)}$$

Adiabatic Invariant

Due to the mass evolution we cannot use the approximation:

$$\rho(a) \approx \rho(a_{\rm osc}) \qquad (a < a_{\rm osc})$$

$$\rho(a) \approx \rho(a_{\rm osc}) \left(\frac{a_{\rm osc}}{a}\right)^3 \ (a > a_{\rm osc})$$

However, since m(T) evolution (T evolves over H) is slow compared to the frequency of oscillation (m>H), there is an invariant:

$$\mathcal{A} = \frac{1}{2\pi} \oint p \, \mathrm{d}q \qquad q = \theta \qquad p = a^3 \dot{\theta}$$

Adiabatic Invariant

This implies that the axion comoving number density is

conserved while the mass evolves:

conserved while the mass evolves:
$$\rho(T) = m_a(T) n_a(T) = m_a(T) \left(\frac{a(T_{\rm osc})}{a(T)}\right)^3 n_a(T_{\rm osc})$$

$$n_a(T_{\rm osc}) = \frac{1}{2} m_a(T_{\rm osc}) \langle \theta^2 \rangle_{\rm cycle} f_a^2$$

Using entropy conservation: $a(T) \propto g_{\star,S}(T)^{-1/3} T^{-1}$

We find the final scaling for the relic density in terms of f:

$$\Omega_a h^2 \sim f_a^{(n+3)/(n+2)}$$
 [Exercise: show this]

The adiabatic invariant only applies strictly when the potential is in the harmonic regime, which brings us on to the last point...

Anharmonic Corrections

In general these must be computed numerically. Solve the evolution in the full potential. However, they can be fit and then applied to the existing approximations:

$$\Omega_a h^2 = \mathcal{F}_{\rm an}(\theta) \Omega_a h^2 |_{\rm harm.}$$

We know the asymptotic form of F:

$$\mathcal{F}_{\mathrm{an}}(\theta) \approx 1; \quad (\theta \lesssim 1)$$
 $\mathcal{F}_{\mathrm{an}}(\theta) \to \infty; \quad (\theta \to \pi)$

The divergence can be shown to take the form:

$$m_a(t_{
m osc})t_{
m osc} = \ln[e/q(heta_i/\pi)]$$
 For q(x) polynomial

For a series of fits, see Diez-Tejedor & Marsh (2017)

Code: AxionRelic (ask me), GAMBIT module soon (Seb Hoof)

Fits to the QCD Relic Density

Selected Reading

DJEM, "Axion Cosmology", Ch. 3.

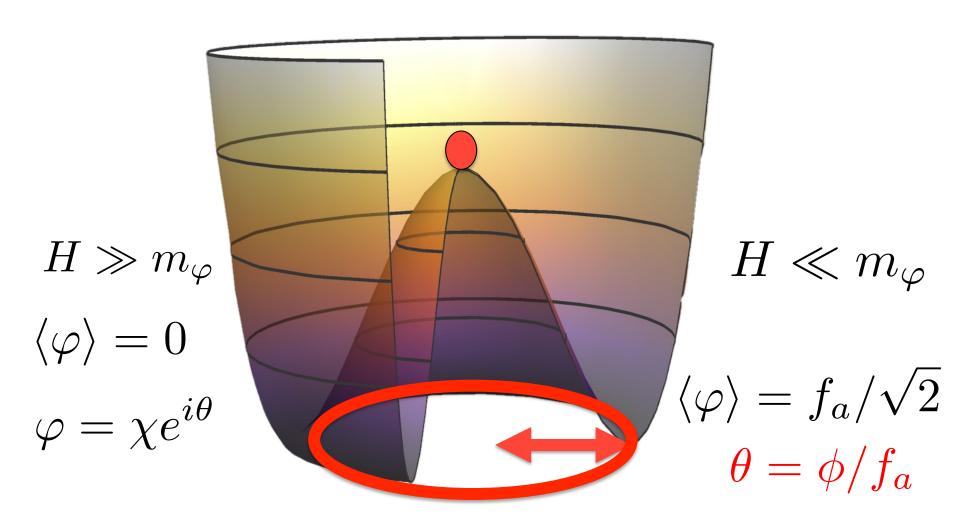
Vaquero et al, arXiv:1809.09241

Hiramatsu et al, arXiv:1202.5851

Gorghetto et al arXiv:1806.04677

Formulation of the Problem

The PQ symmetry breaks after inflation \rightarrow solve SSB


$$S = \int d^4x \sqrt{-g} \left[-(\partial_{\mu}\varphi)(\partial^{\mu}\varphi *) - V(\varphi) \right]$$
$$V(\varphi) = \lambda (f_a^2/2 - \varphi^2)^2 + \chi(T) \left(1 - \frac{\operatorname{Re}(\varphi)}{f_a} \right)$$

Field begins at the origin at high T with small perturbations, eom:

$$\ddot{\varphi} + 3H\dot{\varphi} - \nabla^2\varphi + \partial_{\varphi}V = 0$$

Gradient energy cannot be neglected \rightarrow this is a PDE problem requiring lattice field theory.

Spontaneous Symmetry Breaking

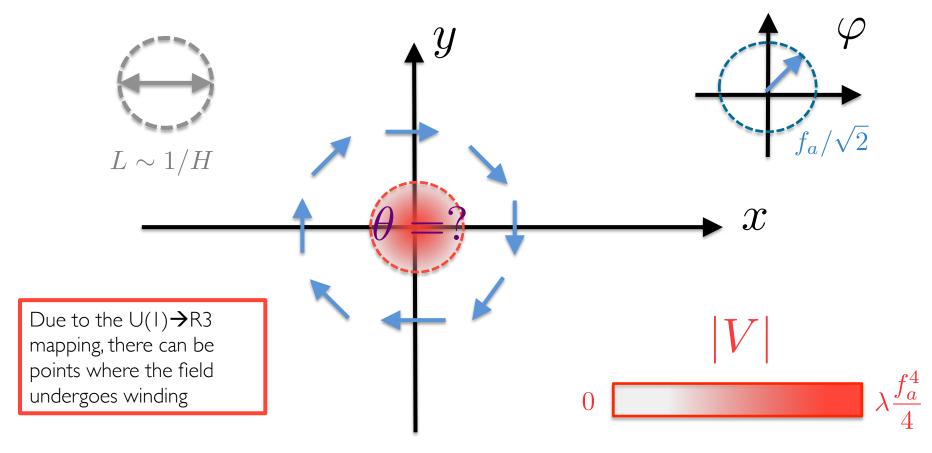
Kibble Mechanism

These dynamics happen locally. Due to the shift symmetry, θ is only defined within a horizon volume.

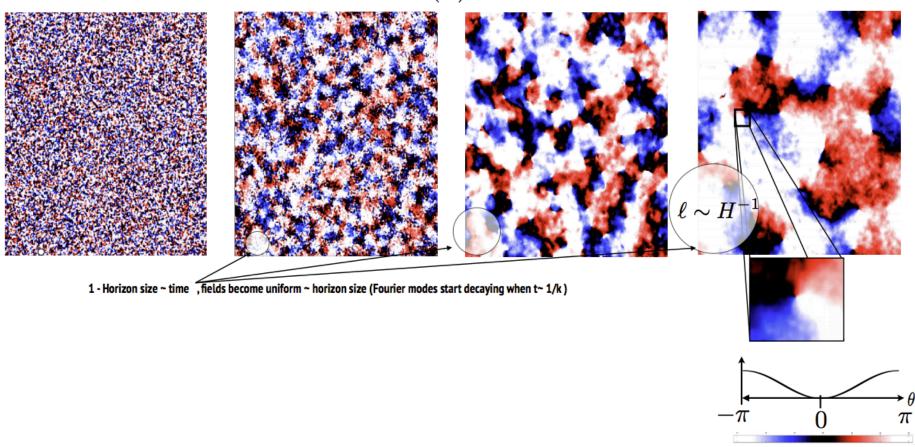
$$\ddot{\theta} + 3H\dot{\theta} - \nabla^2\theta = 0$$

Fourier transform, and we see that gradients act like a mass:

$$\theta = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{x}} \theta_k \qquad \ddot{\theta} + 3H\dot{\theta} + k^2\theta = 0$$


Thus the field is driven to "zero" by the "gradient potential" within each patch where H<k.

BUT, these patches are only locally defined due to shift symmetry \rightarrow different θ in different horizon volumes.


As H shrinks, this process continues, s.t. patches L~I/H.

String Formation

This process leads to a mapping from the complex plane of the field [which has symmetry group U(I)] to the physical space, which has symmetry group R3 \rightarrow formation of "topological defects":

- Axion strings form by Kibble mechanism
- Energy logarithmically distributed around, tension $\mu \simeq \pi f_A^2 \log \left(rac{f_A}{H}
 ight)$

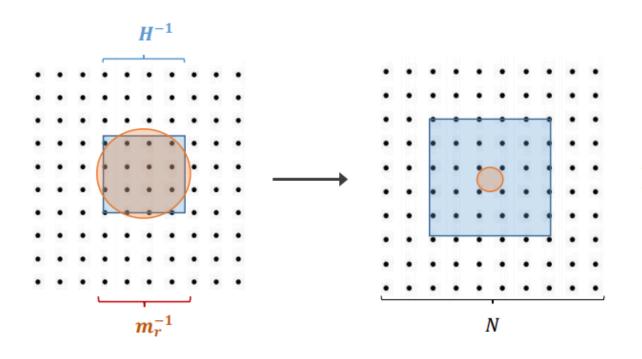
Javier Redondo, slides from "Patras" (2018)

String Profile and Dynamics

Consider the complex field profile in cylindrical polars (R, ψ ,z):

$$\varphi = \frac{f_a}{\sqrt{2}}g(m_{\varphi}R)e^{i\psi}$$

The function g(x) has the asymptotic properties:


$$g(x) o 0$$
 as $x o 0$ i.e. unbroken PQ $V(\varphi) = \lambda \frac{f_a^4}{4}$ $g(x) o 1$ as $x o \infty$ i.e. broken PQ $V(\varphi) = 0$

These strings can be simulated approximately using the Nambu-Goto action, but then the properties like reconnection must be put in by hand. Modern approach: brute force Klein-Gordon eqn.

Gorghetto et al (2018) https://www.youtube.com/watch?v=DbvM7emtodo

Hierarchies Restrict Simulation

$$\log \frac{m_r}{H} = \log(\frac{\square}{\square}) \lesssim 6$$

Fig: Gorghetto et al (2018)

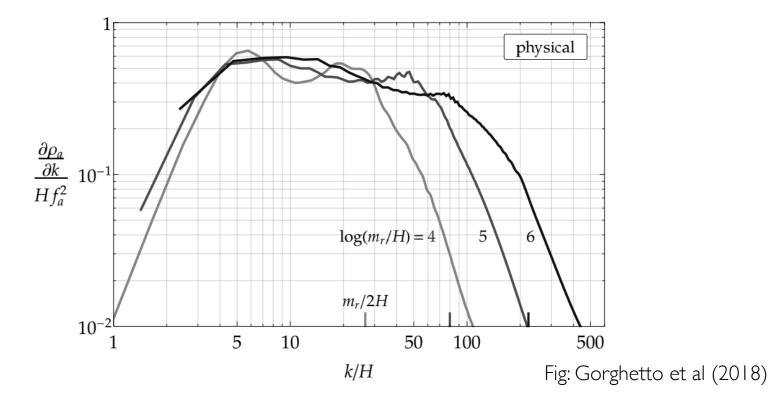
- I. Small log range and extrapolate.
- 2. ''PRS'' or ''fat string'' approx.
- 3. Multi-field trick.

Hiramatsu et al, Gorghetto et al Vaquero et al, Gorghetto et al Moore et al

Axions From String Decay

Really just a variation on misalignment mechanism... We say "strings decay into axions" but it is all just field oscillations. Compute $\rho_{\text{string}} \approx \rho_a$ at the end of the simulation.

$$ho_{
m string}=\xirac{\mu}{t^2}$$
 tension $f_a^2\ln(f_ad_a)$ $d_a=rac{\sqrt{\xi}}{H}$ horizon


"Scaling solution": $\xi \to \text{const.}$

"Attractor solution": $\xi \to \xi(t)$ logarithmic scaling violation.

Axions From String Decay

Integrate the string spectrum:

$$n_a(t) = \int \frac{\mathrm{d}k}{k} \frac{\partial \rho}{\partial k}$$

Axions From String Decay

Parameterise your ignorance:

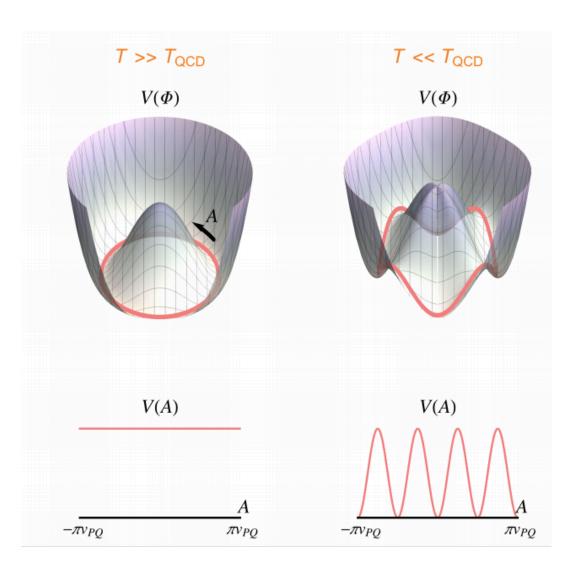
I. Compute the "naïve" misalignment result with the average value (many horizon volumes):

$$\langle \theta^2 \mathcal{F}_{\rm an}(\theta) \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \ \theta^2 \mathcal{F}_{\rm an}(\theta) = c_{\rm an.} \frac{\pi^2}{3}$$

2. Introduce an additional fudge factor fit to simulations:

$$\Omega_a h^2 = \Omega_a h^2 |_{\text{mis.}} (1 + \alpha_{\text{dec.}})$$

Complex phase identifies:


$$\theta_{\rm PQ} \to \theta_{\rm PQ} + 2\pi$$

If the PQ C>I then:

$$\theta_{\rm QCD} = \mathcal{C}\theta_{\rm PQ}$$

$$V \sim \cos \theta_{\rm QCD}$$

- → potential has multiple minima for one PQ rotation
- → different vacua possible
- → "domain walls".

Example with C=3

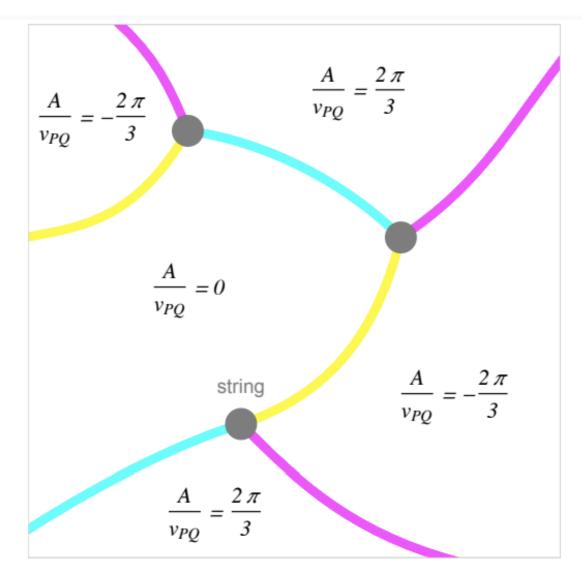
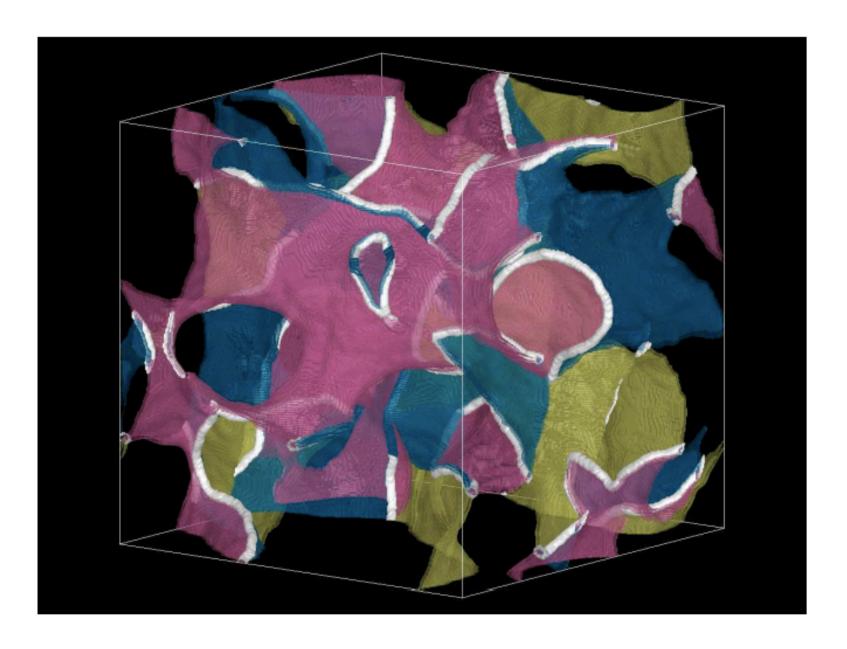
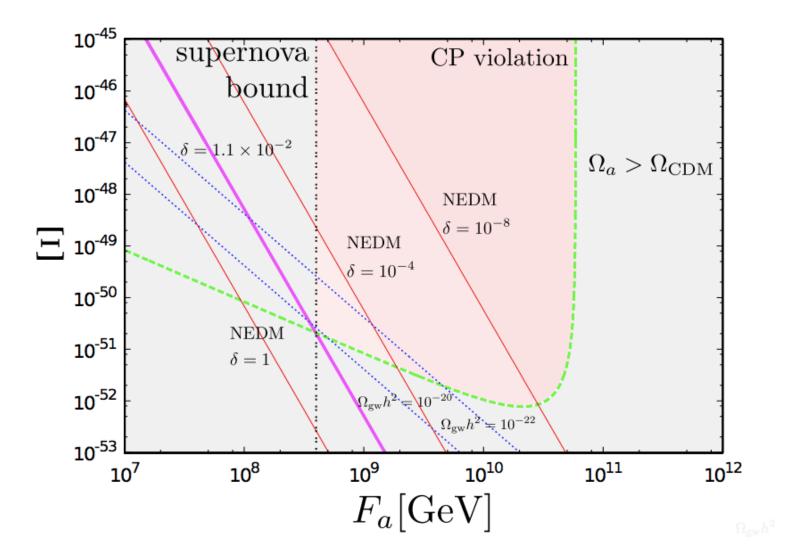
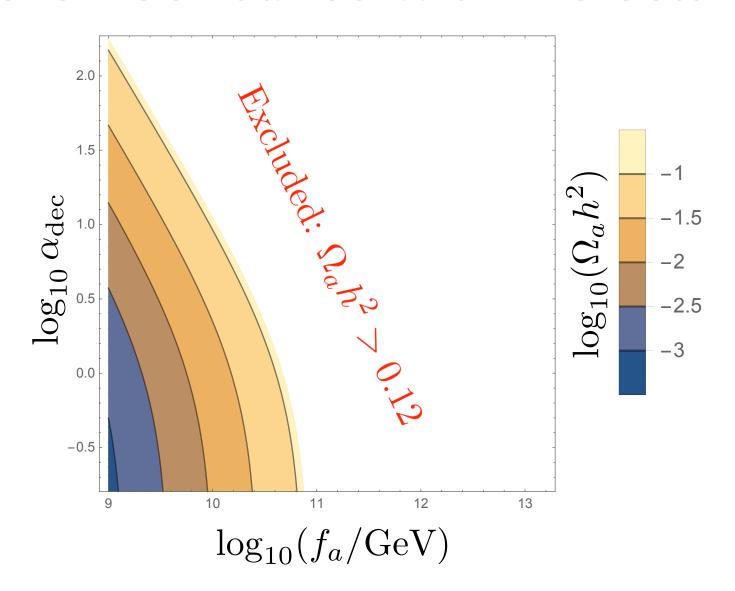
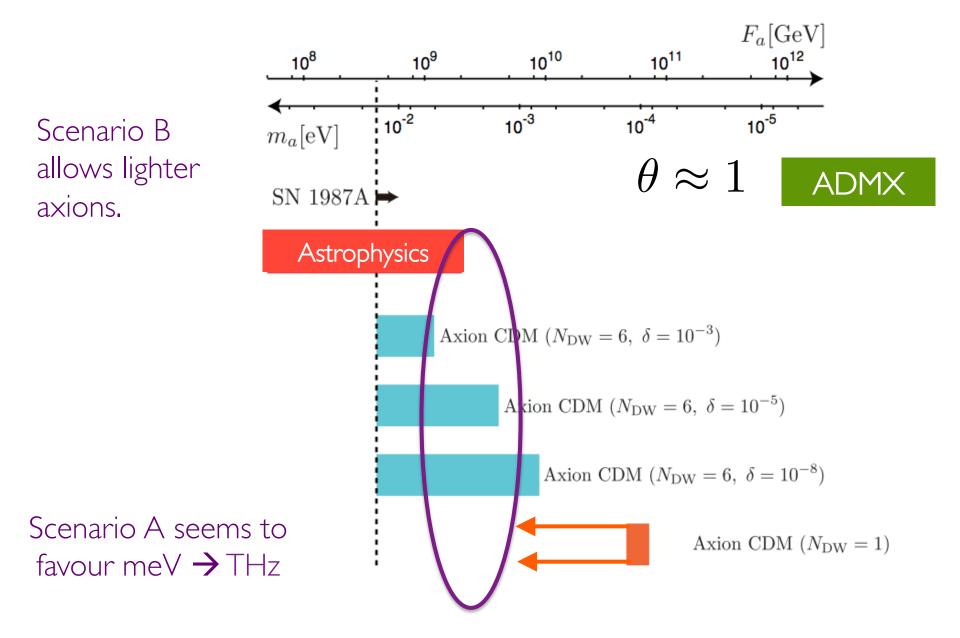




Fig: Armengaud et al (2019)


Fig: Hiramatsu et al (2012)



Walls require a "biasing potential" Ξ to decay \rightarrow explicitly break PQ \rightarrow spoil solution to strong CP problem by tuning factor δ . Small biasing \rightarrow delayed decay \rightarrow increased relic density \rightarrow lower f_a .

Relic Abundance with Defects

