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Motivation - Stabilization of a fluid-plate model
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The geometrical configuration
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with Dirichlet and Neumann boundary conditions.

((Vu+Vu')=pl)n=0c(u,p)n=0 on T, x(0,00),
Dirichlet B.C. on (I'\T,) x (0,00).
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Due to the displacement 7)(t) of the structure, the fluid equation is
written in a time dependent geometrical domain
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At time t > 0, the fluid domain and the fluid-structure interface
depend on 7(t)

Qf(t) = Qn(t) and Fs(t) = Fn(t).
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e Stabilization of a fluid-structure-interaction model around an
unstable stationary solution, with a control acting in the structure
equation.

e Prove that the results for the stabilization of abstract parabolic
systems apply.

e Prove that the strategy based on spectral projections applies.

e Error estimates for the F.E. approximation of feedback gains can
be obtained.



e Part | - Motivations and goals

e Part Il - Local/maximal in time solutions to FSI systems

e Part Ill - Stabilization of FSI systems using spectral projections
e Part IV - Incursion in the numerical approximation

e Part V - Numerical experiments
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Part Il - Well-posedness of some FSI problems

Initial and deformed configurations

The fluid equations
gl: + (u-Vy)u—divyo(u,p) =0, divyu=0 in Qs(t), t€(0,T),
u=0 on Xl =T.x(0,T),

u(0) = up in Q,
u(X(y,t),t) = Qew(y,t) for (y,t) € TJ =Ts % (0, T),
The deformation

Xy t) =y +wly,t) for(y,t) ex’® X(y,0)=y.

The structure equation: Need the stress tensor of the fluid on Is.
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Transformation into the fixed initial domain

We consider a C! diffeomorphism X(-,t) : Qf = Q¢(0) — Q¢ (t)
(not nec. the ref. config.).

Y(X(y,t),t) =y, ye€Qf and X(Y(x,t),t)=x, x €& Q¢(t).
We make the change of variables
iy, t) = u(X(, 1), 1)), Bly. 1) = p((X(1, £), £)):

We have

Viu(x,t) = Vyu(Y(x, t), t)Jy(x,t), xeQ(t), tel0,T],

Vap(x,t) = Iy (x,t) TV, p(Y(x,t), t), x € Q(t), fort €0, T],
where Jy(x,t) = (Ux(Y(x,t),t))"L. We obtain

ou

3
. _— T
at—l/kzlayk(VuJy)VXYk—i-Jprzo, in Q7 =Qf x (0, 7),

Vi:Jy =0 in@Q/f,
i=0 onX] =T.x(0,T), u=0w onXl
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Choice of X

L L
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5 Qr(t)

I

e X can be defined analytically (w(y, t) = (0,7(y1,t))7)
X(y,t) = (a,)" = (vi,y2(1+ (. 1), 1)

e X can be defined by a Lagrangian transformation

D0 = X, X =y + [ dr)dr
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The system in the initial configuration - Beam or Shell

ur —dive(d, p) = Flu, p,m, ] — vV (G[u, m]),
divo = Glu,m] in Qr =Qf x (0, T),

u=mn2Axr, on Z; =Ty x(0,T),

o(t,p)n=00on ] =T, x(0,T), ©(0)=uginQ,
me=1m onX]l,

M.t + i — 00smp = H[u, p,m] + fxr, on X[,
m=0 and ZL=0 on dls x (0, T),

on
m(0)=nY=0 and 2(0)=n3 onTs.
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Local in time strong solutions to the FSI system

A~ o~ o~

ve —divo(v,q) = Flu, p,m1, 2] — vV (G[u, m)),
divv =gGlu,m] in Qr =Qf x (0, T),
v=mpaxr,on L} =Ty x(0,T),
o(v,q)n=00on X =T, x(0,T), v(0)=uginQ,
Mme=1n onX[,
Mt + al2n — Qs = q + Hs[U, p, 1] + f xr. on X/,
m =0 and %:O on dls x (0, T),
m(0)=n) =0 and n(0)=7§ onTs
We consider the nonlinear mapping
N (@ P, 12) — (v, g,m1,72).
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Space of solutions, of I.C., of the RHS

e We look for solutions (u, p, 71, 12), defined over a time intervall
(0, T), belonging to a Banach space Er.

e The initial condition (ug,n?,79) = (uo,0,73) belongs to a
Hilbert space Eg which includes some compatibility conditions.

e The space of the RHS is such that if (o, p, 71, 72) belongs to
Et, the RHS

(‘F[aa 5»771,7/7\2]79[57771]77'15[@ b\v’;\]l]) € FT‘

12/54



The linear nonhomogeneous system

We need regularity results for the linear system
vi —divo(v,q) = Fr —vVFgy, divv=Fgy in QT,
v=mixr, onZl, v(0)=up
me=m onX],
Mt +al2n —0Asp = Hs+q  on X[,

m =0 and %inl:O on dls x (0, T),

m(0) = 77(1) =0 and n2(0) = 7](2) on .
We prove that, for all T € (0,1), we have

(v, @.m,m2) e < Colll(uo,nR, 1)l + I (F, Faiv, Hs)llr).
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Regularity results for the nonhomogeneous system

We assume that vy € HE (Q;R?), divg =0,

nd € H3(Ts) N H3(Ts), 9 € H3(Ts), vo = n3& on T,
and that

(Ff, Faiv, Hs) €
L2(0, T; L?) x L2(0, T; HY) N HY(0, T; (H})") x L2(0, T; L?(Ts)).
The solution to the linearized system belongs to

v € L2(0, T; HZ(Q: R?)) N HY(0, T; L2(Q R?)) = Hy' (Qri R?),

p € L%(0, T; H}(; R?)),

m € L2(0, T; H*(Ts)) N H?(0, T; L2(Ts)) = H*2(ZT),

s

m € L2(0, T; H2(T5)) N HY(0, T; L2(Ts)) = H>Y(Z])

s )
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Sobolev imbeddings

2 _\2 2 26 2
HVHHE(Q;RQ) = Z\k|:o > fQ Hjejd’nujd,d f Ok v|“dx,

2 _\1 2 25 2
HP\|H§(Q) = Z\k\zo Zi:l fQ Hjejd’nujd’d r; |0k p|~dx,

where r; stands for the distance to the junction point
Ji € Jd4nUTd,d-

Due to the right angles at the Neumann-Dirichlet junctions and
Dirichlet-Dirichlet junctions, we have

HZ(Q; R?) C H3/2+e0(Q; R?),
H}(Q) C HY/2*e0(Q;R?), for some ag > 0.
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'No contact’ condition

For a tubular shell of radius 1 or a 2d-channel of height 1, we set

(0, T) = min{1 +m(y1,¢) | (y1, ) € [0, L] x [0, T]}.

The 'no contact condition’ corresponds to

7771(07 T) > O
Forv >0, p > 0and T > 0, we define the ball
B(’%N?T) {( /p\ﬁ’ﬁZ)eET|

”(Zl\a ﬁaﬁ 7/7\ )HET < W, 7?]1(07 T) >, (a7 ﬁ17ﬁ2)(0) = (u07n§_)7ng)}‘
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Estimates on N

When [|(u0,0,73) | g, = [I(uo, 72, m3) Il < M, we set
y=2min{l+n(n) | () €0.L]} =2, p=2GM.
Combining regularity results and nonlinear estimates, we prove the
following bound
N (@, b, 71, 2) ey < QoM+ Co CuT*,  a€(0,1),
for all (o, p,m1,m2) € B(y, 11, T), VT €(0,1),
the Lipschitz estimates
N (U, b, 71, 72) — N4, p, 111, 772) | E
< Co Gu T ||(4, p, 71, m2) — (4, P71, 2) ||,
v(4, P, 72) € B(v, 1, T), V(u, p,11,72) € B(y, 1, T).
and an estimate needed for the no contact condition
Il = llm =l < C T
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Existence of local in time solutions to the FSI system

If (uo,n?,m3) € Eo, then there exists T > 0 such that the nonlinear
FSI system admits a solution (u, p, n1,72) in ET.

If up € H}i(Q;]RZ), divug = 0, 79 € H&(Fs), up = n3& on I, there
exists T > 0 such that the FSI system admits a solution such that
b€ L2(0, T; H3(Q: R?) N HY(0, T; L2 R?)) = Hy'(Qr; R?),

p € L2(0, T; H}(; R?)),
m € L2(0, T; H*(Ts)) N H2(0, T; L3(T5)) = H*2(X]),
m € L2(0, T; H3(Ts)) N HY(O, T; L3(Ts)) = H>Y(ZT).
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Tools for regularity results of the linearized FSI system

We rewriting the (non)homogeneous Differential algebraic system.
Fr=0, Fo. =0, h=0, Hs =0, f =0.
Elimination of the pressure with the Leray projector

Vgrd(Q) = {v € L2(Q;R2) | divv=0, v-n=0o0n Fd},
L2 R?) = VOr (Q) @ grad HE (Q),

.2 0
P : L5(Q)— Vn,Fd(Q)‘
The pressure q satisfies

—Ag=0 inQw, g=2ve(v)n-nonX,

0
a—q = 2vdive(v)-n—v;-n=2vdive(v) - n—noxr. on X3
n

Thus
q= —Ns(’flz,t) + Nv(V) = —Ns(772,t) + NV(PV) + NV((I - P)V)~
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Equivalent formulation of the PDE system

MaZ/:.zZ(Z; 2(0)2207 Z:(PV,?’]l,?’]Q)Tg

(I = P)v(t) = (I = P)L(n2(t) e2),
L is a lifting operator of the Dirichlet boundary condition, Ag is the
Stokes operator with mixed B.C.

Ao 0 —AgPL
A= 0 0 / :
ysNy a2 §Ag + vsN, V Ng
and
/I 0 0
M,=10 0
0 0 I+ ~sN,

The added mass operator, M,, is symmetric.
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The Fluid-Structure operator (A, D(A))

We set R
A= M1 A,

and, due to the corners
D(A) = {(Pv.m,m2) € HYZF0(Q;R2) x (H* 1 HE)(Ts) x HB(T)
| Pv— PL(1p &) € D(Ao)}, with ag € (0,1/2),
where

D(Ag) ={v e Vrls(Q) N (H3/2to0(Q; R?)
| diva (v, N, (v)) € (L2())?, o(v, N,(v))n|r, = 0}.
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Analyticity of (A, D(.A))

22/54

The operator (A, D(.A)) is the infinitesimal generator of an
analytic semigroup on Z = V,?rd(Q) x H2(Is) x L2(Ts).

Analyticity of the Oseen operator + Analyticity for the damped
elastic operator of the structure (Chen-Triggiani) + perturbation
arguments

The resolvent of (A, D(A)) is compact in Z.

The regularity results for the nonhomongeneous system are based
these results and on the characterization of D((—.A4)Y/2).



Maximal in time solutions

Maximal in time solutions. For a given displacement 7(y1, t)
obeying 7(y1,0) = 79, define the transformation X0, from Q0
into 2,4 by

Xn?m(}/a t) = Xn(Xn?(yv t)7 t)‘

Now, we have to rewrite a fixed point argument for 79 "arbitrary in
some class of admissible solutions’. (Admissible: regularity and no
contact.) Use a contradiction argument to prove the uniqueness of
maximal in time solution.

Difficulty. Prove regularity results in Qn? with continuity constants
independent of 79, depending only of

H/'/I?HH3+EO and of 7"7?
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Part Il - Local stabilization of a FSI system

Controlling a F-S system with a control in the structure equation
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The FSI system

The fluid equation
U+ (u-V)u—divo(u,p) =0, divu=0 inQ,qy, t>0,
u=n1m€ on I‘;(t), t>0, u=gs onX§®, To=Tg4\Ts,
o(u,p)n=0 on X%  u(0)=upin Q,
o(u,p)=v(Vu+VuT)—pl.
The structure equation
M,e=1n2 onXgy,
M.t + alZn — §Agm
= —o(u,p)(—nxéL + &) - & —fs+fxr. onXg,
m =0 and % =0 on dls x (0,00),
m(0) =77 and n72(0)=n3 onTs.
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The stationary solution (us, ps, 0, 0)

(us - V)us —divo(us,ps) =0, divus=0 inQ,
Us = 77252 onls, wus= 8s on lo, U(USaps)n =0 onl,,

m=mn2 onlsg,
al2n — 0Asmp = —0(us, ps)(—1x€L + &) - & — fs on T,
m=0 and 2L =0 onalx (0,00).

If £, = ps, then n1 =12 =0 and
(us-V)us —divo(us,ps) =0, divus=0 in Q,

us=0 onTls, us=gs onlg, o(us,ps)n=0 on .
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The system linearized around (us, ps, 0, 0)
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vi —divo(v,q) + (us - V)v+ (v - V)us—Ain — A =0,
divy =A3m in Qx,

v=mexr, onXxXy, o(v,qin=0 onX}°,

v(0) = vo = ug — us in Q,

Me=1m2 onXy,

Mot + alim — 60sp—As = q+f  on T,

m =0 and % =0 on dls x (0,00),

m(0)=ni and 12(0) =73 onT,.



Expression of the pressure

—Aq = Asni ¢ +div((us - V)v + (v - V)us — vA(divy))
—div(A1m) — div(Aan2)  in Q,
g=2ve(v)n-n on Iy,

99 =2vdive(v)-n—vs-n

on
=2vdive(v)-n—m:, onlq.

Thus

q = —Ns(m2,t) + Ng(Azn1,t) + Ny(v) + N(A1n1) + N(A2mz).
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Equivalent formulation of the PDE system

M,z = Az + Bf, z(0) = z,
(I = P)v(t) = (I = P)L(n2(t) €2, Az (1)),

z=(Pv,n,m)", B=(00lzryxr.)",
L is the lifting operator of the divergence and Dirichlet boundary
condition, and

A (PA;— APL(0,A3)) (PAy — APL(-,0))

A= 0 0 / ,
s Ny aA§_|_... SAg + - -
and
/ 0 0
M;=10 / 0
0 PYsNdA3 I+75Ns

/5 1 e added mass operator, M,, is no longer symmettic.



D(A) and A

We set

and, due to the corners
D(A) =
[(Py.m.mm) € HI/ZHo0(@ B2) x (HE 0 HG)(T) x HR(T)

| Pv — PL(1j &, A1) € D(AO)}.
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The adjoint FSI system

Ao —divo (¢, ) = (us - V)¢ + (Vus) & = Ff,
divég=0 inQ,

¢=Cé& on s, ¢=0 on Iy,
o(p,)n+us-np=0 on Iy,

A+ G — () THA + Alo + Aj) = G in T,
Ao — alD2( — 60s( — Ay =+ Hf in T,

(1=0 and %1 =0 onar..
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The adjoint operator for the FSI PDE

D(‘A*) = {M:(P¢> C17C2) € Z ’
(P$, (1, C2) € VIETQ) x HA(Ts) N H3(Ts) x H3(Ts)

n7r0

P(¢ — D(2) € D(A5) = D(Ao)}-
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Can we use a ROM based on spectral projections ?

The operator (A, D(.A)) is the infinitesimal generator of an
analytic semigroup on Z, and its resolvent is compact. The state is

zZ = (PV7 7717772)'
Thus spectral projections can be used to define a R.O.M.

Z, = ®jey, GR(/\J') with Z =2, Zs
2k = ®jey,Gp(Nj) with Z*=Z=2;d Z;.

e For numerical issues we need a basis {e1, - ,eq,} of Z, and a
basis {®1,- -, Pg,} of Z; satisfying
(ei, @)z = 0
e These bases are used to determine the projector:
d

P.F =Y (F,0)ze;.
i=1
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The direct eigenvalue problem for the FSI PDE

Av —diva(v,q) + (us- V)v+ (v - V)us — Aim1 — Aorp = 0,
divv=Asm in Q,

v=me onls, v=0 only,

o(v,q)n=0 on T,

Am =mn2 onTls,

Ao + alD2n — 6Asp — Az =q  on T,

m =0 and %:O on Ol .
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The eigenvalue problem for A

A€ Cv A(PVﬂ?l»?h) = )‘(PV’ 7717772)‘

(Pv,m1,m2) is an eigenvector for A associated with A,
(I — P)v = VN + VNgivAsn, and g = - -

iff

(v,q,m1,1m2) is an eigenvector associated with A, for the direct
PDE system.
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The adjoint eigenvalue problem for the FSI PDE

Ap — dive(p,v) — (us- V) + (Vus) "¢ =0,

divg =0 inQ,

¢ =& on I, ¢=0 on T,
o(p,V)n+us-np=0 on I,

A1+ G — (aD2) N A5y + Afg + Aj(2) =0 in T,
Ao — a2l — 600G — Asp =1 in T,

¢(1=0 and %1 =0 onarl,.
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The eigenvalue problem for A*

AeC, A'M;(Po,(1,() =AM (Po,(1, ().

Mz (P, (1,(2) is an eigenvector for A* associated with A,
(I = P)¢ = (I — P)L((2&,0) = VNs(2, and ¢ = -

iff

(4,1, (1, (2) is an eigenvector for the adjoint PDE system
associated with A.
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Equivalence of the two bi-orthogonality conditions

The bi-orthogonality condition for eigenfunctions of the PDE
systems is equivalent to the bi-orthogonality condition for
eigenfunctions of A and A*.

((vism,ism2,i)5 (0), C1js C2,4)) 12 = i

is equivalent to

((Pviym,ism2,i)s M3 (P, CujC2j))z = 0ij
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Stabilizability of the linearized FSI system

We have to check the following unique continuation property.

If (A, @,1,(1,(2) is solution to the following eigenvalue problem

Ao — divo(p, ) — (us - V)p+ (Vus) "¢ =0 and diveg=0 inQ,
p=C0€6 on s, ¢=0 on Iy, o(d,)n+us-np=0 on [,
A+ G — (@A) THA%p + Ajg + Aj) =0 in T,

Ao — DG — 605G — Asp =) in T,

(1=0 and %1 =0 onar..

with Re A > —w and

B*(P¢,¢1,¢2) = @ xr. =0,

then

¢:07 ¢:07 61242:0-
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Stabilizability under additional conditions

e We assume that the spectrum of the linearized Stokes operator is
disjoint from that of the damped beam operator.

e We can choose a control space of finite dimension so that the
unique continuation property reduces to the unique continuation
property for the Oseen operator.

e Under that condition and if us = 0, we show that there exists a
control space of finite dimension for which the system is
stabilizable (Osses-Puel, 09).

o If us # 0 and if ||us|| 41 is small enough, (A, B.,) is a
perturbation of (Ap, By) that satisfies the assumptions of Theorem
1.1, with € = ||lus|| 1. Thus (A, By,) is satbilizable in Z for
|lus|| 2 is small enough.
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Stabilizability of the approximate system

A sufficient condition for stabilizability is that
|7 il e > g0l vo c 2,
We notice that
e~ tAtwP B B et Autwhl) — (X, )72
where X, , is the solution to the Riccati equation
Xow € L(Z4,Z2]), Xou >0,
Xo,u( Ay +wPy) + (Al + wPi) Xe,u — Xeo,uBBu B X,u = 0.

We can determine a numerical approximation Xﬂu of X, 4. If that
approximate solution satisfies

(XU’}’U)_1 > B 1, for some 3 >0,
then (Ap, By) is stabilizable.
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Local stabilization of the closed loop nonlinear F=S system

If up € HE (2 R?), 19 € H3(Ts) NHG(Ts), 13 € Hy(Ts), uo =13 &
on Is, and divug = G(ug, m1), and if (uo — us, po, ps,n%,13) is small
enough in HE (Q2;R?) x H3(T's) N Hg(T's) x Hg(Ts), then the closed
loop nonlinear system admits a solution decaying exponentially to

the stationary solution in H3''(Qu; R?) x H*2(£2°) x HZ1(X2).
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Part IV - Error estimate for a simple problem

Based on a work in progress with T. Gudi.

5o I

5 Q) "

I

The linearized system around (0, 0, 0)
Au—divo(u,p) = Fr, divu=0 inQ,
u=mexr, onlyg, o(up)n=0 onl,,
A —m2=Gs  only,
Mo + a2y — 6Asnp = —o(u,p)n-n+ Hs  on Ty,
m =0 and %:0 on Ol.

The goal is to estimate ||(A — A)~1P — (A — Ah)_lPhHLzX,_,ngz

for A > 0 large enough.
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Bilinear forms of the FSI system

o(u,p) =2ve(u) —pl,

ar(u,v) = / 2ve(u) : e(v) dxdy,
Q
b(v,p) = / pdivvdxdy,
Q
as(n,€) —/ Q Txx Exx dX,

s
aq(n, &) = g d1x Ex dx.
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Variational formulation

We define V.= {v € H}d\rs(Q;Rz) | vilr, = 0}.

Find u €V, pe L?(Q), § € HY2(I'; R?) such that

Mu,v)a + af(u,v) + b(v,p) — (v,0)r, = (Ff,v), YveV,

b(u,q) =0, Vqel*(Q),

(u,m)r, = (@20, phr,,  Yu € HH2(Mg R?),

(A —m2,¢) = (Gs,¢), V¢ € H3(Ts),

(M2, O)r, + as(n1, €) + ad(12,€) = (—0 - n+ Hs, E)r,, V& € H3(Ts).

When (u, p) € H3/2t20(Q; R?) x HY/2+20(Q) with ag € (0,1/2),
we have
0 = o(u,p)n € H®(Ts; R?).
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Elimination of 7,

We replace 1, by A1 — Gs in the last equation, and we set 71 = 7,
we obtain

Au,v)a + af(u,v) + b(v,p) = (v, 0)r, = (Ff,v)a, VveY,
b(u,q) =0 Vqe L*(Q),
(u,m)ry = (Mg = Go)n, phr,,  Yu € HH2(M; R?),
N2 (0, €)r, + as(n, €) + Aaa(n, €)
= (=0-n+Hs+ G, ), + ad(Gs, €), V& € H(Ts).
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Monolythic formulation

If u€ H32+20(Q) and p € HY/?+%0(Q), we have
Au, v)a + ar(u, v) + b(v, p) + N(1, E)r, + as(n, €) + Xag(n, €)
= (Ff,v)a + (Hs + G5, &) + a4(Gs, &),
Vv eV, VEe H3(Ts) suchthatv-n=E¢,
b(u,q) =0, Vqe€ L%(Q),

(u, yr, = (A = Go)n, pwyr,, Vi € HTV2(Mg R?).
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We define a triangulation 7. We set

Xp={vh e VN (C(Q)? | vnlk €P2,VK € T}, XP = Xn (H}(Q))?,
My, = {pn € C(Q) | pnlk € P1,VK € T},

Sh=1{6 € HZ(Ts)| &le € P3,Ve € TNTs}, cubic Hermite pol.
Zn={vih € X | b(vh,qn) =0 Vqn € My}, Z0 = ZyN (H}(R))?,

X = {vhlr, | vh € Xp}.

Py, is the L2(Is)-projection operator onto ths.
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Approximate variational formulation
Find u, € X, pn € My, 0, € ths, np € Sy such that
A(un, vh)a + ar(un, vi) + b(vh, Pn) — (vh, On)r, = (Fr, vi)a, Vvi € Xp,
b(un,qn) =0, Vg € Mp,
(un, ey = (APhiih — Gs)n, p)r,,  Vun € X7,
N2 (0, En)r. + as(nh, En) + Aad(1h; En)
= (=0h - n+ Hs + Gs, &n)r, + ad(Gs, n),  VEh € Sh.
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Monolythic formulation for the approximate problem

Aun, vh)a + ar(un, vi) + b(vh, pr) + X (11n, E)rs + as (1, En)
+Aaq(nh, )

= (Fr,vn)a + (Hs 4 Gs, &n)r, + ad(Gs, &n),

Yvp € Xn V& €S such that vir, - n = Ppép,

b(un, qn) =0, Vg € My,

(un, )t = ((APwnn — Gs)n, pw)r,, Y € X[,

From now on (to simplify), we assume that Gs; = 0.
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Construction of special test functions

7p, is the orthogonal projector in L?(Is) onto Sp,.

For the function u € H3/2t20(Q; R?) N'V such that (u, p,n1,72) is
the solution to the exact FSI problem, satisfying u = Ann on [,
we denote by (Mpu, pp) € Zp X My, the solution to the following
Stokes equation

M Mpu, ve)a + af(Mpu, va) + b(vh, pr) = (Fr,vh)a, Yva € XP,
b(Npu,qn) =0, Vaqn € Mp,
Myu = APpmpnn, on .

We notice that

(Mpu — up) - n = APy(mpn — np).
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Special test functions in the exact problem

We replace v by Myu — vy and € by A(mpn — np) in the variational
formulation of the exact problem, we obtain

Mu, Mpu — up)a + af(u, Mpu — up) + b(Mpu — up, p)
+(X2n, X(7an — 1m))r. + as(n, Mwan — nn)) + Xag(n, Mwnn — np))
= (F¢,Npu — up)o + (Hs + Gs, X(wan — nn))ry + ad(Gs, A(man — 1p)).

We next write the difference of the exact and the approximate
variational equations.
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Error estimate

We set

ey = U—Up, € =n—"np Ey=u—llyu, e;=n—mpn, Ep=p—rup.
Using estimates of €,, €p, and ¢, we obtain

)\HeUH%Q(Q) + lleull + >‘3Hen||%2(rs) + )‘O‘HAenH ro T )\25||Ve,7||L2(|_

< C R0 (| A2 ey + I1HelBagr,y)-

The approximation error e, on the pressure can be found a
posteriori with the fluid equation.
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