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Part |

e Issues for the Navier-Stokes equations

Lectures | and I

e Numerical approximation of Riccati based feedbacks for the
Oseen system (Nonconforming approximation) - drawback.

Part I

e ROM based on spectral projections - Convergence rates for the
approximation of Riccati based feedbacks based on these ROM.

Part IV

e Some errors estimates for the boundary control of the
pseudo-compressible approximation.



Part | - Issues for the Navier-Stokes equations

e Q is a bounded polyhedral domain in R3, not nec. convex.

o (ws, ps) € HY(Q;R3) x L3(Q) is a stationary solution of the
N.S.E:

(ws - V)ws —vAws + Vps =15, divws=0 in Q,
ws=gs on [ =0Q.
e The controlled Navier-Stokes system

667‘/11/JF(W-V)W—Z/AWwLVP:fs in Q= Qx(0,00),

dvu=0 in Q w0)=wy=ws+2z in Q,
w=uc+gs on X =TI x(0,00),
UC(Xa t) :ZlNzcl ﬁ(t)gi(x)v frg;-ndx:O,

Find a control f s. t. [[w(t) — ws|[;2 < Ce ! ||z[2, w>0.
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The Oseen system

The nonlinear system satisfied by (y, q) = (w, p) — (ws, ps) is

0
87};4-(”/5-V)y—|—(y-V)Ws+n(y-V)y—yAy+Vq:0 in Q,

divy =0 in Q,

y=Yl fig on I,

y(0)=2z in Q,

with kK = 1. The associated linearized system is obtained by setting

k = 0.
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Compute numerically a feedback gain K = (Ki,--- , Kn_) so that

0 .
a%+(Ws-V)y+(y-V)Ws+f£(y'V)y—'/Ay+Vq:0 in @,

divy=0 in Q,
Ne
y(t) =2 ix[Kiy(t) g on I,
y(0) =2z in Q,
e the linearized closed-loop system (with k = 0) is exponentially
stable with a prescribed decay rate w > 0, in some space,

e and the nonlinear closed-loop system (with x = 1) is locally
exponentially stable in some space (under some smallness
condition on zp).



The method

e Consider the parabolic system (for z = Py, P is the Leray proj.)
7 =Az+Bf, z(0)=2z, inZcC [*(QR3.
e Assume that the pair (A, B) is stabilizable in Z.
e Choose a K such that A + BK is exponentially stable in Z.
e Find a numerical approximation K}, of K by using
Z;, = Apzp + Bypf, Zh(O) = 29 h, in Zp.

We use a nonconforming approximation Z, ¢ Z and

ZCH and Z,CH.

P:H~—Z, P, : H— Z,
e Prove error estimates for ||KP — Kp,Ph||£(1,u)-

e Deduce that A 4+ BKy Py, is exponentially stable in Z.
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Drawbacks and other strategies

e The Riccati equations used to determine K}, are of very large
dimension.

e We are going to prove convergence rates for reduced order
models based on spectral projections.

e P. Benner, J. Heiland (2015), P. Benner et al. (2013, 2015).
Efficient algorithms of large-scale Riccati equations for the
stabilization of incompressible Navier-Stokes flows.

e For the other strategies based on POD, BPOD..., there is no
convergence rates in terms of the discretization parameter h.
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Part Il - ROM using spectral projections

The resolvent of A (resp. Ap) is compact in Z (resp. Zp).
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Zy=®jey,Gr(N), Z2=2,9Z, dimZ,=d, <oo0.
Z, and Zs are invariant subspaces of A.

Rec(A|z,) > —wy, and Reo(A|z) < —w,

Wy > w.
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Spectral projections in Z

The projector P, € £(Z,Z2,) (and P, € L(H, Z,)) is defined by

1
Py=~— [ (M —A)1Pd),

u — .
2iT My

[, is a union of Jordan curves, around (\})jes, U (A)jes-

We split 2/ = Az + Bu into two systems

AU:A|Zu7 As:A‘Zs’ Bu:PuBa Bs:(/_Pu)B

/ /
z=2z,+2z, 2z,=Auzy+ Byu, z.=Aszs+ Bsu.
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If K, € £L(Z,,U) is a feedback such that

et(Avtwul+BuKu) g exponentially stable on Z,,,

then
et ATBRP | 7y < Ce™t, VE>0.

Because
wy>w and Reco(Alz) < —w.
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2(t) = etATBKPY) 7 7, (t) = et(AvtBuKuP) p 7
Zs(t) = etAS PSZO + fot e(t—T)As BSKuZu(T) dT
We know that
el z(z) < Ce™™", vVt >0,

and
Het(Au“‘BuKU)HL:(ZU) < Ce_w”t, vt > 0.

Thus

w (t—7)w
lz:(t)llz < Ce ™|[Pszoliz + C fg S l12u(7)1z dT.

(t—7)

— T(w—wy
< Ce ™ ote(tﬁ“P 2|z d.
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Approximate parabolic system

zp, = Anzp + Bpf, zy(0) = 29, in Zp.
We use a nonconforming approximation Z, ¢ Z and
ZCH and Z,CH.
P:Hw—Z, P, : H— Z,
e Can we use spectral projections in Zp, ?
2, = Anuzhu + Bhufy  2hu(0) = Phuzon,
s = AnsZhs + Bhsf,  zns(0) = Phszoh
o If yes, how to define P, 7 Can we estimate P, — Py, 7 Can we
construct a feedback gain Kj, , € L(Zp,4, U) such that
”et(A+BKh’"Ph’“)“£(Z) < Ce—wt, V>0 ?
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Assumptions satisfied by (A, Py, Bp)
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We present the method for an abstract parabolic system.
e Uniform analyticity for A and Ap,.

o |[(No/ — AP — (Mol — Ah)_lPh||L(H) < Chs.

o |[(Ao/ —A)1B — (Mol — Ah)_lBhHL(U,H)C h".

e The last assumption on the uniform boundedness

two

e F/(1—
HeAhtBhHL(VO(F),Zh) <C A vVt € (07 K/ (1 'Y)), Vh e (07 ]_)7

is not necessary.

With these conditions, we want to prove estimates between

(Au, Py, By) and (Apu, Ph.u, Bh,u) similar to those for (A, P, B)

and (Ah, Ph, Bh).

The approxim. param. h can be a meshsize or a penalty parameter.



The basic idea works for K},

If Kny € L(Zp,u, U) is a family of feedbacks such that
||et(Au+BuKh,uPh,u)HE(ZU) < Ce—wut7 Vt>0, Vhe (07 ho),

then
Het(A+BKh,uPh,u)||£(Z) <C efwt7 vt > 0.
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Zh(t) = ot (A+BKh uPh,0) Zh(t) = et(AutBuKnuPhu) P 70

2,
zI(t) = e Pszy + fot e(t=7)As BsKh,uPh,uZ[](T) dr.
We know that
el z(z) < Ce ™!, YVt >0,

and
Het(AquBuKh,uPh,u)HL(ZU) <C e*(lJut7 vt > 0.

Thus
Iz5(t)llz < Ce®||Pszollz + C fy %H 2(7)llz d.

_ w—wy)
< Ceto [LEp )|, .
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Existence of the spectral projector Py,
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There exists hg > 0, such that T, C p(Ap), Vh € (0, hp).

We prove that if, for A € {—=Xo} + Iy,
[(Xolh — An) 1 Pp — (Aol — A) 1P|z (m)

< 3

1+A| maX(||PH7||PhH)]z[lJlrll(A*(AoJr/\)’)_lP||L(H,z)] ’

then
[(ielh = An) "Ml ogry < supper, (1 +2[[(n] — A) Pl z(m,2));
with = A+ Ao.

This result is proved in Theorem 1.3.



Spectral projections in Z, - Approximation of P,

Since there exists hg > 0, such that T, C p(Ap), Vh € (0, hg), w
set

1
Py (M — Ap) "L Py d),

M i r,
Zhy=PnyZy and Zps= (I — Ppu)Zy,
Ahu=Anlz,,, Ahs=An|z,.
Bhy = PhuBnr Bhs=(l— Ppy)Bhs.

We split z; = Apz, + Bpu into two systems

/ /
Zh = Zhu+ Zhs, 2y, = AnuZhu + Bhul, 2o = Anszns + Bhsu.
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Estimate of P, — Py,

For all h € (0, hy), we have

1Py — Phullcny < Ch® = Ch'™2 and  dim(Z,) = dim(Zp,,).

1

Pu=Phu =5
My

(M =A)LP — (M = Ap) "t Py) dA.

An estimate of (Al — A)™' P — (A — A)~! Py) is obtained with
a resolvent identity and

(Aol = A)"HP = (Mol — Ap) ' Phllgy < Ch°.

If dim(Z,) = dy and (e1,--- , eq4,) is an orthonormal basis of Z,,,
with the estimate of P, — P} ,, we prove that (P se1,-- -, Phu€d,)
is a basis of Zj, for all h € (0, hg), for hg > 0 small enough.
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Estimate of (\o/ — A,) 1P, — (Mol — Apu) P

For all h € (0, hy), we have
(Aol = Au) PPy — (Mol — Au) ' Prull ey < Ch°
and

||()\0/ — As)_lps — ()\0/ — As)_lph75||L(H) < Ch°.

(Aol — Aw) 1Py — (Mol — Ay) " LPh 4
= ()\0/ — Au)_IP(Pu — Ph,u) —+ (()\0/ — A)_IP — ()\0/ — A/-,)_IP/,)Ph7u.
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For the second estimate, we notice that
(Mol — AP = (Mol — AP, + (Mol — As) 1P
and

(Mol — Ap) " Py = (Mol — Anw)  Phu+ (Aol — Asp) P
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Uniform stability of ef”s#

Remark. From
(Aol — As)"2Ps — (Mol — As)  Phsll () < C .

and
le]lzz) < Ce ™, w>0,

and the perturbation result in Lecture 1, we deduce

le A"l z(z,.) < Ce™™, @>0, Vhe (0,ho).

21/50



Estimate of B, — By,

o B,f =N fi(\ol — A)P,D g,

o Byuf =N fi(Aol — An)PhuDhgi.

(Mol — Au) " Bu — (Mol — Anu) "Bhullzqu,ny < C b2,
1By = Bhullcu,Hy < C A3, Vh € (0, ho).
For F.E. approximation h® = h'*2%_ This is much better than

(Aol = A) B — (Aol — An) "' Bhllgqu,my < C h™.

Uniform bound for By, , € L(U, H)

sup || Bnullz(u,my < +oc.
he(0,ho)
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Uniform stabilizability of (An .y + wuPh.u, Bh.u)

Assumption: Stabilizability and detectability conditions.

(Ay +wuPy, B,) s stabilizable in Z,,.
Either (A, + wy Py, C|z,) is detectable or C = 0.

We choose w, > w and hg > 0 such that
Reo(Apy) > —wy, and Reo(Aps) < —w, Vhe (0, h).
(Anu + wuPh y, Br.y) is unif. stabilizable
(A +wuPhu, C|z,,) is unif. detectable.
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The Riccati equation in Z,

N, e L£(Z,,2y), N,=MN>0, C,=Clz,,
Nu(Ay + wuPy) + (A +wy PN, — Ny B,BEN, + CiCy = 0,
Ay +w,P, — ByB;M, is exponentially stable in Z,.

If K, = —B:M,, then

||et(A+BKu)H£(H) < Cetv.

24/50



The Riccati equation in Z,, and convergence rates

I_Ih,u S E(Zh,ua Z;:’u)y I—Ih,u = P;;U, Ch,u = C‘Z;,’ua
I_Ih,u(Ah,u + quh,u) + (Afhu + quZ,u)nh,u - nh,u Bh:UB;;,unh:U
+CyChu =0,

Apu+ wuPhy— BpuBp ,Mpu is exponentially stable in Zj, .

The solutions I, and I, ,,  and the feedbacks
Ky = —B;N,P, and Ky, = —Bj M,y Ph .y obey
[MuPy = MpuPhullery < CH,
and

1Ky = Knull (o) < Ch%, 0 Vh e (0, ho).
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Convergence rates for the closed-loop systems

e Py(t) = e(AtBRtyy K = —BM, Py, f is the control.
(I = P)y(t) = XN, Kiy(t)(I — P)Dg.

o Pyh(t) = eA+BRAtyy Ky = —B; MpyPhy, 1 is the control.
(1 = P)y"(1) = 2% Kniy"(0)(/ — P)Dag.
o yh(t) = eAntBrkhlty, K, = =B}, ,Mh,uPh,u, Ty is the control.

For all h € (0, hy), we have

—wt

Ifa(t) = F(2)]lu < C =

bl yollH,
Hfh - f”LP(O,oo;U) < CP hSHyOHHv Vp € [1’00)7

lun — Moo, < Co bll¥0llH. Vb € [1,00),

where w > 0 is the a priori prescribed decay rate.
26/50



Convergence rates for the closed-loop systems

e Convergence rates for the projections of the solutions of
closed-loop systems

e—wt

IPhayn(t) = Pay(B)lm < € =

hllyoll,

HPh,UYh - PuyHLP(O,oo;H) < CP hs‘ In(h)H’yOHHa Vp € [1?00)7

H'Dh,uyh - ’DuthLP(O,oo;H) < CP hs‘ |n(h)’”y0||H7 Vp e [1700)'

e For the Oseen system, we could obtain convergence rates
between yj and y, on compact time intervals [0, T], if we took a
dynamic controller and if yo € V() N (H3(Q))3.
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Applications of ROM based on spectral projections

e Numerical approximation of the Oseen system with a boundary
control (lectures 2 and 3)

e Approximation of the Oseen system by the
pseudo-compressibility method with internal control (lecture 1)

e Approximation of the Oseen system by the pseudo-compressibility
method with a boundary control (see below)

e Numerical approximation of the Boussinesq system (doable)

e Stabilization of FSI systems (lecture 4) and their numerical
approximation (under investigation lecture 4)
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The Oseen and pseudo-compressible systems

Q convex or of class C2.
The Oseen system without control

9y
ot
divy=0 in Q y=0 on X, y(0)=y in Q.

+(ws - V)y+(y-Vws—vAy+Vp=F in Q,

The Leray projector P € L(H, Z), H = (L?(R2))3, Z = V?(Q).
VO(Q) ={y € L2(%;R3) |divy =0, y-n=0o0nT}
The Oseen operator (A, D(A))

Ay = P(v Ay — (ws - V)y — (v - V)ws),
D(A) = V() N (Hy(Q) N H*(Q)).

The Oseen system
y'=Ay+PF, y(0)=
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Approximation by the pseudo-compressible model

e Pseudo-compressible approximation

Oy
ot

divy:+ep-=0in Q, y-.=0onX, y(0)=y inQ.

—vAY- + (ye - V)W, + (W - V)y. + Vp-=F in Q,

)
WS

is an approximation of ws.
e The equation for y. can be solved first

dy-

1 .
s —VvAY: + (Yo - VIWe + (WS - V)y: — ngivyE =F in Q.
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Uniform coervivity condition

The stationary solution (ws, ps) belongs to (H}(2))3 x L2(Q).
For all w¢ satisfying the H'-bound

HWs,EH(Hl(Q))3 < HWSH(HI(Q))3 +1,

we set
a5<z,<):/(qu:v<+(w§-V>z-<+(z-V)w§-o dx,
Q

for all z € (HY(Q))3, ¢ € (HY(Q))3.

We can choose Ag > 0 such that
2 Va2
Aollzll{2gqyys + 2:(2,2) = EHZH(Hl(Q))%

for all z € (H1(Q2))3 and all w¢ satisfying the H!-bound.
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Analyticity of pseudo-compressible control Oseen operator

We assume that ||ws — ws||(p1q)3 < Gse, Ve € (0,1).
We set eg = 1/Cs. The pseudo-compressible Oseen operator A is

D(A:) = (H*(Q) N Hy(Q))°,
Acy = vy — (y - V)W — (w5 - V)y + 2V(div y).
The pseudo-compressible system can be rewritten in the form

ys, = Ay +F, YE(O) = )o-

For all € € (0,20), the operator (A, D(A:)) is the infinitesimal
generator of an analytic semigroup on (L2(£2))3. We have

{wo} +Sr/215 C p(Ac),
IO = A) Hlg(zy < g forall A€ {wo} +Srja1s,

for all € € (0, ¢p).

32/50



C

Estimate of (A\o/ — A) 1P — (Aol — A.) !

e The following bounds hold, uniformly in € € (0, &9):
1yl (@) + £11div yll ) < Cll(Aol — Ad)y iz Yz € D(A:),
6]l (12(0)) + 211div @l prga) < Cll(Aol — AD)oll(12())s Vo € D(AL).

proved by rewriting the divergence eq. as for the imcompressible case.

e We have to prove

H()\ol — A)_lp — ()\0/ - Ag)_lHE((L2(Q))3) < C€, Ve € (0,60).
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Convergence rate of A towards A.

e y = (\o/ — A)"LPF is solution of

Aoy —vAy +(y - VIws + (ws - V)y +Vg=F in Q,
divy=0inQ, y=0onT.

o y¢ = (Aol — AWSE)_IPF is solution of

Aoy —vAy + (y - V)ws + (wg - V)y + Vg® = F in €,
divy=0inQ, y=0onT.
e y. = (Aol — A.)"1F is solution of
Aoye — VAy: + (y% : Y7)VV§ + (VVE : ‘7))% +Vg.=F inQ,
divy.+eg-.=0inQ, y.=0 onT.

ly — ¥*lli2(q:r3) can be estimated with regularity results for the
Oseen system and with the estimate on ||ws — wg || y1(q:R3)-
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Estimate of ||y. — y°||12:r3)

The differences z. = y. — y* and p. = g. — q obey

Moze —vAz. + (z - V)W + (W - V)z.+Vp. =0 in Q,
divze +ep.=—-eqinQ, z =0 onT.

With the adjoint system

AP — vAD, + (Vwe)Td, — (We - V), + Vip — div(we)d.
=ye—y° inQ,
divd, +ep.=0inQ, &.=0 onTl,

we obtain

/ lye — y*[Pdx = 6/ qip-dx
Q Q

<ellqllz@)ll¥:llz@) < Cellye — ¥ lliz)-
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The Oseen system with a boundary control and the

penalty method

8 .
6%+(Ws'V)y+(y-V)ws—vAy+Vp:0 in Q,
divy=0 in Q, y(x,t)=X/f(t)g(x) on I,
y(0) =y in Q,

with the control space U = RMNe.

Assumption. g; € H3/2(T"), [ gi-ndx =0. (A+w,l,B)is
exponentially stabilizable, with w, > w > 0.
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Approximation by the pseudo-compressible model

O Byt (e V)W (W D)y + V=0 in @,
divy. +ep. =0in Q,
Y- =Y 1% fi(t)gi on T,
¥=(0) = yo in Q.
e v = Dg is solution of
AoV — VAV + (v - V)ws + (ws - V)v 4+ Vg =0 in Q,
divv=0inQ, v=g onl.
e v. = D.g is solution of
Aove — VAV, + (ve - VIWE + (WE - V)ve + Vg =0 in Q,
divv. +eg-=0in, v.=g onT.
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Difficulty
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The Oseen system is a differential algebraic system of the form
Py'(t) = APy(t) + Bf, Bf = (Aol — A) Zf";l f; P Dg;i,
(I = P)y(t) = (I = P) Y27, i(t) Dy,
while the pseudo-compressible Oseen system is of the form
VA(E) = Acye(t) + Bof, Bof = (Mol — A) L1, £ Degy.
We have good approximation properties for A — A., for D — D,
IDg — Degll(2)y < Cellgllmzrye

but not for P — /, and thus not for B — B..



Possible remedy

e Compute a feedback for a ROM based on a spectral projection.
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Spectral projections in Z

The projector P, € £(Z,Z2,) (and P, € L(H, Z,)) is defined by

1
Py=~— [ (M —A)1Pd),

u — .
2iT My

[, is a union of Jordan curves, around (\})jes, U (A)jes-

We split 2/ = Az + Bu into two systems

AU:A|Zu7 As:A‘Zs’ Bu:PuBa Bs:(/_Pu)B
z=2z,+ 2z, 2z,=Auzy+ Buf, zl=Aszs+ Bsf.
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Spectral projections in Z. - Approximation of P,

There exists ¢g > 0, such that I, C p(A:), Ve € (0,0).

We set

1 -1
P, = 3 /ru()\/ —A:) T P.d),

Zew=PeuZ: and Z. s = (I - P.,)Z,
Acu =Aclz.ys Aes = Az,
Bew=PeuB: Bes=(l—P-u)B-.

We split z/ = A:z. + B-f into two systems

/ /
Ze = Zey + Ze s, Zew = Aa,uze,u + Ba,uf7 Zes = Ae,sze,s + Be,sf-

We choose £y > 0, and 3C > 0 such that, for all £ € (0, &9):
||P, — P&,,HL(H) < Ce and dim(Z,)=dim(Z ,).
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Estimates in Z, and Z.,

o B,f =3 N fi(hol — AP.D g,

o B.,f =N fi(xol — A)P-uD- gi.

H(AOI—‘AU)_IPU“(AO/_'AEM)_IFEMH£Uﬂ < Ce,
H(AO/ - AU)leu - ()‘0/ - Ae,U)ilBa,UHE(U,H) < Ce,

1By — Beullz(u,my < Ce, Ve € (0, €o).

Uniform bound for B, , € L(U, H)

sup || Bz ullg(u,my < +o0.
€€(0,e0)
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Uniform stabilizability of (A., + w,P- 4, B-4)

Assumption: Stabilizability and detectability conditions.

(Ay 4+ wyPy, By) s stabilizable in Z,,.
Either (A, + wy Py, C|z,) is detectable or C = 0.

We choose g¢ > 0 such that
Reo(Acu) > —wy and Reo(Acs) < —w, Ve € (0,¢ep).
(Acu + wyPe u, B:y) is unif. stabilizable
(Acu +wuPeu, €

z.,) is unif. detectable.
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The Riccati equation in Z,

N, e L£(Z,,2y), N,=MN>0, C,=Clz,,
Nu(Ay + wuPy) + (A +wy PN, — Ny B,BEN, + CiCy = 0,
Ay +w,P, — ByB;M, is exponentially stable in Z,.

If K, = —B:M,, then

||et(A+BKu)H£(H) < Cetv.
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The Riccati equation in Z. , and convergence rates

nz—:,u S E(Zz-:,ua Z;:u)7 I_Iz-:,u = P;m Ce,u =C Ze oy
Me,u(Ae,y + wuPeu) + (A:,u + WuP:,u)ns,u — Neyy BewBZ yMNeu
+C;uca,u =0,

Acu+wuPey— B yBZX M., s exponentially stable in Z; ,,.

e,u

The solutions I, and . ,, and the feedbacks
Ky =—-B;N,P, and K., = —BZ Tc 4 P: 4 obey
[MuPy — ns,uPS,UHL(H) < Cg,
and

Ky — Keullonuy < Ce, Ve € (0, e0).
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Convergence rates for the closed-loop systems

o Py(t) = eA+BK)tyy K = _B*M, P,, f is the control.
(I = P)y(t) = S Kiy(t)(I — P)Dg:.

o Py*(t) = eA+BKIty, K. = —BZ M. Py, f€ is the control.

(I = P)y*(t) = S0, Keiv*(£)(I = P)Dag.
o y.(t) = e(AtBK)tyy K = —BZ Ne yP: .y, f is the control.

For all € € (0,9), we have

(—w+oe)t
e
1:(2) = F(D)llu = € ————¢€llyoll,

Hfé-f - fHLP(O,oo;U) < CP E1/p||y0HHv Vp € (1’ OO),
I = fellip(0.000) < CoePllyollm,  Vp € (1,00),

where w > 0 is the a priori prescribed decay rate.

46 /50



Convergence rates for the closed-loop systems

e Convergence rates for the projections of the solutions of
closed-loop systems

(—wtoe)t
e
IPeye() = Puy(Dllm < € S—— el

HP&UYE - 'DuyHLP(O,oo;H) < CP gl/pHyOHHv Vp e (].,OO),

H'Da,u)’a - Puy€||LP(0,oo:H) < C’P gl/pHyOHHv Vp € (17 OO)

e We could obtain convergence rates between y. and y, on
compact time intervals [0, T], if we took a dynamic controller and
if yo € V9(Q) N (H3())°.
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e This framework can be used for many other parabolic systems:
Oseen with mixed B.C., Boussinesq, Fluid-structure interaction
system, penalty methods like the pseudo-compressibility method of
the Robin penalized B.C. to approximate Dirichlet B.C.

48/50



References

49/50

e P. Chandrashekar, M. Ramaswamy, J.-P. Raymond, R. Sandilya,
Numerical stabilization of the Boussinesq system, Comp. and
Math. with App., 2021.

e M. Badra, J.-P. Raymond, Approximation of feedback gains
stabilizing viscous incompressible fluid flows using the
pseudo-compressibility method, 2022.

e M. Badra, J.-P. Raymond, Approximation of feedback gains using
spectral projections - Application to the Oseen system, 2023.

e M. Badra, J.-P. Raymond, Approximation of feedback gains for
abstract parabolic systems, 2023.

e M. Badra, J.-P. Raymond, Approximation of feedback gains for
the Oseen system, 2023.



Thank you for your attention
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