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Outline of the lecture

2/44

e The Oseen system with NHBC. A, D, P and B.

e The approximate Oseen system with NHBC. A, Dy, Py and B,
e To do list

e Approximation of A and D. Known/new H! x L3-estimates.

e New regularity results for the Oseen system with NHBC.

e Known/new L2 x H~l-estimates for regular data.

e Known/new L2 x H~l-estimates for irregular data.

e Additional results.

e Conclusion and perspectives



Issues for the Navier-Stokes equations

e Q is a bounded polyhedral convex/non-convex domain in R3.
o (ws, ps) € HY(Q;R3) x L3(Q) is a stationary solution of
(ws - V)ws —vAws + Vps =f5, dives=0 in Q
ws =gs on [ =09.
e The controlled Navier-Stokes system

%—F(W-V)W—I/AW—va:fs, in Q:QX(0,00),

dvw=0 in Q w=gs+g on =T x(0,00),
w(0)=wp=ws+yp in Q.

The control g with suppg C ¢ is either in a infinite dimensional
space or of the form g(x,t) = Z,Nzcl fi(t) gi(x).
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The Oseen system

The nonlinear system satisfied by (y, p) = (w, p) — (ws, ps) is

0 .
—y+(W5-V)y+(y-V)W5+/£(y-V)y7VAy+Vp:O in Q,

ot
divy=0 in Q,
y=g on X,

y(0)=yo in Q
with kK = 1. The associated linearized system is obtained by setting

k = 0.
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The Oseen system C Abstract setting of Lecture 1

e The stationary Oseen system (for A\g > 0 large enough)
Ay + (ws  V)y+(y - VIws —vAy+Vp=F in Q
divy=0 in Q
y=g on [ =02

The Leray projector P: L?(; R3) — V9(Q)

VO(Q) = {y € L2(Q;R3) | divy =0, y-n=0o0n T}

L2(2;R3) = VI(Q) & VHY(Q).
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Variational formulation of the PDE system

a(y,c)z/Q(uw:v<+(ws-v>y-<+(y-V)ws-<) dx,

b(¢.q) = - [ qdive s,
Q
For A\p > 0O large enough:

Mo(y; Q)a + aly, O)+b(¢, p) = (F,¢)a  forall ¢ € Hy(2;R?),
b(y,p) =0 forall p € L3(Q),

y=g, on [I.

D(A) = {y € V() N Hy (4 R®) [ [a(y, Q)] < Cli¢ll 2, ¥¢ € VI(Q)},

(— Ay, Q)2 =aly,Q) forall (y,¢) € (D(A))>
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Coercivity condition

e We assume that Ao > 0 is large enough so that

14
Xo(y,y)+aly,y) = EH)/H%#(Q;M)'
e Inf-Sup condition

b(z,
sup _bz,p) > BHPHL%(Q) for all p € L3(Q), B> 0.

zeri@ps) |12l (aire)

e We set

VS(r)—{geHS(r;R3)y/g-ndx—O}, s>0.
r

7/44



Existence of variational solutions

For all F e H-1(Q;R3), all g € V1/2(T), the Oseen system admits
a unique variational solution (y, p) € H1(Q; R3) x L3(f), and

Yl @imey + llpllzi@) < C(IFllH-1@irs) + gllvizr)-
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The control operator B
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The Dirichlet operator D

Dg =y, where y is solution to

Xoy+ ws - V)y+(y-V)ws —vAy+Vp=0 in Q
divy=0 in Q

y=g on [,

when g € VY/2(IN). If g € VO(I), D is defined by the transposition
method.

The control operator B is defined by
(B € L(VO(T),(D(A)))): Bg = (ol —A)PDg.

and (A — A)™"B € L(VO(T), V(Q)) for some ~ € (0, 1).



Variational formulation versus Operator formulation

(v,q) € HY{(Q;R3)x € L?(Q) is a solution to the variational Oseen
system

if and only if
(Aol — A)Py = Bg + PF,

(I -=P)y=(-P)Dg,

The solution (y, q) to the instationary controlled Oseen system

satisfies
Py’ = APy + Bg,

(I = P)y(t) = (I — P)Dg(t), vt=0,
g=---.

Thus, we are in the functional setting of Lecture 1.
10/44



Explanation for Stokes - Ag

Dog =y, wherey is solution to
—vAy+Vp=0 in Q divy=0 in Q
y=g on [I.
For ¢ € D(Ao), Vi = (I — P)vA¢, that means
Avp = =V + vAgp, and By = (—Ag)PDy, we have
By¢ = DoP(—Ag)¢ = DoF = —v 0ntp + (¢ — c(¥)) n.
where ¢ € D(Ap), —V¢ + vA¢p = F.
Next

0:/Q(—uAerVp)gbdx:/Qon¢dx+/rgBS¢,

which gives
Aoy + Bog =0.
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Approximation spaces
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Taylor-Hood finite element method or (P1-Bubble, P1) finite element method, with quasi-uniform families of

triangulations.

o X C HYQ;R3), XP = Xp N HF(;R3),  velocity
e My, C L3(R), pressure

e S, =Xp|r, trace

e 7y, is the orthogonal projection in L2(I'; R3) onto S, @
Zn={z€ Xy | b(q,z) =0 for all g € My},

and Z9 = Z, N X,?. velocity

e We have a nonconforming approximation: Z, ¢ V9(Q).



Approximate Oseen system
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4.0 = [ (9 V¢+ (wl Dy -y V) )
Approximate Oseen system

Ao(yh, €) + an(yn, €) + b(¢, qn) = (F,C) forall ¢ € X,
b(yn,p) =0 forall pe My, y,=mpg on T.

Uniform coercivity : d\g > 0, large enough, such that

Xo(z,2) 2rs) T a(z,z) > Hz||,_,1(Q RrY) VZE HY(Q; R?),
and, for all h € (0, hg),

Mo(z, z)LQ(Q Ry T ap(z,z) > —Hz||H1 @QRr3), VZE HY(Q; R3),

and all w/ such that ||wf|| 5 < ||wslg + 1.




Uniform Inf-Sup conditions

There exists 5 > 0 such that

b
o sup (Z/’th)

— > ﬁthHLg(Q) for all p, € My, and all h > 0,
zpEXP HZhHHl(Q;R3)

(B.B.L. condition, Girault-Raviart, 2006, Bercovier-Pironneau,
1979) and

o fQ Zp - Vph dx
sup ———————

> BHVthLQ(Q;R3) for all pp € My, h > 0.
zpeX? th”L2(Q;R3)

(Bercovier-Pironneau, 1979)
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Variational solutions to the approximate Oseen system
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For all F € H™1(Q;R3), all g € V¥/2(I"), and for all h € (0, ho),
the approximate Oseen system admits a unique variational solution
(Yhs Pn) € Xn X Mp, and

lynll mr@ire) + IPnlliz) < CUIFIlH-1@r3) + lgllvirzm)-

Yn € Xn, gn € My, is a weak solution to the approximate variational
Oseen system if and only if

(Aol — Ap)Phryn + Brg = PhF,
(I = Pn)yn = (I — Py)Dpmpg,

G ="+,
where Dpmpg = yp when F = 0.
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e Uniform analyticity for A and Ap,.
e Estimate (A\g/ — A)"1P — (Xo/ — Ap) 1Py
e Estimate (Ag/ — A)"1B — (\o/ — Ap) 1By,

e For convex domains (Ag/ — Ap)~ 7By, is uniformly bounded in
L(VO(I), Zy). For non-convex domain, we prove that, for some

y€[v,1),

e two

e Ballqvorryzy) < € Yt € (0,h177), vh € (0, ho).

e To study Oseen, we need estimates for ws — w/.

With these conditions, we prove the uniform stabilizability of the
family (An, Bn)o<h<ho-

Next, we prove convergence rates for Riccati based feedbacks.



Uniform analyticity
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Due to the coercivity of a and the uniform coercivity of ap:

e There exists a sector
Srj246 ={A € C| larg(N)| < 7/2 + 6},
(wo,0) € (0, ) x]0, 7/2[ such that:

{wo} + Srj215 C p(A),
I = A)Hezy < g forall A € {wo} +Srj214,

A—wo|

and

{wo} +Sz/245 C p(An),
1T = Aoz < gy for all A€ {uo} + Srjzss




Approximation of A

e (N —A)PF=y
where (y, p) € HE(Q; R3) x L3(Q) is solution to

Xo(y,w) + a(y,w) + b(w,p) = (F, W)H,I’Hé for all w € H}(Q; R3),
b(y,p) =0 forall p € L3(Q).
o (Mol = Ap)"1PyF = yp
where (yp, pn) € Z2 x M, is solution to
)\o(yh, Wh) + ah(yh, Wh) + b(Wh, ph) = (F, Wh)L2(Q;R3) for all wy, € X,?,
b(yn, pn) =0 for all pp € Mp,.
We have (Girault-Raviart, 2006, convex polyhedral domains)
(Aol = A)HP — (Xol — Ap) " Pyl oy < C H2.

18/44



H* estimates for the approximation of Stokes system

Gunzburger-Hou-92, Girault-Raviart-86 and Girault-Raviart-06

If (y, p) is the solution to the Stokes system and (yp, pp) is the
solution to the approximate Stokes system, we have

1y = Yl + 1o = pall 2
<C (infchex,, ly = Callm +infpuem, 1P — pnll2 + [lg — 7Tthvm(r))

< Ch(llyllpser + [lpll2e)-

This last result come from
lly — rayllpm < Chs+1_m]]y\\Hs+1, m=20or1,

where r, € L(HY(Q); X), for £ > 1/2, is an interploation operator.
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L? estimates for the approximation of Stokes system

Gunzburger-Hou-92

For the L2 estimate in a convex polyhedron, we have

1y = yalli2

< € (hlly = yalln + Hllp = pull + sup,cpve-or {5728 )

< Ch(llyllsn +lIpliz), Ve €(0,1/2).
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Old/New ingredients
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e To obtain H! x L? estimates for Stokes/Oseen in non-convex
domain, we need new regularity results for Stokes with
non-homogeneous B.C.

e To obtain new regularity results for Stokes/Oseen with NHB.C.,
we use Dauge-89 for Stokes in non-convex domain with
homogeneous B.C. and some sharp results for lifting NHB.C.

e To obtain L2 x H~! estimates for Stokes/Oseen in
convex/non-convex domain, in the case of regular B.C., we use a
variant of the Aubin-Nitsche argument (with NHB.C., # from
G-H-92).

e To obtain L2 x 1! estimates for Stokes/Oseen in
convex,/non-convex, in the case of irregular B.C., we use the
transposition method and the approximation of the stress tensor of
the adjoint state.



Old/New ingredients
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e To prove the existence of (ws, ps) in H* x L2, we use Temam or
Girault-Raviart. To prove regularity results for (ws, ps), we use our
new regularity results for Stokes with non-homogeneous B.C.

e To prove estimates for (ws — w/, ps — pf) in H! x L2, we use
Girault-Raviart (or Casas-Mateos-R-07), and our new regularity
results for Stokes with NHB.C.



Regularity results for Stokes in polyhedrons

Dauge-Sima-89

Eg = Es is the union of edges of .

H(Q) = Q)N L5(Q), H Q) = (H(Q), (>0,

HEF(Q) = {h e Q) | hlg, =0}, for £>0,

Hior,(Q) = {h € HY(Q) | (dist(-,Eq)) " h(-) € L2(Q)},
= [H¥4Q), HE (2. £€(0,1/2).

. 1/2
8l = (11A130g) + I(ist (- Ea)Hh()Esqy ) -

y € HY(QR?), —vAy+Vg=F, divy=divh in Q.
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There exists o* € (0,1), depending on Q C RY, such that
a* €(0,1/2) if Q is non-convex, o* € (1/2,1) if Q is convex, and
for which the following regularity results are satisfied.

(i) If © is non-convex, for all ap € (0, *), we have

IWllprases + 1allyr2se0 < € (IFlysszroaayzay + Illz/2meo0(qy)-

(ii) If Q is convex, for all ap € (1/2,*), we have
Wl + lallaron < € (Fn-s2reniazoy + Al gy
VYag € (0,1/2),

yllrz + Nl < CUFll@ps) + lAllg, , @)-
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Trace spaces for polyhedrons

H=Y2(T) = 4o HAQ), Ve e (1/2,5/2).

There exists L € L(H"1/2(T"), HY(Q)) such that
volg =g, VgeHTVAT).

If g € H'=Y2(T), then g|r, € H'=Y/2(T;) for all face I'; of T.
If 1/2 < ¢ < 1, no additional condition.
If £ =1, an integral condition is needed at the edges.
If 1 < ¢ < 3/2, equalities of the traces at the edges
vij(z|r;) = 7.i(2]r;)-
If ¢ =3/2, equalities of the traces at the edges.

If 3/2 < £ <5/2, equalities of the traces at the edges and the corners.
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Traces of divergence free functions

VM) = {g e H(;R3) | [ g-ndx =0}, ¢>0,
V32H(T) = {g € V3/2H(T) | divig =0 on Es}

The condition divLg =0 on Ej3 is independent of L.
divlig=0 onl;; < sin(w;J)aoJ;goJl; + 81/{g,'7j + ij-g{,i =0,
V3/2(T) = [V3/274T), V32 (D)l n, £ €(0,1/2)

= {g e V¥(N) | divLg € Hyyg ()}
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divlg =0 onl;;
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vi I

X

X2

wjj is the angle between [; and [},

(n;,u{,o{:) is a direct orthonormal basis,

n; is the normal to T;, exterior to €,

V{ is the normal to [ ;, parallel to I';, exterior to [';,

(g,,,,gV{,goJi-) is the coordinate vector of g in the basis (n;, V,’,a‘f)

g,’;,. is the restriction of gy, to I;.



divlg =0 onl;;

sin(w,-J)(?oJ’_-gaJI; + 8V{g,’;j + 8ngg{;, =0.
is a condition which is expressed only in terms of g on I', while
divig =0 onl;;,
is a condition on Lg defined on €.

In the case of the above figure the condition is

0x:83 + 8X1g:{ + axggé =0 on I_i,j-
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Regularity results for Stokes and Oseen in polyhedrons

—vAy+Vg=F, divy=0 in Q y=g on T.

(i) If Q is non-convex, for all ap € (0, a*), we have

Y7200 + 11Pllgga/2000 < Cao([[F Il pao-1/2 + llgllyrreo)-

(ii) If Q is convex, we have

1Yz + lIpllae < CUF 2+ liglys)-

Moreover

V3/2(M) = 70 ({v € H*(Q) | divv = 0}) = 70 (V3(Q)).
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Convergence rate for Stokes/Oseen in polyhedrons - BR23

If Q is non-convex, we have

ly = yallm + 1P = Palliz < Cap 2|l oo-1/2 + llg [l yrteo ),
Vag € (0, a*).

If Q is convex, we have

1y = yalltr + 1P = palle < Ch([IFll2 + llgllys)-

We mainly use G-H + new regularity results.
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Stokes/Oseen in polyhedrons - Regular data - BR23

If © is non-convex, for all ap € (0, a*), we have
ly = yulliz + llp = Pall—1 < Cag B2 ([[Fll yag-172 + llgllyi+eo),
If Q is convex, for all ag € (1/2,a*), we have
Iy = llz + 1o = Pl y < Cao P20 Fleg-172 + 1€l yasoo):
If Q is convex, for all € € (0,1/2), we have
ly = ynllte + 1P = pally-1+e < CH2(IFll2 + llgllyar2).
For all g € V3/2, compactly supported in I\ E3, we have

ly = yulliz + 1l = pPallags, , y < G P(IFllz + llgllvar2),

00,E,

where § = dist(supp g, E3).
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Stokes/Oseen in polyhedrons - irregular data - BR23

We choose F = 0.

If © is non-convex, we have

ly = yollez + llp = pall—1 < Cog h°|Igl[ o, Vo € (0,7).

If Q is convex, we have

ly = yallte + 1lp = pallg—ree < Cc B2~ gllvo, Ve € (0,1/2).
If Q is convex, we have

ly = yallez + lp = pall gy < € H2lgllvo,

Vg € L2(T), such that g-n=0, and

ly = yallez + lp = pallgy < G5 h*72lg ]l vo,
Vg € L%(I), such that 0 < § < dist(supp g, E3).
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Aubin-Nitsche argument for regular data

(v, p) the solution to Stokes with (F, g) as RHS.
(vh, pn) the solution to approx-Stokes with (F,mpg) as RHS.

(¢,) the solution to (adjoint)-Stokes with (£, f) as RHS
with H.B.C. (dive = f).

&,y —yn)a +(f,p— pn)
=a(y — yn, ¢ — o) + b(¢p — rne, p — pn)

+b(y — yn, ¥ — spbp) — (t, g — Thg),
where t = v 0,0 — 1.
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Transposition argument for irregular data

(4,1, t) the solution to (adjoint)-Stokes with (&, f) as RHS with
H.B.C. (dive = f).

(dn, n, t) the solution to approx. (adjoint)-Stokes with (&, f) as
RHS with H.B.C. (dive = f).

&y —yna+(f,p—pn)a=(t—thg)r

We need to estimate t — t,.
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Equations for t and t,

(¢,,t) is the solution to
a(¢, @)+ b(¢,¥) — (£.0) = (6. Oa,  ¥C € (HY(Q))?,

b(d)ap) = (f? p)Qa VP € L%(Q)>
(X, ) =0, VYXe(HY3I)):.

(dh, n, ty) is the solution to

a(Ch, dn) + b(Chyhn) — (ths Ch) = (&, Ch)as  VC € X,
b(¢n, pr) = (f,pn)a,  Vpn € M,
<>‘h> ¢h> = 07 V)‘h S Sh-
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Estimate of t — t,

If © is non-convex, for all o € (0, ), we have

I7nt = thll2(rrs) < Cag W€ 417200 + [[Fll31/200);
and

1t — 7t 2rirs) < Cag W (1]l 17200 + [ Fll3/200 ),

If Q is convex, we have

[mht — tall2(rirs) < C h2([|€] 2 + || f |3

),

00,E4

and

It = motlizrms) < €A (6 + Fllg,, )o Ve € (0,1/2),
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Approximation of B - |

We have to estimate ||(Ag/ — A)"1B — (Mol — Ah)_lBhH/;(U,LZ)-
If U= VOT), Bg=(\l—A)PDg,
Bhg = (Aol — Ar)PrDpmrg, and we have to estimate

|PD g — PhDnmhgllvo(a)

<|[|P(Dg — Dymhng)llve) + (P — Pn)Dgllve(q)
If U=RNe, Bf =N fi(ho/ — A)PD g;,
Byf = Y1) fi( Mol — Ap)PhDp mhg:.
We have (in convex domain)

I(D — Dy mh)gllizome) < Cs b llgllvory,

if dist(suppg,E3) > & > 0.
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Approximation of P

We use the Inf-Sup condition from Bercovier-Pironneau.
e PF = z where (z,q) € V2(Q) x (HY(Q) N L3(Q)) is sol. to
(z, W)Lz(Q;R3) +/ Vqg-wdx = (F, W) 12(QR?) for all w € H&(Q;R3),
o ;

/vp-zdx—o for all p € (HY(Q) N L3(R)).
Q

o PyF = z, where (zp, qp) € X,? x My, is solution to

(zn, Wh)LZ(Q;RB) + /Q Vap - wpdx = (F, wh) 12(QR) for all wy, € X7,

/ Vpn-zpdx =0 forall p, € Mp,.
Q

We have (Badra-R, 23)
IP = Phll c(meqamey.zmey) < ChY, VL€ [0,1/2).
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Approximation of B - |l

o Bg= (X! —A)PDg, U= VOI), H=L2Q;R3)
o Buyf = (Nol — Ap)PrDpmhg,
We have

If Q is non-convex, we have
H(/\ol — A)_lB — (/\0/ — Ah)_lBhuﬂ(U,H) < Coco he°,  Vag € (O,CY*).
If Q is convex, we have

”()\0/ — A)_lB — ()\0/ — Ah)_lBh”L(U,H) < C. h1/2_6, Ve € (O, 1/2).
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Estimate of HeA”tBhHE(VO(r)\Zh)

y = |(ho — An)?y |2

is a norm on Zj, equivalent to the H'-norm.

wot

1€ Ball cvorry.zz) < Chret , Vte (0,h70),

and
ewot

1€ Byl c(vory.zyy < ChT YER

ewo t

A r/(1—
He ”tBhHE(VO(F),Zh) < CW, Vt € (07/7 /( 7))
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Estimates of w, — w.
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h
s

Assumptions gs € V1F2o(T) if Q is non-convex and
8s € VSC/2(r) N V3/2(T) if Q is convex.

In addition (ws, ps) is a nonsingular solution of the NSE.

If Q is non-convex, for all ag € (0, ™), we have
W2r0llw — w4 W — w2 + B0 ps — ol 12
< C(ao, ws) h1H200,
If Q is convex, we have
lw = whllen + llos — P13 < Clwe) b

If Q is convex, and if gs € VLrao(I) n VI+ao(T) for some
ap € (1/2,a*), we have

lw — w2 < Clws) b2,
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