ICTS - Bangalore

Recent advances on control theory of PDE systems

February 12-23, 2024

Numerical approximation of the Oseen system in polyhedral/polygonal domains

Lecture 2

Jean-Pierre Raymond, Institut de Mathématiques – Toulouse joint work with Mehdi Badra

Outline of the lecture

- The Oseen system with NHBC. A, D, P and B.
- The approximate Oseen system with NHBC. A_h , D_h , P_h and B_h .
- To do list
- Approximation of A and D. Known/new $H^1 \times L^2_0$ -estimates.

- New regularity results for the Oseen system with NHBC.
- Known/new $L^2 imes \mathcal{H}^{-1}$ -estimates for regular data.
- Known/new $L^2 \times \mathcal{H}^{-1}$ -estimates for irregular data.
- Additional results.
- Conclusion and perspectives

Issues for the Navier-Stokes equations

- Ω is a bounded polyhedral convex/non-convex domain in $\mathbb{R}^3.$
- $(w_s, \rho_s) \in H^1(\Omega; \mathbb{R}^3) imes L^2_0(\Omega)$ is a stationary solution of

$$\begin{aligned} (w_s \cdot \nabla)w_s - \nu \, \Delta w_s + \nabla \rho_s &= f_s, \quad \text{div} \ v_s = 0 \quad \text{in} \quad \Omega, \\ w_s &= g_s \quad \text{on} \quad \Gamma = \partial \Omega. \end{aligned}$$

• The controlled Navier-Stokes system

$$\begin{split} &\frac{\partial w}{\partial t} + (w \cdot \nabla)w - \nu \,\Delta w + \nabla \rho = f_s, \quad \text{in} \quad Q = \Omega \times (0, \infty), \\ &\text{div} \, w = 0 \quad \text{in} \quad Q, \quad w = g_s + g \quad \text{on} \quad \Sigma = \Gamma \times (0, \infty), \\ &w(0) = w_0 = w_s + y_0 \quad \text{in} \quad \Omega. \end{split}$$

The control g with suppg $\subset \Gamma_c$ is either in a infinite dimensional space or of the form $g(x, t) = \sum_{i=1}^{N_c} f_i(t) g_i(x)$.

The Oseen system

The nonlinear system satisfied by $(y,p) = (w,\rho) - (w_s,\rho_s)$ is

$$\begin{split} &\frac{\partial y}{\partial t} + (w_s \cdot \nabla)y + (y \cdot \nabla)w_s + \kappa (y \cdot \nabla)y - \nu \,\Delta y + \nabla p = 0 \quad \text{in} \quad Q, \\ &\text{div} \, y = 0 \quad \text{in} \quad Q, \\ &y = g \quad \text{on} \quad \Sigma, \\ &y(0) = y_0 \quad \text{in} \quad \Omega, \end{split}$$

with $\kappa=1.$ The associated linearized system is obtained by setting $\kappa=0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Oseen system \subset Abstract setting of Lecture 1

• The stationary Oseen system (for $\lambda_0 > 0$ large enough)

$$\begin{split} \lambda_0 y + (w_s \cdot \nabla) y + (y \cdot \nabla) w_s - \nu \, \Delta y + \nabla p &= F \quad \text{in} \quad \Omega, \\ \text{div} \, y &= 0 \quad \text{in} \quad \Omega, \\ y &= g \quad \text{on} \quad \Gamma &= \partial \Omega. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Leray projector $P: L^2(\Omega; \mathbb{R}^3) \longmapsto V^0_n(\Omega)$

$$V_n^0(\Omega) = \{ y \in L^2(\Omega; \mathbb{R}^3) \mid \text{div } y = 0, \ y \cdot n = 0 \text{ on } \Gamma \}.$$
$$L^2(\Omega; \mathbb{R}^3) = V_n^0(\Omega) \oplus \nabla H^1(\Omega).$$

Variational formulation of the PDE system

$$\begin{aligned} \mathsf{a}(y,\zeta) &= \int_{\Omega} \left(\nu \nabla y : \nabla \zeta + (w_s \cdot \nabla) y \cdot \zeta + (y \cdot \nabla) w_s \cdot \zeta \right) \, dx, \\ \mathsf{b}(\zeta,q) &= - \int_{\Omega} q \operatorname{div} \zeta \, dx, \end{aligned}$$

For $\lambda_0 > 0$ large enough:

$$\begin{split} \lambda_0(y,\zeta)_\Omega + a(y,\zeta) + b(\zeta,p) &= (F,\zeta)_\Omega \quad \text{for all } \zeta \in H^1_0(\Omega;\mathbb{R}^3), \\ b(y,\rho) &= 0 \quad \text{for all } \rho \in L^2_0(\Omega), \\ y &= g, \quad \text{on} \quad \Gamma. \end{split}$$

 $\mathcal{D}(A) = \{ y \in V_n^0(\Omega) \cap H_0^1(\Omega; \mathbb{R}^3) \mid |a(y,\zeta)| \le C \|\zeta\|_{L^2}, \ \forall \zeta \in V_n^0(\Omega) \},$ $(-Ay,\zeta)_{L^2} = a(y,\zeta) \quad \text{for all } (y,\zeta) \in (\mathcal{D}(A))^2.$

Coercivity condition

 \bullet We assume that $\lambda_0>0$ is large enough so that

$$\lambda_0(y,y) + \mathsf{a}(y,y) \geq rac{
u}{2} \|y\|^2_{H^1(\Omega;\mathbb{R}^3)}.$$

• Inf-Sup condition

$$\sup_{z\in H_0^1(\Omega;\mathbb{R}^3)}\frac{b(z,p)}{\|z\|_{H^1(\Omega;\mathbb{R}^3)}}\geq \beta \|p\|_{L_0^2(\Omega)}\quad\text{for all }p\in L_0^2(\Omega),\quad\beta>0.$$

• We set

$$V^{s}(\Gamma) = \{g \in H^{s}(\Gamma; \mathbb{R}^{3}) \mid \int_{\Gamma} g \cdot n \, dx = 0\}, \quad s \geq 0.$$

For all $F \in H^{-1}(\Omega; \mathbb{R}^3)$, all $g \in V^{1/2}(\Gamma)$, the Oseen system admits a unique variational solution $(y, p) \in H^1(\Omega; \mathbb{R}^3) \times L^2_0(\Omega)$, and

$$\|y\|_{H^1(\Omega;\mathbb{R}^3)} + \|p\|_{L^2(\Omega)} \le C (\|F\|_{H^{-1}(\Omega;\mathbb{R}^3)} + \|g\|_{V^{1/2}(\Gamma)}).$$

The control operator B

The Dirichlet operator D

$$\begin{split} Dg &= y, & \text{where } y \text{ is solution to} \\ \lambda_0 y + (w_s \cdot \nabla) y + (y \cdot \nabla) w_s - \nu \, \Delta y + \nabla p = 0 & \text{in } \Omega, \\ \text{div } y &= 0 & \text{in } \Omega, \\ y &= g & \text{on } \Gamma, \end{split}$$

when $g \in V^{1/2}(\Gamma)$. If $g \in V^0(\Gamma)$, D is defined by the transposition method.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

The control operator B is defined by

$$(B \in \mathcal{L}(V^0(\Gamma), (\mathcal{D}(A^*))'))$$
: $Bg = (\lambda_0 I - A)PDg$.

and $(\lambda I - A)^{-\gamma}B \in \mathcal{L}(V^0(\Gamma), V^0_n(\Omega))$ for some $\gamma \in (0, 1)$.

Variational formulation versus Operator formulation

 $(y,q)\in H^1(\Omega;\mathbb{R}^3) imes\in L^2(\Omega)$ is a solution to the variational Oseen system

if and only if

$$(\lambda_0 I - A)Py = Bg + PF,$$

 $(I - P)y = (I - P)Dg,$
 $q = \cdots.$

The solution (y, q) to the instationary controlled Oseen system satisfies

$$Py' = APy + Bg,$$

 $(I - P)y(t) = (I - P)Dg(t), \quad \forall t \ge 0,$
 $q = \cdots.$

Thus, we are in the functional setting of Lecture $1_{(1)}$, (1), (1), (1), (2), (2), (3

Explanation for Stokes - A_0

 $D_0 g = y$, where y is solution to $-\nu \Delta y + \nabla p = 0$ in Ω , div y = 0 in Ω , y = g on Γ . For $\phi \in \mathcal{D}(A_0)$, $\nabla \psi = (I - P)\nu \Delta \phi$, that means $A_0\phi = -\nabla\psi + \nu\Delta\phi$, and $B_0 = (-A_0)PD_0$, we have $B_0^*\phi = D_0^*P(-A_0^*)\phi = D_0^*F = -\nu \partial_n \phi + (\psi - c(\psi)) n.$ where $\phi \in \mathcal{D}(A_0)$, $-\nabla \psi + \nu \Delta \phi = F$. Next

$$0 = \int_{\Omega} (-\nu \, \Delta y + \nabla p) \, \phi \, dx = \int_{\Omega} y \, A_0 \phi \, dx + \int_{\Gamma} g \, B_0^* \phi,$$

which gives

$$A_0 y + B_0 g = 0.$$

Taylor-Hood finite element method or (P1-Bubble, P1) finite element method, with quasi-uniform families of triangulations.

- $X_h \subset H^1(\Omega; \mathbb{R}^3), \ X_h^0 = X_h \cap H^1_0(\Omega; \mathbb{R}^3),$ velocity
- $M_h \subset L^2_0(\Omega)$, pressure
- $S_h = X_h |_{\Gamma}$, trace

• π_h is the orthogonal projection in $L^2(\Gamma; \mathbb{R}^3)$ onto S_h , • $Z_h = \{z \in X_h \mid b(q, z) = 0 \text{ for all } q \in M_h\},$ and $Z_h^0 = Z_h \cap X_h^0$. velocity

• We have a nonconforming approximation: $Z_h \not\subset V_n^0(\Omega)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$a_h(y,\zeta) = \int_{\Omega} \left(\nu \nabla y : \nabla \zeta + (w_s^h \cdot \nabla) y \cdot \zeta + (y \cdot \nabla) w_s^h \cdot \zeta \right) \, dx,$$

Approximate Oseen system

$$\lambda_0(y_h,\zeta) + a_h(y_h,\zeta) + b(\zeta,q_h) = (F,\zeta) \text{ for all } \zeta \in X_0^h,$$

$$b(y_h,\rho) = 0 \text{ for all } \rho \in M_h, \quad y_h = \pi_h g \text{ on } \Gamma.$$

Uniform coercivity : $\exists \lambda_0 > 0$, large enough, such that

$$\lambda_0(z,z)_{L^2(\Omega;\mathbb{R}^3)} + a(z,z) \geq rac{
u}{2} \|z\|_{H^1(\Omega;\mathbb{R}^3)}^2, \quad \forall z \in H^1(\Omega;\mathbb{R}^3),$$

and, for all $h \in (0, h_0)$,

$$\lambda_0(z,z)_{L^2(\Omega;\mathbb{R}^3)} + a_h(z,z) \geq \frac{\nu}{2} \|z\|_{H^1(\Omega;\mathbb{R}^3)}^2, \quad \forall z \in H^1(\Omega;\mathbb{R}^3),$$

and all w_s^h such that $||w_s^h||_{H^1} \le ||w_s||_{H^1} + 1$.

Uniform Inf-Sup conditions

There exists $\beta > 0$ such that

•
$$\sup_{z_h \in X_h^0} \frac{b(z_h, p_h)}{\|z_h\|_{H^1(\Omega; \mathbb{R}^3)}} \ge \beta \|p_h\|_{L^2_0(\Omega)} \quad \text{for all } p_h \in M_h, \text{ and all } h > 0,$$

(B.B.L. condition, Girault-Raviart, 2006, Bercovier-Pironneau, 1979) and

•
$$\sup_{z_h \in X_h^0} \frac{\int_{\Omega} z_h \cdot \nabla p_h \, dx}{\|z_h\|_{L^2(\Omega; \mathbb{R}^3)}} \ge \beta \|\nabla p_h\|_{L^2(\Omega; \mathbb{R}^3)} \quad \text{for all } p_h \in M_h, \ h > 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(Bercovier-Pironneau, 1979)

Variational solutions to the approximate Oseen system

For all $F \in H^{-1}(\Omega; \mathbb{R}^3)$, all $g \in V^{1/2}(\Gamma)$, and for all $h \in (0, h_0)$, the approximate Oseen system admits a unique variational solution $(y_h, p_h) \in X_h \times M_h$, and

 $\|y_h\|_{H^1(\Omega;\mathbb{R}^3)} + \|p_h\|_{L^2(\Omega)} \leq C \left(\|F\|_{H^{-1}(\Omega;\mathbb{R}^3)} + \|g\|_{V^{1/2}(\Gamma)}\right).$

 $y_h \in X_h$, $q_h \in M_h$ is a weak solution to the approximate variational Oseen system if and only if

$$(\lambda_0 I - A_h) P_h y_h + B_h g = P_h F,$$

$$(I - P_h) y_h = (I - P_h) D_h \pi_h g,$$

$$q_h = \cdots,$$

where $D_h \pi_h g = y_h$ when F = 0.

To do list

• Uniform analyticity for A and A_h .

• Estimate $(\lambda_0 I - A)^{-1} P - (\lambda_0 I - A_h)^{-1} P_h$.

• Estimate
$$(\lambda_0 I - A)^{-1}B - (\lambda_0 I - A_h)^{-1}B_h$$
.

• For convex domains $(\lambda_0 I - A_h)^{-\gamma} B_h$ is uniformly bounded in $\mathcal{L}(V^0(\Gamma), Z_h)$. For non-convex domain, we prove that, for some $\overline{\gamma} \in [\gamma, 1)$,

$$\|e^{A_ht}B_h\|_{\mathcal{L}(V^0(\Gamma),Z_h)} \leq C \frac{e^{t\omega_0}}{t^{\overline{\gamma}}}, \quad \forall t \in (0,h^{r/(1-\gamma)}), \quad \forall h \in (0,h_0).$$

• To study Oseen, we need estimates for $w_s - w_s^h$.

With these conditions, we prove the uniform stabilizability of the family $(A_h, B_h)_{0 < h < h_0}$.

Next, we prove convergence rates for Riccati based feedbacks.

Uniform analyticity

Due to the coercivity of a and the uniform coercivity of a_h :

There exists a sector

$$\mathbb{S}_{\pi/2+\delta} = \{\lambda \in \mathbb{C} \mid |\operatorname{arg}(\lambda)| < \pi/2 + \delta\},$$

 $(\omega_0,\delta)\in(0,\lambda_0) imes]0,\pi/2[$ such that:

$$\begin{split} \{\omega_0\} + \mathbb{S}_{\pi/2+\delta} \subset \rho(\mathcal{A}), \\ \|(\lambda I - \mathcal{A})^{-1}\|_{\mathcal{L}(Z)} &\leq \frac{C}{|\lambda - \omega_0|} \quad \text{for all } \lambda \in \{\omega_0\} + \mathbb{S}_{\pi/2+\delta}, \end{split}$$

and

$$\begin{split} \{\omega_0\} + \mathbb{S}_{\pi/2+\delta} \subset \rho(A_h), \\ \|(\lambda I - A_h)^{-1}\|_{\mathcal{L}(Z_h)} &\leq \frac{C}{|\lambda - \omega_0|} \quad \text{for all } \lambda \in \{\omega_0\} + \mathbb{S}_{\pi/2+\delta} \end{split}$$

Approximation of A

•
$$(\lambda_0 I - A)^{-1} PF = y$$

where
$$(y, p) \in H_0^1(\Omega; \mathbb{R}^3) \times L_0^2(\Omega)$$
 is solution to
 $\lambda_0(y, w) + a(y, w) + b(w, p) = \langle F, w \rangle_{H^{-1}, H_0^1}$ for all $w \in H_0^1(\Omega; \mathbb{R}^3)$,
 $b(y, \rho) = 0$ for all $\rho \in L_0^2(\Omega)$.

•
$$(\lambda_0 I - A_h)^{-1} P_h F = y_h$$

where
$$(y_h, p_h) \in Z_h^0 \times M_h$$
 is solution to
 $\lambda_0(y_h, w_h) + a_h(y_h, w_h) + b(w_h, p_h) = (F, w_h)_{L^2(\Omega; \mathbb{R}^3)}$ for all $w_h \in X_h^0$,
 $b(y_h, \rho_h) = 0$ for all $\rho_h \in M_h$.

・ロト ・ ロト ・ ヨト ・ ヨー ・ つくぐ

We have (Girault-Raviart, 2006, convex polyhedral domains)

$$\|(\lambda_0 I - A)^{-1} P - (\lambda_0 I - A_h)^{-1} P_h\|_{\mathcal{L}(H)} \le C h^2.$$

H^1 estimates for the approximation of Stokes system

Gunzburger-Hou-92, Girault-Raviart-86 and Girault-Raviart-06

If (y, p) is the solution to the Stokes system and (y_h, p_h) is the solution to the approximate Stokes system, we have

$$\begin{split} \|y - y_h\|_{H^1} + \|p - p_h\|_{L^2} \\ &\leq C \, \left(\inf_{\zeta_h \in X_h} \|y - \zeta_h\|_{H^1} + \inf_{\rho_h \in M_h} \|p - \rho_h\|_{L^2} + \|g - \pi_h g\|_{V^{1/2}(\Gamma)} \right) \\ &\leq C \, h^s(\|y\|_{H^{s+1}} + \|p\|_{\mathcal{H}^s}). \end{split}$$

This last result come from

$$\|y - r_h y\|_{H^m} \le C h^{s+1-m} \|y\|_{H^{s+1}}, \quad m = 0 \,\, {
m or} \,\, 1,$$

where $r_h \in \mathcal{L}(H^{\ell}(\Omega); X_h)$, for $\ell > 1/2$, is an interploation operator.

Gunzburger-Hou-92

For the L^2 estimate in a convex polyhedron, we have

$$\begin{split} \|y - y_h\|_{L^2} \\ &\leq C \, \left(h \|y - y_h\|_{H^1} + h \|p - p_h\|_{L^2} + \sup_{v \in H^{1/2 - \epsilon}(\Gamma)} \frac{(g - \pi_h g)_{\Gamma}}{\|v\|_{H^{1/2 - \epsilon}}} \right) \\ &\leq C \, h^{1 - \epsilon} \, (\|y\|_{H^1} + \|p\|_{L^2}) \,, \quad \forall \epsilon \in (0, 1/2). \end{split}$$

・ロト ・ 四ト ・ 日ト ・ 日下

Old/New ingredients

• To obtain $H^1 \times L^2$ estimates for Stokes/Oseen in non-convex domain, we need new regularity results for Stokes with non-homogeneous B.C.

• To obtain new regularity results for Stokes/Oseen with NHB.C., we use Dauge-89 for Stokes in non-convex domain with homogeneous B.C. and some sharp results for lifting NHB.C.

• To obtain $L^2 \times \mathcal{H}^{-1}$ estimates for Stokes/Oseen in convex/non-convex domain, in the case of regular B.C., we use a variant of the Aubin-Nitsche argument (with NHB.C., \neq from G-H-92).

• To obtain $L^2 \times \mathcal{H}^{-1}$ estimates for Stokes/Oseen in convex/non-convex, in the case of irregular B.C., we use the transposition method and the approximation of the stress tensor of the adjoint state.

• To prove the existence of (w_s, ρ_s) in $H^1 \times L^2$, we use Temam or Girault-Raviart. To prove regularity results for (w_s, ρ_s) , we use our new regularity results for Stokes with non-homogeneous B.C.

• To prove estimates for $(w_s - w_s^h, \rho_s - \rho_s^h)$ in $H^1 \times L^2$, we use Girault-Raviart (or Casas-Mateos-R-07), and our new regularity results for Stokes with NHB.C.

・ロト ・ 四ト ・ 日ト ・ 日下

Regularity results for Stokes in polyhedrons

Dauge-Sima-89

$$\begin{split} \mathbb{E}_{d} &= \mathbb{E}_{3} \text{ is the union of edges of } \Gamma. \\ \mathcal{H}^{\ell}(\Omega) &= H^{\ell}(\Omega) \cap L_{0}^{2}(\Omega), \quad \mathcal{H}^{-\ell}(\Omega) = (\mathcal{H}^{\ell}(\Omega))', \quad \ell \geq 0, \\ \mathcal{H}_{\mathbb{E}_{d}}^{1+\ell}(\Omega) &= \{h \in \mathcal{H}^{1+\ell}(\Omega) \mid h|_{\mathbb{E}_{d}} = 0\}, \quad \text{for } \ell > 0, \\ \mathcal{H}_{00,\mathbb{E}_{d}}^{1}(\Omega) &= \{h \in \mathcal{H}^{1}(\Omega) \mid (\operatorname{dist}(\cdot,\mathbb{E}_{d}))^{-1}h(\cdot) \in L^{2}(\Omega)\}, \\ &= [H^{1-\ell}(\Omega), \mathcal{H}_{\mathbb{E}_{d}}^{1+\ell}(\Omega)]_{1/2}, \quad \ell \in (0, 1/2). \\ \|h\|_{\mathcal{H}_{00,\mathbb{E}_{d}}^{1}(\Omega)} &= \left(\|h\|_{\mathcal{H}^{1}(\Omega)}^{2} + \|(\operatorname{dist}(\cdot,\mathbb{E}_{d}))^{-1}h(\cdot)\|_{L^{2}(\Omega)}^{2}\right)^{1/2} \end{split}$$

$$y \in H_0^1(\Omega; \mathbb{R}^3), \quad -\nu \,\Delta y + \nabla q = F, \quad \operatorname{div} y = \operatorname{div} h \quad \operatorname{in} \quad \Omega.$$

.

There exists $\alpha^* \in (0, 1)$, depending on $\Omega \subset \mathbb{R}^d$, such that $\alpha^* \in (0, 1/2)$ if Ω is non-convex, $\alpha^* \in (1/2, 1)$ if Ω is convex, and for which the following regularity results are satisfied.

(i) If Ω is non-convex, for all $\alpha_0 \in (0, \alpha^*)$, we have

$$\|y\|_{H^{3/2+\alpha_0}} + \|q\|_{\mathcal{H}^{1/2+\alpha_0}} \leq C (\|F\|_{H^{-1/2+\alpha_0}(\Omega;\mathbb{R}^3)} + \|h\|_{\mathcal{H}^{1/2+\alpha_0}(\Omega)}).$$

(ii) If
$$\Omega$$
 is convex, for all $\alpha_0 \in (1/2, \alpha^*)$, we have
 $\|y\|_{H^{3/2+\alpha_0}} + \|q\|_{\mathcal{H}^{1/2+\alpha_0}} \leq C (\|F\|_{H^{-1/2+\alpha_0}(\Omega;\mathbb{R}^3)} + \|h\|_{\mathcal{H}^{1/2+\alpha_0}_{\mathbb{E}_d}(\Omega)}),$
 $\forall \alpha_0 \in (0, 1/2),$
 $\|y\|_{H^2} + \|q\|_{\mathcal{H}^1} \leq C (\|F\|_{L^2(\Omega;\mathbb{R}^3)} + \|h\|_{\mathcal{H}^{1}_{00,\mathbb{E}_d}(\Omega)}).$

$$H^{\ell-1/2}(\Gamma) = \gamma_0 H^{\ell}(\Omega), \quad \forall \ell \in (1/2, 5/2).$$

There exists $L \in \mathcal{L}(H^{\ell-1/2}(\Gamma), H^{\ell}(\Omega))$ such that
 $\gamma_0 Lg = g, \quad \forall g \in H^{\ell-1/2}(\Gamma).$

If $g \in H^{\ell-1/2}(\Gamma)$, then $g|_{\Gamma_i} \in H^{\ell-1/2}(\Gamma_i)$ for all face Γ_i of Γ . If $1/2 < \ell < 1$, no additional condition.

If $\ell = 1$, an integral condition is needed at the edges.

If $1 < \ell < 3/2$, equalities of the traces at the edges $\gamma_{i,j}(z|_{\Gamma_i}) = \gamma_{j,i}(z|_{\Gamma_j}).$

If $\ell = 3/2$, equalities of the traces at the edges.

If $3/2 < \ell < 5/2$, equalities of the traces at the edges and the corners.

Traces of divergence free functions

$$\begin{split} V^{\ell}(\Gamma) &= \{g \in H^{\ell}(\Gamma; \mathbb{R}^{3}) \mid \int_{\Gamma} g \cdot n \, dx = 0\}, \quad \ell \geq 0, \\ \dot{V}^{3/2+\ell}(\Gamma) &= \{g \in V^{3/2+\ell}(\Gamma) \mid \text{div} \, Lg = 0 \quad \text{on} \, \mathbb{E}_{3}\} \\ \text{The condition div} \, Lg = 0 \quad \text{on} \, \mathbb{E}_{3} \text{ is independent of } L. \\ \text{div} \, Lg &= 0 \quad \text{on} \, \Gamma_{i,j} \, \Leftrightarrow \, \sin(\omega_{i,j}) \partial_{\sigma_{i}^{j}} g_{\sigma_{i}^{j}} + \partial_{\nu_{i}^{j}} g_{n_{j}}^{j} + \partial_{\nu_{j}^{j}} g_{n_{i}}^{j} = 0, \\ \dot{V}^{3/2}(\Gamma) &= [V^{3/2-\ell}(\Gamma), \dot{V}^{3/2+\ell}(\Gamma)]_{1/2}, \quad \ell \in (0, 1/2) \\ &= \{g \in V^{3/2}(\Gamma) \mid \text{div} \, Lg \in \mathcal{H}^{1}_{00, \mathbb{E}_{d}}(\Omega)\}. \end{split}$$

div Lg = 0 on $\Gamma_{i,j}$

27/44

 $\omega_{i,i}$ is the angle between Γ_i and Γ_i , $(n_i, \nu_i^j, \sigma_i^j)$ is a direct orthonormal basis, n_i is the normal to Γ_i , exterior to Ω , ν_i^j is the normal to $\Gamma_{i,j}$, parallel to Γ_i , exterior to Γ_i , $(g_{n_i}, g_{\nu_i^j}, g_{\sigma_i^j})$ is the coordinate vector of g in the basis $(n_i, \nu_i^j, \sigma_i^j)$, $g_{n_i}^j$ is the restriction of g_{n_i} to Γ_j . イロト 不得 トイヨト イヨト

$$\sin(\omega_{i,j})\partial_{\sigma_i^j}g_{\sigma_i^j} + \partial_{\nu_i^j}g_{n_j}^i + \partial_{\nu_j^j}g_{n_i}^j = 0.$$

is a condition which is expressed only in terms of g on Γ , while

div
$$Lg = 0$$
 on $\Gamma_{i,j}$,

is a condition on Lg defined on Ω .

In the case of the above figure the condition is

$$\partial_{x_3}g_3 + \partial_{x_1}g_1^i + \partial_{x_2}g_2^j = 0$$
 on $\Gamma_{i,j}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Regularity results for Stokes and Oseen in polyhedrons

$$-\nu \Delta y + \nabla q = F$$
, div $y = 0$ in Ω , $y = g$ on Γ .

(i) If Ω is non-convex, for all $\alpha_0 \in (0, \alpha^*)$, we have $\|y\|_{H^{3/2+\alpha_0}} + \|p\|_{\mathcal{H}^{1/2+\alpha_0}} \le C_{\alpha_0}(\|F\|_{H^{\alpha_0-1/2}} + \|g\|_{V^{1+\alpha_0}}).$

(ii) If Ω is convex, we have

$$\|y\|_{H^2} + \|p\|_{\mathcal{H}^1} \leq C \left(\|F\|_{L^2} + \|g\|_{\dot{V}^{3/2}}\right).$$

Moreover

$$\dot{V}^{3/2}(\Gamma) = \gamma_0\left(\{v \in H^2(\Omega) \mid \operatorname{div} v = 0\}\right) = \gamma_0(V^2(\Omega)).$$

If $\boldsymbol{\Omega}$ is non-convex, we have

$$\begin{split} \|y - y_h\|_{H^1} + \|p - p_h\|_{L^2} &\leq C_{\alpha_0} \ h^{1/2 + \alpha_0} (\|F\|_{H^{\alpha_0 - 1/2}} + \|g\|_{V^{1 + \alpha_0}}), \\ \forall \alpha_0 \in (0, \alpha^*). \end{split}$$

If Ω is convex, we have

$$\|y - y_h\|_{H^1} + \|p - p_h\|_{L^2} \le C h(\|F\|_{L^2} + \|g\|_{\dot{V}^{3/2}}).$$

We mainly use G-H + new regularity results.

Stokes/Oseen in polyhedrons - Regular data - BR23

If Ω is non-convex, for all $\alpha_0 \in (0, \alpha^*)$, we have

$$\|y - y_h\|_{L^2} + \|p - p_h\|_{\mathcal{H}^{-1}} \le C_{\alpha_0} h^{1+2\alpha_0} (\|F\|_{H^{\alpha_0-1/2}} + \|g\|_{V^{1+\alpha_0}}),$$

If Ω is convex, for all $\alpha_0 \in (1/2, \alpha^*)$, we have

$$\|y - y_h\|_{L^2} + \|p - p_h\|_{(\mathcal{H}^1_{00,\mathbb{E}_d})'} \le C_{\alpha_0} h^{1+2\alpha_0}(\|F\|_{H^{\alpha_0-1/2}} + \|g\|_{\dot{V}^{1+\alpha_0}}),$$

If Ω is convex, for all $\epsilon \in (0, 1/2)$, we have

$$\|y - y_h\|_{H^{\epsilon}} + \|p - p_h\|_{\mathcal{H}^{-1+\epsilon}} \le C h^{2-\epsilon} (\|F\|_{L^2} + \|g\|_{\dot{V}^{3/2}}).$$

For all $g \in V^{3/2}$, compactly supported in $\Gamma \setminus \mathbb{E}_3$, we have

$$\begin{split} \|y - y_h\|_{L^2} + \|p - p_h\|_{(\mathcal{H}^1_{00,\mathbb{E}_d})'} &\leq C_{\bar{\delta}} \, h^2(\|F\|_{L^2} + \|g\|_{V^{3/2}}), \\ \text{where } \bar{\delta} &= \text{dist}(\text{supp } g, \mathbb{E}_3). \end{split}$$

Stokes/Oseen in polyhedrons - irregular data - BR23

We choose F = 0.

If Ω is non-convex, we have

$$\|y - y_h\|_{L^2} + \|p - p_h\|_{\mathcal{H}^{-1}} \le C_{\alpha_0} h^{\alpha_0} \|g\|_{V^0}, \quad \forall \alpha_0 \in (0, \alpha^*).$$

If Ω is convex, we have

$$\|y-y_h\|_{\mathcal{H}^{\epsilon}}+\|p-p_h\|_{\mathcal{H}^{-1+\epsilon}}\leq C_{\epsilon} h^{1/2-\epsilon}\|g\|_{V^0}, \quad \forall \epsilon\in(0,1/2).$$

If Ω is convex, we have

$$\begin{split} \|y - y_h\|_{L^2} + \|p - p_h\|_{(\mathcal{H}_0^1)'} &\leq C \ h^{1/2} \|g\|_{V^0}, \\ \forall g \in L^2(\Gamma), \text{ such that } g \cdot n = 0, \text{ and} \\ \|y - y_h\|_{L^2} + \|p - p_h\|_{(\mathcal{H}_0^1)'} &\leq C_{\bar{\delta}} \ h^{1/2} \|g\|_{V^0}, \\ \forall g \in L^2(\Gamma), \text{ such that } 0 < \bar{\delta} \leq \operatorname{dist}(\operatorname{supp} g, \mathbb{E}_3) \end{split}$$

(y, p) the solution to Stokes with (F, g) as RHS.

 (y_h, p_h) the solution to approx-Stokes with $(F, \pi_h g)$ as RHS.

 (ϕ, ψ) the solution to (adjoint)-Stokes with (ξ, f) as RHS with H.B.C. (div $\phi = f$).

$$\begin{split} (\xi, y - y_h)_{\Omega} + \langle f, p - p_h \rangle \\ &= a(y - y_h, \phi - r_h \phi) + b(\phi - r_h \phi, p - p_h) \\ &+ b(y - y_h, \psi - s_h \psi_h) - \langle \mathbf{t}, g - \pi_h g \rangle, \end{split}$$
where $\mathbf{t} = \nu \, \partial_n \phi - \psi.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 (ϕ, ψ, \mathbf{t}) the solution to (adjoint)-Stokes with (ξ, f) as RHS with H.B.C. (div $\phi = f$).

 $(\phi_h, \psi_h, \mathbf{t}_h)$ the solution to approx. (adjoint)-Stokes with (ξ, f) as RHS with H.B.C. (div $\phi = f$).

$$(\xi, y - y_h)_{\Omega} + (f, p - p_h)_{\Omega} = (\mathbf{t} - \mathbf{t}_h, g)_{\Gamma}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We need to estimate $\mathbf{t} - \mathbf{t}_h$.

 (ϕ, ψ, \mathbf{t}) is the solution to $\mathbf{a}(\zeta, \phi) + \mathbf{b}(\zeta, \psi) - \langle \mathbf{t}, \zeta \rangle = (\xi, \zeta)_{\Omega}, \quad \forall \zeta \in (H^1(\Omega))^3,$ $\mathbf{b}(\phi, \rho) = (f, \rho)_{\Omega}, \quad \forall \rho \in L^2_0(\Omega),$ $\langle \boldsymbol{\lambda}, \phi \rangle = 0, \quad \forall \boldsymbol{\lambda} \in (H^{-1/2}(\Gamma))^3.$

 $(\phi_h, \psi_h, \mathbf{t}_h)$ is the solution to

$$egin{aligned} & a(\zeta_h,\phi_h)+b(\zeta_h,\psi_h)-\langle \mathbf{t}_h,\zeta_h
angle &=(\xi,\zeta_h)_\Omega, \quad orall \zeta\in X_h, \ & b(\phi_h,\rho_h)=(f,\rho_h)_\Omega, \quad orall
ho_h\in M_h, \ & \langle oldsymbol{\lambda}_h,\phi_h
angle &=0, \quad orall oldsymbol{\lambda}_h\in S_h. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If Ω is non-convex, for all $\alpha_0 \in (0, \alpha^*)$, we have $\|\pi_h \mathbf{t} - \mathbf{t}_h\|_{L^2(\Gamma; \mathbb{R}^3)} \leq C_{\alpha_0} h^{\alpha_0}(\|\xi\|_{H^{-1/2\alpha_0}} + \|f\|_{\mathcal{H}^{1/2\alpha_0}}),$ and

$$\begin{split} \|\mathbf{t} - \pi_h \mathbf{t}\|_{L^2(\Gamma;\mathbb{R}^3)} &\leq C_{\alpha_0} \ h^{\alpha_0} (\|\xi\|_{H^{-1/2\alpha_0}} + \|f\|_{\mathcal{H}^{1/2\alpha_0}}), \\ \text{If } \Omega \text{ is convex, we have} \\ \|\pi_h \mathbf{t} - \mathbf{t}_h\|_{L^2(\Gamma;\mathbb{R}^3)} &\leq C \ h^{1/2} (\|\xi\|_{L^2} + \|f\|_{\mathcal{H}^1_{00,\mathbb{E}_d}}), \end{split}$$

and

$$\|\mathbf{t}-\pi_h\mathbf{t}\|_{L^2(\Gamma;\mathbb{R}^3)} \leq C \ h^{1/2-\epsilon}(\|\xi\|_{L^2}+\|f\|_{\mathcal{H}^1_{00,\mathbb{E}_d}}), \quad \forall \epsilon \in (0,1/2).$$

Approximation of B - I

We have to estimate
$$\|(\lambda_0 I - A)^{-1}B - (\lambda_0 I - A_h)^{-1}B_h\|_{\mathcal{L}(U,L^2)}$$
.
If $U = V^0(\Gamma)$, $Bg = (\lambda_0 I - A)PDg$,
 $B_hg = (\lambda_0 I - A_h)P_hD_h\pi_hg$, and we have to estimate
 $\|PDg - P_hD_h\pi_hg\|_{V_n^0(\Omega)}$
 $\leq \|P(Dg - D_h\pi_hg)\|_{V_n^0(\Omega)} + \|(P - P_h)Dg\|_{V_n^0(\Omega)}.$

If
$$U = \mathbb{R}^{N_c}$$
, $Bf = \sum_{i=1}^{N_c} f_i(\lambda_0 I - A) PD g_i$,
 $B_h f = \sum_{i=1}^{N_c} f_i(\lambda_0 I - A_h) P_h D_h \pi_h g_i$.

We have (in convex domain)

 $\|(D - D_h \pi_h)g\|_{L^2(\Omega;\mathbb{R}^3)} \le C_{\overline{\delta}} h^{1/2} \|g\|_{V^0(\Gamma)},$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

 $\mathsf{if dist}(\mathsf{supp} g, \mathbb{E}_3) \geq \overline{\delta} > 0.$

Approximation of P

We use the Inf-Sup condition from Bercovier-Pironneau.

•
$$PF = z$$
 where $(z, q) \in V_n^0(\Omega) \times (H^1(\Omega) \cap L_0^2(\Omega))$ is sol. to
 $(z, w)_{L^2(\Omega; \mathbb{R}^3)} + \int_{\Omega} \nabla q \cdot w \, dx = (F, w)_{L^2(\Omega; \mathbb{R}^3)}$ for all $w \in H_0^1(\Omega; \mathbb{R}^3)$,
 $\int_{\Omega} \nabla \rho \cdot z \, dx = 0$ for all $\rho \in (H^1(\Omega) \cap L_0^2(\Omega))$.
• $P_h F = z_h$ where $(z_h, q_h) \in X_h^0 \times M_h$ is solution to
 $(z_h, w_h)_{L^2(\Omega; \mathbb{R}^3)} + \int_{\Omega} \nabla q_h \cdot w_h \, dx = (F, w_h)_{L^2(\Omega; \mathbb{R}^3)}$ for all $w_h \in X_h^0$,
 $\int_{\Omega} \nabla \rho_h \cdot z_h \, dx = 0$ for all $\rho_h \in M_h$.

We have (Badra-R, 23)

 $\|P - P_h\|_{\mathcal{L}(H^{\ell}(\Omega;\mathbb{R}^3),L^2(\Omega;\mathbb{R}^3))} \leq C h^{\ell}, \quad \forall \ell \in [0,1/2).$

Approximation of B - II

•
$$Bg = (\lambda_0 I - A) PD g$$
, $U = V^0(\Gamma)$, $H = L^2(\Omega; \mathbb{R}^3)$

•
$$B_h f = (\lambda_0 I - A_h) P_h D_h \pi_h g$$
,

We have

If Ω is non-convex, we have $\|(\lambda_0 I - A)^{-1}B - (\lambda_0 I - A_h)^{-1}B_h\|_{\mathcal{L}(U,H)} \leq C_{\alpha_0} h^{\alpha_0}, \quad \forall \alpha_0 \in (0, \alpha^*).$ If Ω is convex, we have $\|(\lambda_0 I - A)^{-1}B - (\lambda_0 I - A_h)^{-1}B_h\|_{\mathcal{L}(U,H)} \leq C_{\epsilon} h^{1/2-\epsilon}, \quad \forall \epsilon \in (0, 1/2).$

・ロト・西ト・市・・市・ うくぐ

Estimate of $\|e^{A_h t} B_h\|_{\mathcal{L}(V^0(\Gamma), Z_h)}$

$$y \longmapsto \|(\lambda_0 - A_h)^{1/2}y\|_{L^2}$$

is a norm on Z_h equivalent to the H^1 -norm.

$$\|e^{\mathcal{A}_h t} \mathcal{B}_h\|_{\mathcal{L}(V^0(\Gamma), Z_h)} \leq C h^r rac{e^{\omega_0 t}}{t}, \quad orall t \in (0, h^{r/(1-\gamma)}),$$

and

$$\|e^{\mathcal{A}_h t}B_h\|_{\mathcal{L}(V^0(\Gamma),Z_h)} \leq C h^{-1} rac{e^{\omega_0 t}}{t^{1/2}}.$$

$$\|e^{\mathcal{A}_h t} \mathcal{B}_h\|_{\mathcal{L}(V^0(\Gamma), Z_h)} \leq C \, rac{e^{\omega_0 t}}{t^{(r+2)/(2r+2)}}, \quad orall t \in (0, \, h^{r/(1-\gamma)}).$$

Estimates of $w_s - w_s^h$

Assumptions $g_s \in V_{cc}^{1+\alpha_0}(\Gamma)$ if Ω is non-convex and $g_s \in V_{cc}^{3/2}(\Gamma) \cap \dot{V}^{3/2}(\Gamma)$ if Ω is convex.

In addition (w_s, ρ_s) is a nonsingular solution of the NSE.

If Ω is non-convex, for all $\alpha_0 \in (0, \alpha^*)$, we have

$$h^{1/2+\alpha_0} \|w - w_s^h\|_{H^1} + \|w - w_s^h\|_{L^2} + h^{1/2+\alpha_0} \|\rho_s - \rho_s^h\|_{L^2_0}$$

$$\leq C(lpha_0, w_s) h^{1+2lpha_0},$$

If Ω is convex, we have

$$\|w - w_s^h\|_{H^1} + \|\rho_s - \rho_s^h\|_{L^2_0} \le C(w_s) h.$$

If Ω is convex, and if $g_s \in V^{1+\alpha_0}_{cc}(\Gamma) \cap \dot{V}^{1+\alpha_0}(\Gamma)$ for some $\alpha_0 \in (1/2, \alpha^*)$, we have

$$\|w - w_s^h\|_{L^2} \leq C(w_s) h^2.$$

• M. Dauge, Stationary Stokes and Navier-Stokes systems on two or three-dimensional domais with corners, Sima, 1989.

• M. Badra, J.-P. Raymond, Approximation of feedback gains for the Oseen system, 2023.

• M. Badra, J.-P. Raymond, The Oseen system with nonhomogeneous boundary conditions in polyhedral or polygonal domains, 2023.

• M. Badra, J.-P. Raymond, Approximation of feedback gains for abstract parabolic systems, 2023.

• M. Badra, J.-P. Raymond, Numerical approximation of the Oseen system in polyhedral or polygonal domains, 2023.

• M. Bercovier, O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the priitive variables, Num. Math., 1979.

• R. Duran, L. Gastaldi, A. Lombardi, Analysis of finite element approximations of Stokes equations with nonsmooth data, Sinum, 2020.

• V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer, 2006.

• M. D. Gunzburger, S. L. Hou, Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses, Sinum, 1992.

Thank you for your attention