ICTS - Bangalore

Recent advances on control theory of PDE systems

February 12-23, 2024

Approximation of feedback gains for abstract parabolic systems

Lecture 1

Jean-Pierre Raymond, Institut de Mathématiques – Toulouse joint work with Mehdi Badra

Outline of the four lectures

Lecture I

Approximation of feedback gains for abstract parabolic systems

Lecture II

 Numerical approximation of the Oseen system in polyhedral domains - Approximation of feedback gains for the Oseen system

Lecture III

 Stabilization of fluid flows using ROM based on spectral projection - Numerical approximation of feedback gains based on ROM

Lecture IV

• Feedback stabilization of FSI problems

Outline of the talk

Part I

• Motivations – General framework – Assumptions

Part II

• Convergence rates for given feedbacks - New type gap theorem

Part III

• Convergence of Riccati based feedbacks

Part IV

• An application

Motivations - I

The linear controlled system

$$z' = Az + Bu$$
, $z(0) = z_0$, in Z .

- Assumptions.
- * $(A, \mathcal{D}(A))$ is the inf. generator of an analytic semigroup on Z.
- * The control operator $B \in \mathcal{L}(U, (\mathcal{D}(A^*))')$. But $(\lambda_0 I A)^{-\gamma} B \in \mathcal{L}(U, Z)$ for some $\gamma \in (0, 1)$ and $\lambda_0 > 0$.
- * The pair (A, B) is stabilizable in Z.
- * The pair (A, C) is detectable in Z, where $C \in \mathcal{L}(Z, Y)$.
- Goal. We look for $F \in \mathcal{L}(Z, U)$ such that $(e^{t(A+BF)})_{t\geq 0}$ is exp. stable on Z.

Such a F can be obtained by solving a LQR problem.

Background

* $(A, \mathcal{D}(A))$ is the infinitesimal generator of an analytic semigroup on Z iff

The resolvent set
$$\rho(A) \supset \{\omega_0\} + \mathbb{S}_{\pi/2+\delta}$$
.
 $\|(\lambda I - A)^{-1}\|_{\mathcal{L}(Z)} \le \frac{c}{|\lambda - \omega_0|}, \quad \forall \lambda \in \{\omega_0\} + \mathbb{S}_{\pi/2+\delta},$
 $\mathbb{S}_{\pi/2+\delta} = \{\lambda \in \mathbb{C} \mid |\operatorname{arg}(\lambda)| < \pi/2 + \delta\}, \ 0 < \delta < \pi/2.$

Semigroup/Resolvent

$$e^{tA} = \frac{1}{2i\pi} \int_{\Gamma} e^{\lambda t} (\lambda I - A)^{-1} d\lambda.$$

Stability

$$\|e^{tA}\|_{\mathcal{L}(Z)} \leq C e^{t\omega_0}.$$

Motivations - II

Approximate controlled system

$$z'_{\varepsilon}=A_{\varepsilon}z_{\varepsilon}+B_{\varepsilon}u,\quad z_{\varepsilon}(0)=z_{0,\varepsilon}\quad \text{in }Z_{\varepsilon}.$$

- The approximate controlled system: Finite Element approximation ($\varepsilon=h,\ h$ is the meshsize) or a perturbation of the initial system (approximation by penalization, ε is the perturbation parameter).
- If $Z_{\varepsilon} \subset Z$, we have a conforming approximation. If $Z_{\varepsilon} \not\subset Z$, we have a nonconforming approximation.

We assume that $Z \subset H$, $Z_{\varepsilon} \subset H$, $P \in \mathcal{L}(H)$, and $P_{\varepsilon} \in \mathcal{L}(H)$ are projectors such that

$$PH = Z$$
 and $P_{\varepsilon}H = Z_{\varepsilon}$.

• Goal. Find an approximate feedback $F_{\varepsilon} \in \mathcal{L}(Z_{\varepsilon}, U)$ such that $(e^{t(A_{\varepsilon}+B_{\varepsilon}F_{\varepsilon})})_{t\geq 0}$ is exp. stable on Z_{ε} and $(e^{t(A+BF_{\varepsilon}P_{\varepsilon})})_{t\geq 0}$ is exp. stable on Z.

Known results for conforming approximations

If $Z_{\varepsilon} \subset Z$, $P_{\varepsilon} : Z \mapsto Z_{\varepsilon}$, we want to have $F_{\varepsilon}P_{\varepsilon} \to F$ as $\varepsilon \to 0$, and if possible $\|F_{\varepsilon}P_{\varepsilon} - F\|_{\mathcal{L}(Z,U)} \le C \varepsilon^{\alpha}$, $\alpha > 0$.

• LQR problem for (A, B, C): $\min \int_0^\infty (\|Cz(t)\|^2 + \|u(t)\|^2) dt$.

$$u(t) = -B^*\Pi z(t)$$
, Π solves an A.R.E.

- K. Ito (1987). In order to prove that $||F F_h||_{\mathcal{L}(Z,U)} \to 0$ as $h \to 0$, the uniform stabilizability of the pair $(A_h, B_h)_{h>0}$, with respect to h, is required. $B \in \mathcal{L}(U, Z)$.
- H. T. Banks, K. Kunisch, 1984. The uniform stabilizability is satisfied for parabolic equations. $B \in \mathcal{L}(U, Z)$.
- Extension to the case of unbounded control operators. $(\lambda_0 I A)^{-\gamma} B \in \mathcal{L}(U, Z)$, $0 < \gamma < 1$. I. Lasiecka (1992). R. Triggiani (1994). Series of works, monography (2000).
- In all these results, $Z_h \subset Z$ (conforming approximation).

Motivations

• For the approximation by a FEM of the Navier-Stokes equations in $\Omega \subset \mathbb{R}^d$, we have

$$\begin{split} H &= (L^2(\Omega))^d, \\ Z &= V_n^0(\Omega) = \{z \in (L^2(\Omega))^d \mid \text{div } z = 0, \ z \cdot n = 0 \text{ on } \Gamma\}, \\ Z_h &= \{z_h \in X_h \mid \int_{\Omega} \text{div } z_h \, q_h \, dx = 0, \ \forall q_h \in M_h\}, \end{split}$$

where $X_h \subset (H^1(\Omega))^d$ is a F.E. space for the velocity, and $M_h \subset L_0^2(\Omega)$ is a F.E. space for the pressure.

• For the pseudo-compressibility (or penalty) method div $z_{\varepsilon}+\varepsilon p_{\varepsilon}=0$, we have

$$Z = V_n^0(\Omega)$$
 and $Z_{\varepsilon} = (L^2(\Omega))^d = H$.

We are in the case of nonconforming approximation:

$$Z_{\varepsilon} \not\subset Z$$
, but $Z \subset H$ and $Z_{\varepsilon} \subset H$.

Part II - A general framework - Assumptions I

(A,B,P) and $(A_{\varepsilon},B_{\varepsilon},P_{\varepsilon})$ given. We assume (to check for each application)

- Projectors $P: H \mapsto Z$ and $P_{\varepsilon}: H \mapsto Z_{\varepsilon}$
- ullet Uniform analytic estimates. $\mathcal{D}(A)$ dense in Z, $\mathcal{D}(A_{arepsilon})$ dense in $Z_{arepsilon}$

The resolvent set $\rho(A_{\varepsilon}) \supset \{\omega_0\} + \mathbb{S}_{\pi/2+\delta}$.

$$\|(\lambda I - A_{\varepsilon})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})} \leq \frac{c}{|\lambda - \omega_0|}, \quad \forall \lambda \in \{\omega_0\} + \mathbb{S}_{\pi/2 + \delta}, \ \forall \varepsilon \in (0, 1),$$

$$\mathbb{S}_{\pi/2+\delta} = \{\lambda \in \mathbb{C} \mid |\arg(\lambda)| < \pi/2 + \delta\}, \ 0 < \delta < \pi/2.$$

• Approximation assumption for *A*:

$$\sup_{\varepsilon \in (0,1)} \|P_{\varepsilon}\|_{\mathcal{L}(H)} < +\infty,$$

$$\|(\lambda_0 I - A)^{-1} P - (\lambda_0 I - A_{\varepsilon})^{-1} P_{\varepsilon}\|_{\mathcal{L}(H)} \le C \varepsilon^{s}, \quad \text{with } s > 0,$$
with $\lambda_0 > \omega_0$.

A general framework - Assumptions II

• Approximation assumption for *B*:

$$(\lambda_0 I - A)^{-\gamma} B \in \mathcal{L}(U, Z)$$
 for some $\gamma \in [0, 1)$.
$$\|(\lambda_0 I - A)^{-1} B - (\lambda_0 I - A_{\varepsilon})^{-1} B_{\varepsilon}\|_{\mathcal{L}(U, H)} \leq C \varepsilon^r,$$
 with $0 \leq r \leq s(\gamma - 1)$.

A uniform boundedness condition - weaker than:

$$\sup_{\varepsilon \in (0,1)} \|(\lambda_0 I - A_{\varepsilon})^{-\gamma} B_{\varepsilon}\|_{\mathcal{L}(U,H)} < \infty.$$

For all $\varepsilon \in (0,1)$, $(\lambda_0 I - A_{\varepsilon})^{-\gamma} B_{\varepsilon} \in \mathcal{L}(U,H)$ and, for all $\varepsilon \in (0,1)$, the following uniform bound holds

$$\|e^{tA_{\varepsilon}}B_{\varepsilon}\|_{\mathcal{L}(U,H)}\leq C\,rac{e^{\omega_0 t}}{t^{\overline{\gamma}}},\quad orall t\in (0,arepsilon^{r/(1-\gamma)}),\ \overline{\gamma}\in [\gamma,1).$$

Stabilizability

The pair (A, B) is stabilizable in Z.

Main results – Feedback stabilization

In Theorem 1.1 we state that if (A,B) is exp. stabilizable in Z, then $(A_{\varepsilon},B_{\varepsilon})_{0<\varepsilon<1}$ is uniformly exp. stabilizable in Z_{ε} .

The pair $(A_{\varepsilon}, B_{\varepsilon})$ is exp. stabilizable in Z_{ε} uniformly w. r. to $\varepsilon \in (0,1)$ if there exist $M \geq 1$ and $\omega_F > 0$ such that for all $\varepsilon \in (0,1)$, there exists $F_{\varepsilon} \in \mathcal{L}(Z_{\varepsilon}, U)$ such that

$$\|e^{(A_{\varepsilon}+B_{\varepsilon}F_{\varepsilon})t}\|_{\mathcal{L}(Z_{\varepsilon})} \leq Me^{-\omega_F t}, \ \forall t \geq 0, \ \forall \varepsilon \in (0,1).$$

In Theorem 1.2 we state that if $(A_{\varepsilon}, B_{\varepsilon})_{0<\varepsilon<1}$ is uniformly exp. stabilizable in Z_{ε} then (A, B) is exp. stabilizable in Z.

Stab. of the ε -system by a feedback of the initial system

Theorem 1.1. Let $F \in \mathcal{L}(Z,U)$ and $\omega_F > 0$ be such that $A + \omega_F I + BF$ is exponentially stable on Z. $(F_{\varepsilon})_{0 < \varepsilon < 1} \subset \mathcal{L}(Z_{\varepsilon},U)$ satisfies

$$\|\mathit{FP} - \mathit{F}_{\varepsilon}\|_{\mathcal{L}(Z_{\varepsilon}, U)} \leq \sigma(\varepsilon), \quad \forall \varepsilon \in (0, 1), \quad \sigma(\varepsilon) \to 0 \text{ as } \varepsilon \to 0.$$

Set $A_F = A + BF$ and $A_{\varepsilon,F_{\varepsilon}} = A_{\varepsilon} + B_{\varepsilon}F_{\varepsilon}$.

Then, for all $\widetilde{\delta} \in (0, \delta)$, there exist $\varrho > 0$ and $\varepsilon_0 \in (0, 1)$ such that $\{-\omega_{F,\varepsilon}\} + \mathbb{S}_{\pi/2+\widetilde{\delta}} \subset \rho(A_{\varepsilon,F_{\varepsilon}})$, with $\omega_{F,\varepsilon} = \omega_F - \varrho(\varepsilon^r + \sigma(\varepsilon))$, and

$$\begin{split} &\|(\lambda I - A_{\varepsilon,F_{\varepsilon}})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})} \leq \frac{\mathcal{C}}{|\lambda + \omega_{F,\varepsilon}|}, \quad \forall \lambda \in \{-\omega_{F,\varepsilon}\} + \mathbb{S}_{\pi/2 + \widetilde{\delta}}, \\ &\|e^{A_{\varepsilon,F_{\varepsilon}}t}\|_{\mathcal{L}(Z_{\varepsilon})} \leq Ce^{-\omega_{F,\varepsilon}t}, \, \forall t \geq 0, \, \forall \varepsilon \in (0,\varepsilon_{0}). \end{split}$$

Moreover, for all $\varepsilon \in (0, \varepsilon_0)$, we have

$$\|e^{A_F t}P - e^{A_{\varepsilon,F_{\varepsilon}}t}P_{\varepsilon}\|_{\mathcal{L}(H)} \leq C e^{-\omega_{F,\varepsilon}t}\left(\frac{\varepsilon^r}{t^{r/s}} + \sigma(\varepsilon)\right), \qquad \forall t \geq 0.$$

These results are true for $F_{\varepsilon}=FP$, with $\sigma\equiv 0$.

Ideas of Proof - I

Remark. If

$$\|(\lambda I - A_{\varepsilon, F_{\varepsilon}})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})} \leq \frac{c}{|\lambda + \omega_{F, \varepsilon}|}, \quad \forall \lambda \in \{-\omega_{F, \varepsilon}\} + \mathbb{S}_{\pi/2 + \widetilde{\delta}},$$

and if $A_{\varepsilon,F_{\varepsilon}}$ is the infinitesimal generator of an analytic semigroup on Z_{ε} , then

$$\|e^{A_{\varepsilon,F_{\varepsilon}}t}\|_{\mathcal{L}(Z_{\varepsilon})} \leq Ce^{-\omega_{F,\varepsilon}t}, \, \forall t \geq 0, \, \forall \varepsilon \in (0,\varepsilon_0).$$

Beginning of the proof. We assume that

$$\|(\lambda I - A_F)^{-1}\|_{\mathcal{L}(Z)} \le \frac{C_F}{|\lambda + \omega_F|}, \quad \forall \lambda \in \{-\omega_F\} + \mathbb{S}_{\pi/2 + \delta}.$$

Ideas of Proof - II

We first prove

$$\begin{split} &\|(\lambda I - A_{\varepsilon,F_{\varepsilon}})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})} \leq \frac{c}{|\lambda + \omega_{F}|}, \quad \forall \lambda \in \{\widehat{\omega}_{0}\} + \mathbb{S}_{\pi/2 + \delta}, \quad \forall \varepsilon \in (0,\varepsilon_{0}), \\ &\text{where } \ \widehat{\omega}_{0} > \max(\lambda - \lambda_{0}, -\omega_{F}), \quad \varepsilon_{0} \in (0,1). \end{split}$$

This provides the desired estimate for $|\lambda|$ large and $0 < \widetilde{\delta} < \delta$.

Ideas of Proof - III

To prove

$$\|(\lambda I - A_{\varepsilon,F_{\varepsilon}})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})} \leq \frac{c}{|\lambda + \omega_F|}, \quad \forall \lambda \in \{\widehat{\omega}_0\} + \mathbb{S}_{\pi/2 + \delta},$$

we use $A_{\varepsilon,F_{\varepsilon}}=A_{\varepsilon}+B_{\varepsilon}F_{\varepsilon}$, and prove that

$$\begin{split} &\|(\lambda I - A_{\varepsilon, F_{\varepsilon}})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})} \le c_0 \|(\lambda I - A_{\varepsilon})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})} \\ &\le \frac{c}{|\lambda - \omega_0|}, \quad \forall \lambda \in \{\widehat{\omega}_0\} + \mathbb{S}_{\pi/2 + \delta}. \end{split}$$

Indeed, we have

$$(\lambda I - A_{\varepsilon,F_{\varepsilon}})^{-1} = (I - T_{\varepsilon}(\lambda))^{-1}(\lambda I - A_{\varepsilon})^{-1}$$

where

$$T_{\varepsilon}(\lambda) = (\lambda I - A_{\varepsilon})^{-1} B_{\varepsilon} F_{\varepsilon} P_{\varepsilon}.$$

We conclude with an estimate of $T_{\varepsilon}(\lambda)$.

Ideas of Proof - IV

To estimate $\|(\lambda I - A_{\varepsilon,F_{\varepsilon}})^{-1}\|_{\mathcal{L}(Z_{\varepsilon})}$ for $\lambda \in K_{\epsilon}$, we first prove that, for some $\widehat{\lambda} \in \{\widehat{\omega}_0\} + \mathbb{S}_{\pi/2+\delta}$ and all $\mu \in K_{\varepsilon}$, we have

$$\begin{split} &\|(\widehat{\lambda}I - A_{\varepsilon,F_{\varepsilon}})^{-1}P_{\varepsilon} - (\widehat{\lambda}I - A_{F})^{-1}P\|_{\mathcal{L}(H)} \le C(\varepsilon^{r} + \sigma(\varepsilon)) \\ &\le \frac{1}{2(1+|\mu|\|P\|)^{2}(1+\|(\widehat{\lambda}+\mu)I - A_{F})^{-1}P\|)}. \quad (\lambda = \widehat{\lambda} + \mu) \end{split}$$

With a New Gap Theorem - Theorem 1.3. - we deduce that

$$\|(\lambda I - A_{\varepsilon, F_{\varepsilon}})^{-1} P_{\varepsilon}\|_{\mathcal{L}(H)} \leq \frac{C}{|\lambda + \omega_{F}|}, \quad \forall \lambda \in \{\widehat{\lambda}\} + K_{\varepsilon}.$$

Gap type result

Theorem 1.3. If \mathbb{A}_1 and \mathbb{A}_2 both admit a bounded inverse in Z_1 and Z_2 respectively, if $\lambda \in \mathbb{C}$ belongs to the resolvent set of \mathbb{A}_2 , and if

$$\begin{split} &\|\mathbb{A}_{1}^{-1}P_{1} - \mathbb{A}_{2}^{-1}P_{2}\|_{\mathcal{L}(H)} \\ &< \frac{1}{2(1+|\lambda|\max(\|P_{1}\|,\|P_{2}\|)^{2}(1+\|(\mathbb{A}_{2}-\lambda I)^{-1}P_{2}\|_{\mathcal{L}(H,Z_{2})})}, \end{split}$$

then $\mathbb{A}_1 - \lambda I$ admits a bounded inverse in Z_1 , and

$$\|(\lambda I - \mathbb{A}_1)^{-1}\|_{\mathcal{L}(Z_1)} \le 1 + 2\|(\lambda I - \mathbb{A}_2)^{-1}P_2\|_{\mathcal{L}(H,Z_2)}.$$

In Kato, when $Z_1=Z_2=H$, the gap of \mathbb{A}_2 from \mathbb{A}_1 is

$$\delta(\mathbb{A}_2, \mathbb{A}_1) = \sup_{\|z_2\|_{\mathcal{D}(\mathbb{A}_2)} = 1} \inf_{z_1 \in \mathcal{D}(\mathbb{A}_1)} \{ \|z_2 - z_1\|_H + \|\mathbb{A}_2 z_2 - \mathbb{A}_1 z_1\|_H \}.$$

The symmetric gap is

$$\widehat{\delta}(\mathbb{A}_2,\mathbb{A}_1) = \max[\delta(\mathbb{A}_1,\mathbb{A}_2),\delta(\mathbb{A}_2,\mathbb{A}_1)].$$

Gap for noncomforming approximation

$$\delta((\mathbb{A}_2, P_2), (\mathbb{A}_1, P_1))$$

$$= \sup_{\|z_2\|_H + \|\mathbb{A}_2 z_2 + (I - P_2)\zeta\|_H = 1} \inf_{z_1 \in \mathcal{D}(\mathbb{A}_1)} \{ \|z_2 - z_1\|_H + \|P_1(\mathbb{A}_2 z_2 + (I - P_2)\zeta) - \mathbb{A}_1 z_1\|_H \}.$$

If \mathbb{A}_1 and \mathbb{A}_2 both admit a bounded inverse in Z_1 and Z_2 respectively, we have

$$\delta((\mathbb{A}_2, P_2), (\mathbb{A}_1, P_1)) \le \|\mathbb{A}_1^{-1} P_1 - \mathbb{A}_2^{-1} P_2\|_{\mathcal{L}(H)}.$$

Stab. of the initial system by feedbacks of the ε -system

Theorem 1.2. Let
$$(F_{\varepsilon})_{0<\varepsilon<1}\subset\mathcal{L}(Z_{\varepsilon},U)$$
 and $\omega_F>0$ satisfy $\|F_{\varepsilon}P_{\varepsilon}\|_{\mathcal{L}(Z,U)}\leq C, \quad \forall \varepsilon\in(0,1),$ $((e^{t(A_{\varepsilon}+\omega_FI+B_{\varepsilon}F_{\varepsilon})})_{t\geq0})_{0<\varepsilon<1}$ is unif. exp. stable on Z_{ε} .

Let
$$(F^{(\varepsilon)})_{0<\varepsilon<1} \subset \mathcal{L}(Z,U)$$
 satisfying $\|F_{\varepsilon}P_{\varepsilon} - F^{(\varepsilon)}\|_{\mathcal{L}(Z,U)} \leq \sigma(\varepsilon), \quad \forall \varepsilon \in (0,1).$

Set
$$A_{F(\varepsilon)} = A + BF^{(\varepsilon)}$$
 and $A_{\varepsilon,F_{\varepsilon}} = A_{\varepsilon} + B_{\varepsilon}F_{\varepsilon}$.

Then, for all $\widetilde{\delta} \in (0, \delta)$, there exist $\varrho > 0$ and $\varepsilon_0 \in (0, 1)$ such that $\{-\omega_{F,\varepsilon}\} + \mathbb{S}_{\pi/2 + \widetilde{\delta}} \subset \rho(A_{F^{(\varepsilon)}})$, with $\omega_{F,\varepsilon} = \omega_F - \varrho(\varepsilon^r + \sigma(\varepsilon))$, and

$$\|(\lambda I - A_{F(\varepsilon)})^{-1}\|_{\mathcal{L}(Z)} \le \frac{c}{|\lambda + \omega_{F,\varepsilon}|}, \ \forall \lambda \in \{-\omega_{F,\varepsilon}\} + \mathbb{S}_{\pi/2 + \widetilde{\delta}},$$

$$\|e^{A_{F(\varepsilon)}t}\|_{\mathcal{L}(Z)} \leq Ce^{-\omega_{F,\varepsilon}t}, \, \forall t \geq 0, \qquad \forall \varepsilon \in (0, \varepsilon_0),$$

$$\|e^{A_{\varepsilon,F_{\varepsilon}}t}P - e^{A_{F(\varepsilon)}t}P_{\varepsilon}\|_{\mathcal{L}(H)} \leq C e^{-\omega_{F,\varepsilon}t}\left(\frac{\varepsilon^{r}}{t^{r/s}} + \sigma(\varepsilon)\right), \quad \forall t \geq 0.$$

These results are true for $F^{(arepsilon)}=F_arepsilon P_arepsilon$, with $\sigma_{\square} \equiv 0$

Part III - Riccati based feedbacks

• LQR problem for $(A, B, \mathcal{C}|_Z)$: min $\int_0^\infty (\|\mathcal{C}z(t)\|_Y^2 + \|u(t)\|^2) dt$. (A, B) is stab. in Z and $(A, \mathcal{C}|_Z)$ is detectable in Z.

The solution is $u(t) = -B^*\Pi z(t)$, where Π solves the A.R.E.

$$\Pi \in \mathcal{L}(Z), \quad \Pi = \Pi^* \ge 0, \quad B^*\Pi \in \mathcal{L}(Z, U),$$

$$\Pi A + A^*\Pi - \Pi B B^*\Pi + P^* \mathcal{C}^* \mathcal{C} P = 0.$$

• LQR for $(A_{\varepsilon}, B_{\varepsilon}, \mathcal{C}|_{Z_{\varepsilon}})$: min $\int_0^{\infty} (\|\mathcal{C}z_{\varepsilon}(t)\|_Y^2 + \|u_{\varepsilon}(t)\|^2) dt$. If $(A_{\varepsilon}, B_{\varepsilon})$ is stab. in Z_{ε} and $(A_{\varepsilon}, \mathcal{C}|_{Z_{\varepsilon}})$ is detectable in Z_{ε} , the solution is $u_{\varepsilon}(t) = -B_{\varepsilon}^* \Pi_{\varepsilon} z_{\varepsilon}(t)$, where Π_{ε} solves the A.R.E.

$$\begin{split} &\Pi_{\varepsilon} \in \mathcal{L}(Z_{\varepsilon}), \quad \Pi_{\varepsilon} = \Pi_{\varepsilon}^{*} \geq 0, \quad B_{\varepsilon}^{*}\Pi_{\varepsilon} \in \mathcal{L}(Z_{\varepsilon}, U), \\ &\Pi_{\varepsilon}A_{\varepsilon} + A_{\varepsilon}^{*}\Pi_{\varepsilon} - \Pi_{\varepsilon}B_{\varepsilon}B_{\varepsilon}^{*}\Pi_{\varepsilon} + P_{\varepsilon}^{*}\mathcal{C}^{*}\mathcal{C}P_{\varepsilon} = 0. \end{split}$$

Stabilizability of $(A_{\varepsilon}, B_{\varepsilon})$

- We assume that $A + \omega_{\Pi}I BB^*\Pi$ is exponentially stable in Z, for some $\omega_{\Pi} > 0$. $(F = -B^*\Pi, \ \omega_{\Pi} = \omega_F)$
- With Theorem 1.1, we prove that $A_{\varepsilon,\Pi}=A_{\varepsilon}-B_{\varepsilon}B^*\Pi P$ is exponentially stable in Z_{ε} , uniformly with respect to $\varepsilon\in(0,\varepsilon_0)$, for some $\varepsilon_0\in(0,1)$:

$$\|e^{tA_{\varepsilon,\Pi}}\|_{\mathcal{L}(Z_{\varepsilon})} \leq C \, e^{-\omega_{\Pi,\varepsilon} \, t}, \quad \forall t \geq 0, \quad \forall \varepsilon \in (0,\varepsilon_0),$$

where

$$\omega_{\Pi,\varepsilon} = \omega_{\Pi} - \varrho \, \varepsilon^{r}.$$

Detectability of $(A_{\varepsilon}, \mathcal{C}|_{Z_{\varepsilon}})$

• We assume that $C \in \mathcal{L}(H, Y)$, Y is a Hilbert space, and that

$$(A, C|_Z)$$
 is detectable in Z ,

i.e.

$$(A^*, (C|_Z^*)$$
 is stabilizable in Z .

• With Theorem 1.1, we prove that

$$(A_{\varepsilon},\mathcal{C}|_{Z_{\varepsilon}}=\mathcal{C}_{\varepsilon}=\mathcal{C})$$
 is detectable in $Z_{\varepsilon},$

uniformly with respect to $\varepsilon \in (0, \varepsilon_0)$, for some $\varepsilon_0 \in (0, 1)$. More precisely, from Theorem 1.1 it follows that there exists $F \in \mathcal{L}(Y, Z)$ such that

$$\left(e^{t(A_{\varepsilon}+P_{\varepsilon}F\mathcal{C}_{\varepsilon})}\right)_{t\geq0}$$

is exponentially stable on Z_{ε} uniformly in $\varepsilon\in(0,\varepsilon_0)$.

Preliminaries to prove convergence rate for feedback gains

$$\begin{split} \widehat{z}(t) &= e^{t(A - BB^*\Pi)} P z_0, \quad \widehat{u}(t) = -B^*\Pi \widehat{z}(t), \quad (\mathcal{P}) \\ \widehat{z}_{\varepsilon}(t) &= e^{t(A_{\varepsilon} - B_{\varepsilon}B_{\varepsilon}^*\Pi_{\varepsilon})} P_{\varepsilon} z_0, \quad \widehat{u}_{\varepsilon}(t) = -B_{\varepsilon}^*\Pi_{\varepsilon}\widehat{z}_{\varepsilon}(t), \quad (\mathcal{P}_{\varepsilon}) \\ \widehat{z}(t) &= e^{t(A - BB_{\varepsilon}^*\Pi_{\varepsilon}P_{\varepsilon})} P z_0, \quad \widehat{u}(t) = -B_{\varepsilon}^*\Pi_{\varepsilon}P_{\varepsilon}\widetilde{z}(t), \\ \widehat{z}_{\varepsilon}(t) &= e^{t(A_{\varepsilon} - B_{\varepsilon}B^*\Pi P)} P_{\varepsilon} z_0, \quad \widehat{u}_{\varepsilon}(t) = -B^*\Pi P \widetilde{z}_{\varepsilon}. \end{split}$$

With Theorem 1.1, we have

$$\begin{split} \|\widetilde{z}_{\varepsilon}(t)\|_{Z_{\varepsilon}} &\leq C \, e^{-\omega_{\Pi,\varepsilon}t} \|z_0\|_H, \quad \omega_{\Pi,\varepsilon} = \omega_{\Pi,\varepsilon} - \varrho \varepsilon^r, \\ \|\widehat{z}(t) - \widetilde{z}_{\varepsilon}(t)\|_H &\leq C \, \frac{\varepsilon^r}{t^{r/s}} e^{-\omega_{\Pi,\varepsilon}t} \|z_0\|_H. \end{split}$$

With Theorem 1.2, we will obtain a similar result for $\|\widetilde{z}(t)\|_Z$ and for $\|\widehat{z}_{\varepsilon}(t) - \widetilde{z}(t)\|_H$, but we first need to prove the uniform exponential stability of $e^{(A_{\varepsilon} - B_{\varepsilon} B_{\varepsilon}^* \Pi_{\varepsilon})t}$.

Uniform stability of the closed loop approximate semigroup

$$\begin{split} F_\varepsilon &= -B_\varepsilon^* \Pi_\varepsilon. \text{ There exist } \omega^* > 0 \text{ and } \varepsilon_0 \in (0,1) \text{ such that} \\ \sup_{\varepsilon \in (0,\varepsilon_0)} \|e^{(A_\varepsilon - B_\varepsilon B_\varepsilon^* \Pi_\varepsilon)t}\|_{\mathcal{L}(Z_\varepsilon)} &\leq C e^{-\omega^* t}, \quad \forall t \geq 0. \end{split}$$

Idea of proof. Step 1.

$$\begin{split} \widehat{z}_{\varepsilon} &= e^{(A_{\varepsilon} - B_{\varepsilon} B_{\varepsilon}^* \Pi_{\varepsilon})t} P_{\varepsilon} z_0, \quad \widehat{u}_{\varepsilon} = -B_{\varepsilon}^* \Pi_{\varepsilon} \widehat{z}_{\varepsilon}, \\ \mathcal{I}_{\varepsilon} (\widehat{z}_{\varepsilon}, \widehat{u}_{\varepsilon}) &= \frac{1}{2} (\Pi_{\varepsilon} P_{\varepsilon} z_0, P_{\varepsilon} z_0)_H \\ (\Pi_{\varepsilon} P_{\varepsilon} z_0, P_{\varepsilon} z_0)_H &\leq 2 \mathcal{I}_{\varepsilon} (\widetilde{z}_{\varepsilon}, \widetilde{u}_{\varepsilon}) \leq c \|z_0\|_H^2. \end{split}$$

We deduce that

$$\sup_{0<\varepsilon<\varepsilon_0}\|P_\varepsilon^*\Pi_\varepsilon P_\varepsilon\|_{\mathcal{L}(H)}<\infty.$$

Uniform stability - II

Step 2. $(A_{\varepsilon}, \mathcal{C}|_{Z_{\varepsilon}}) = (A_{\varepsilon}, \mathcal{C}_{\varepsilon})$ is detectable, uniformly in $\varepsilon \in (0, \varepsilon_0)$.

Thus, there exists $F \in \mathcal{L}(Y, Z)$ such that

$$\left(e^{t(A_{\varepsilon}+P_{\varepsilon}F\mathcal{C}_{\varepsilon})}\right)_{t\geq0}$$

is an analytic semig. on Z_{ε} , exponen. stable unif. in $\varepsilon \in (0, \varepsilon_0)$.

With

$$\begin{split} &A_{\varepsilon,\Pi_{\varepsilon}} = A_{\varepsilon,F} - P_{\varepsilon}F\mathcal{C}_{\varepsilon} - B_{\varepsilon}B_{\varepsilon}^{*}\Pi_{\varepsilon}, \\ &e^{tA_{\varepsilon,\Pi_{\varepsilon}}}P_{\varepsilon}z_{0} = e^{tA_{\varepsilon,K}}P_{\varepsilon}z_{0} - \int_{0}^{t}e^{(t-\tau)A_{\varepsilon,K}}P_{\varepsilon}P_{\varepsilon}F\widehat{z}_{\varepsilon}(\tau)\,d\tau \\ &- \int_{0}^{t}e^{(t-\tau)A_{\varepsilon,F}}P_{\varepsilon}B_{\varepsilon}\widehat{u}_{\varepsilon}(\tau)\,d\tau, \end{split}$$

we prove

$$\|e^{(\cdot)A_{\varepsilon,\Pi_{\varepsilon}}}P_{\varepsilon}z_0\|_{L^2(0,\infty;H)}\leq C\|z_0\|_H.$$

Uniform stability - III

Step 3. • We prove

$$\sup_{\varepsilon \in (0,\varepsilon_0)} \|e^{(\cdot)A_{\varepsilon,\Pi_\varepsilon}}\|_{\mathcal{L}(H,L^2(0,\infty;H)} < \infty.$$

This is not sufficient to have the exponential uniform stability.

• To have the exponentially uniformly in $\varepsilon \in (0, \varepsilon_0)$, we have to prove some additional bound

$$\|e^{tA_{\varepsilon,\Pi_{\varepsilon}}}\|_{\mathcal{L}(H)} \leq C e^{\lambda_0 t}, \quad \forall t \geq 0.$$

• There exist $\omega^* > 0$ and $\varepsilon_0 \in (0,1)$ such that

$$\sup_{\varepsilon \in (0,\varepsilon_0)} \|e^{(A_\varepsilon - B_\varepsilon B_\varepsilon^* \Pi_\varepsilon)t}\|_{\mathcal{L}(Z_\varepsilon)} \le C e^{-\omega^* t}, \quad \forall t \ge 0.$$

With Theorem 1.2, we have

$$\begin{split} \|\widetilde{z}(t)\|_{Z} &\leq C \, e^{-t\omega^{*}/2} \|z_{0}\|_{H}, \quad \omega_{\Pi,\varepsilon} = \omega_{\Pi,\varepsilon} - \varrho \varepsilon^{r}, \\ \|\widehat{z}_{\varepsilon}(t) - \widetilde{z}(t)\|_{H} &\leq C \, \frac{\varepsilon^{r}}{t^{r}/s} e^{-t\omega^{*}/2} \|z_{0}\|_{H}. \end{split}$$

Convergence rate for the feedback gains

We have

$$\begin{split} \|P^* \Pi P - P_{\varepsilon}^* \Pi_{\varepsilon} P_{\varepsilon}\|_{\mathcal{L}(H)} &\leq C \varepsilon^r \,, \quad \forall \varepsilon \in (0, \varepsilon_0), \quad \text{if } r < s, \\ \|P^* \Pi P - P_{\varepsilon}^* \Pi_{\varepsilon} P_{\varepsilon}\|_{\mathcal{L}(H)} &\leq C \varepsilon^s \, |\ln(\varepsilon)|, \quad \forall \varepsilon \in (0, \varepsilon_0), \quad \text{if } r = s, \end{split}$$

and

$$\|B^*\Pi P - B_{\varepsilon}^*\Pi_{\varepsilon}P_{\varepsilon}\|_{\mathcal{L}(H,U)} \leq C\varepsilon'|\ln\varepsilon|, \quad \forall \varepsilon \in (0,\varepsilon_0).$$

Convergence rate for the feedback gains - Idea of proof

$$\begin{split} &\frac{1}{2}|((P^*\Pi P - P_{\varepsilon}^*\Pi_{\varepsilon}P_{\varepsilon})z_0, z_0)_H| = |\mathcal{I}(\widehat{z}, \widehat{u}) - \mathcal{I}_{\varepsilon}(\widehat{z}_{\varepsilon}, \widehat{u}_{\varepsilon})| \\ &\leq |\mathcal{I}(\widetilde{z}, \widetilde{u}) - \mathcal{I}_{\varepsilon}(\widehat{z}_{\varepsilon}, \widehat{u}_{\varepsilon})| + |\mathcal{I}(\widehat{z}, \widehat{u}) - \mathcal{I}_{\varepsilon}(\widetilde{z}_{\varepsilon}, \widetilde{u}_{\varepsilon})| \\ &\leq C\|\widehat{z}_{\varepsilon} - \widetilde{z}\|_{L^p(H)} \left(\|\widehat{z}_{\varepsilon}\|_{L^{p'}(H)} + \|\widetilde{z}\|_{L^{p'}(H)}\right) \\ &+ C\|\widetilde{z}_{\varepsilon} - \widehat{z}\|_{L^p(H)} \left(\|\widetilde{z}_{\varepsilon}\|_{L^{p'}(H)} + \|\widehat{z}\|_{L^{p'}(H)}\right). \end{split}$$

From which, with the estimates on $\widehat{z}_{\varepsilon}-\widetilde{z}$ and $\widetilde{z}_{\varepsilon}-\widehat{z}$, we deduce

$$((P^*\Pi P - P_{\varepsilon}^*\Pi_{\varepsilon}P_{\varepsilon})z_0, z_0)_H \leq C\|z_0\|_H^2 \, \varepsilon^r \quad \text{if } r < s.$$

Convergence rates for the closed-loop systems

- $\widehat{z}(t) = e^{t(A+BF)}y_0$, $F = -B^*\Pi$. $\|e^{t(A+BF)}\|_{\mathcal{L}(Z)} \le Ce^{-\omega_\Pi t}$, $\forall t \ge 0$.
- $\widetilde{z}(t) = e^{t(A+BF^{(\varepsilon)})}y_0$, $F^{(\varepsilon)} = -B_{\varepsilon}^*\Pi_{\varepsilon}P_{\varepsilon}$.
- $\widehat{z}_{\varepsilon}(t) = e^{t(A_{\varepsilon} + B_{\varepsilon}F_{\varepsilon})}y_0$, $F_{\varepsilon} = -B_{\varepsilon}^*\Pi_{\varepsilon}$.

For all $\varepsilon \in (0, \varepsilon_0)$, we have

$$\begin{split} \|\widehat{z}(t) - \widehat{z}_{\varepsilon}(t)\|_{H} &\leq C \frac{e^{(-\omega_{\Pi} + \varrho \varepsilon^{r} | \ln \varepsilon|)t}}{t^{r/s}} \varepsilon^{r} |\ln \varepsilon| \|z_{0}\|_{H}, \\ \|\widehat{z} - \widehat{z}_{\varepsilon}\|_{L^{p}(0,\infty;H)} &\leq C_{p} \varepsilon^{r/p} |\ln \varepsilon|^{r/p} \|z_{0}\|_{H}, \quad \forall p \in (1,\infty), \\ \|\widehat{z}_{\varepsilon} - \widetilde{z}\|_{L^{p}(0,\infty;H)} &\leq C_{p} \varepsilon^{r/p} \|z_{0}\|_{H}, \quad \forall p \in (1,\infty). \end{split}$$

Part IV - Applications

- Numerical approximation of the Oseen system with a boundary control (lectures 2 and 3)
- Approximation of the Oseen system by the pseudo-compressibility method with internal control (see below)
- Approximation of the Oseen system by the pseudo-compressibility method with a boundary control (lecture 3)
- Numerical approximation of the Boussinesq system (lecture 3)
- Stabilization of FSI systems (lecture 4) and their numerical approximation (under investigation lecture 4)

The controlled Navier-Stokes system

- Ω is either a bounded domain in \mathbb{R}^3 either of class C^2 , or a bounded polyhedral convex domain.
- $(w_s, \rho_s) \in (H^1(\Omega))^3 \times L_0^2(\Omega)$ is a stationary solution of the N.S.E: $(w_s \cdot \nabla)w_s - \nu \, \Delta w_s + \nabla \rho_s = f_s, \quad \text{div } w_s = 0 \quad \text{in} \quad \Omega,$

$$w_s = g_s$$
 on $\Gamma = \partial \Omega$.

The controlled Navier-Stokes system

$$\begin{split} &\frac{\partial w}{\partial t} + (w \cdot \nabla)w - \nu \, \Delta w + \nabla \rho = f_s + \chi_{\mathcal{O}} \, u, \quad \text{in} \quad Q = \Omega \times (0, \infty), \\ &\text{div } w = 0 \quad \text{in} \quad Q, \quad w = g_s \quad \text{on} \quad \Sigma = \Gamma \times (0, \infty), \\ &w(0) = w_0 = w_s + y_0 \quad \text{in} \quad \Omega, \end{split}$$

 y_0 is a perturbation in the I.C.

The Oseen system

 $y(0) = y_0$ in Ω ,

The nonlinear system satisfied by $(y, p) = (w, \rho) - (w_s, \rho_s)$ is

$$\begin{split} &\frac{\partial y}{\partial t} + (w_s \cdot \nabla)y + (y \cdot \nabla)w_s + \kappa(y \cdot \nabla)y - \nu \, \Delta y + \nabla p = \chi_{\mathcal{O}} \, u \quad \text{in} \quad Q, \\ &\text{div} \, y = 0 \quad \text{in} \quad Q, \\ &y = 0 \quad \text{on} \quad \Sigma, \end{split}$$

with $\kappa=1$. The associated linearized system is obtained by setting $\kappa=0$.

The controlled Oseen system

The controlled Oseen system

$$\begin{split} &\frac{\partial y}{\partial t} + \big(w_s \cdot \nabla\big)y + \big(y \cdot \nabla\big)w_s - \nu \,\Delta y + \nabla p = \chi_{\mathcal{O}} \,u \quad \text{in} \quad Q, \\ &\text{div} \, y = 0 \quad \text{in} \quad Q, \quad y = 0 \quad \text{on} \quad \Sigma, \quad y(0) = y_0 \quad \text{in} \quad \Omega. \end{split}$$

The Leray projector $P \in \mathcal{L}(H, \mathbb{Z})$, $H = (L^2(\Omega))^3$, $\mathbb{Z} = V_n^0(\Omega)$.

$$V_n^0(\Omega) = \{ y \in L^2(\Omega; \mathbb{R}^3) \mid \operatorname{div} y = 0, \ y \cdot n = 0 \ \text{on} \ \Gamma \}$$

The Oseen operator $(A, \mathcal{D}(A))$, and the control op. B

$$Ay = P(\nu \Delta y - (w_s \cdot \nabla)y - (y \cdot \nabla)w_s),$$

$$\mathcal{D}(A) = V_n^0(\Omega) \cap (H_0^1(\Omega) \cap H^2(\Omega))^3, \quad B = P\chi_{\mathcal{O}}.$$

The control Oseen system

$$y' = Ay + Bu, \quad y(0) = y_0.$$

Approximation by the pseudo-compressible model

Pseudo-compressible approximation

$$\begin{split} &\frac{\partial y_{\varepsilon}}{\partial t} - \nu \Delta y_{\varepsilon} + \big(y_{\varepsilon} \cdot \nabla\big) w_{s}^{\varepsilon} + \big(w_{s}^{\varepsilon} \cdot \nabla\big) y_{\varepsilon} + \nabla p_{\varepsilon} = \chi_{\mathcal{O}} \, u \quad \text{in} \quad Q, \\ &\operatorname{div} y_{\varepsilon} + \varepsilon p_{\varepsilon} = 0 \quad \text{in} \quad Q, \quad y_{\varepsilon} = 0 \quad \text{on} \quad \Sigma, \quad y_{\varepsilon}(0) = y_{0} \quad \text{in} \quad \Omega. \\ &w_{s}^{\varepsilon} \quad \text{is an approximation of} \quad w_{s}. \end{split}$$

• The equation for y_{ε} can be solved first

$$\frac{\partial y_{\varepsilon}}{\partial t} - \nu \Delta y_{\varepsilon} + (y_{\varepsilon} \cdot \nabla) w_{s}^{\varepsilon} + (w_{s}^{\varepsilon} \cdot \nabla) y_{\varepsilon} - \frac{1}{\varepsilon} \nabla \operatorname{div} y_{\varepsilon} = \chi_{\mathcal{O}} u \text{ in } Q.$$

- Find u in feedback form u = Fy ($u_{\varepsilon} = F_{\varepsilon}y_{\varepsilon}$) able to stabilize the incomp. model (resp. pseudo-compressible model).
- Study convergence results $F_{\varepsilon} \to F$, $y_{\varepsilon} \to y$.
- Prove that the feedback $F_{\varepsilon}P$ also stabilizes the original system.

Error estimates for the pseudo-compressible approximation

$$-\nu\Delta v + \nabla p = f \text{ in } Q,$$

 $\operatorname{div} v = 0 \text{ in } \Omega, \quad v = 0 \text{ on } \Gamma.$

The pseudo-compressible Stokes system

$$-\nu\Delta v_{\varepsilon} + \nabla p_{\varepsilon} = f \text{ in } Q,$$

 $\operatorname{div} v_{\varepsilon} + \varepsilon p_{\varepsilon} = 0 \text{ in } \Omega, \quad v_{\varepsilon} = 0 \text{ on } \Gamma.$

• Temam (1977), Bercovier (1978) - Approximation error for the stationary Stokes equation

$$\|v-v_{\varepsilon}\|_{(H^{1}(\Omega))^{3}}+\|p-p_{\varepsilon}\|_{L^{2}(\Omega)}\leq C \varepsilon \|f\|_{(H^{-1}(\Omega))^{3}}.$$

• Temam (1977), Hebecker (1982), Shen (1995) (instationary Stokes equation)

$$\begin{aligned} &\|v-v_{\varepsilon}\|_{L^{2}(H^{1}(\Omega))\cap L^{\infty}(L^{2}(\Omega))} + \|\operatorname{div} v_{\varepsilon}\|_{L^{\infty}(L^{2}(\Omega))} \\ &\leq C \, \varepsilon^{1/2} \left(\|f\|_{L^{2}((H^{-1}(\Omega))^{3})} + \|y_{0}\|_{(L^{2}(\Omega))^{3}} \right)_{\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}} \end{aligned}$$

Uniform coervivity condition

The stationary solution (w_s, ρ_s) belongs to $(H^1(\Omega))^3 \times L^2(\Omega)$. For all v_s satisfying the H^1 -bound

$$\|v_s\|_{(H^1(\Omega))^3} \leq \|w_s\|_{(H^1(\Omega))^3} + 1,$$

we set

$$a_{v_s}(z,\zeta) = \int_{\Omega} (\nu \nabla z : \nabla \zeta + (v_s \cdot \nabla)z \cdot \zeta + (z \cdot \nabla)v_s \cdot \zeta) \ dx,$$

for all $z \in (H^1(\Omega))^3$, $\zeta \in (H^1(\Omega))^3$.

We can choose $\omega_0 > 0$ such that

$$\omega_0 \|z\|_{(L^2(\Omega))^3}^2 + a_{v_s}(z,z) \ge \frac{\nu}{2} \|z\|_{(H^1(\Omega))^3}^2,$$

for all $z \in (H^1(\Omega))^3$ and all v_s satisfying the H^1 -bound.

Analyticity - Resolvent estimate

The operator $(A, \mathcal{D}(A))$ is the infinitesimal generator of an analytic semigroup on $Z = V_n^0(\Omega)$. There exists a sector $\{\omega_0\} + \mathbb{S}_{\pi/2+\delta}$, with $\delta \in]0, \pi/2[$, such that

$$\begin{split} \{\omega_0\} + \mathbb{S}_{\pi/2+\delta} \subset \rho(A), \\ \|(\lambda I - A)^{-1}\|_{\mathcal{L}(Z)} &\leq \frac{c}{|\lambda - \omega_0|} \quad \text{for all } \lambda \in \{\omega_0\} + \mathbb{S}_{\pi/2+\delta}. \end{split}$$

Analyticity of pseudo-compressible control Oseen operator

We assume that $\|w_s^{\varepsilon} - w_s\|_{(H^1(\Omega))^3} \leq C_s \, \varepsilon, \quad \forall \varepsilon \in (0,1).$

We set $\varepsilon_0=1/\mathcal{C}_s$. The pseudo-compressible Oseen operator A_ε is

$$\mathcal{D}(A_{\varepsilon}) = (H^{2}(\Omega) \cap H^{1}_{0}(\Omega))^{3},$$

$$A_{\varepsilon}y = \nu \Delta y - (y \cdot \nabla)w_{s}^{\varepsilon} - (w_{s}^{\varepsilon} \cdot \nabla)y + \frac{1}{\varepsilon}\nabla(\operatorname{div} y).$$

The pseudo-compressible system can be rewritten in the form

$$y'_{\varepsilon} = A_{\varepsilon} y_{\varepsilon} + B_{\varepsilon} u, \quad y_{\varepsilon}(0) = y_{0}, \quad \text{with } B_{\varepsilon} = \chi_{\mathcal{O}}.$$

For all $\varepsilon \in (0, \varepsilon_0)$, the operator $(A_{\varepsilon}, \mathcal{D}(A_{\varepsilon}))$ is the infinitesimal generator of an analytic semigroup on $(L^2(\Omega))^3$. We have

$$\begin{split} \{\omega_0\} + \mathbb{S}_{\pi/2+\delta} &\subset \rho(A_\varepsilon), \\ \|(\lambda I - A_\varepsilon)^{-1}\|_{\mathcal{L}(Z_\varepsilon)} &\leq \frac{\mathcal{C}}{|\lambda - \omega_0|} \quad \text{for all } \lambda \in \{\omega_0\} + \mathbb{S}_{\pi/2+\delta}, \end{split}$$
 for all $\varepsilon \in (0, \varepsilon_0)$.

The pseudo-compressible control Oseen system

• The following bounds hold, uniformly in $\varepsilon \in (0, \varepsilon_0)$:

$$\begin{split} &\|y\|_{(H^2(\Omega))^3} + \frac{1}{\varepsilon} \|\mathrm{div}\, y\|_{H^1(\Omega)} \leq C \|(\lambda_0 I - A_\varepsilon)y\|_{(L^2(\Omega))^3}, \ \forall z \in \mathcal{D}(A_\varepsilon), \\ &\|\phi\|_{(H^2(\Omega))^3} + \frac{1}{\varepsilon} \|\mathrm{div}\, \phi\|_{H^1(\Omega)} \leq C \|(\lambda_0 I - A_\varepsilon^*)\phi\|_{(L^2(\Omega))^3}, \ \forall \phi \in \mathcal{D}(A_\varepsilon^*). \\ &\text{proved by rewriting the divergence eq. as for the imcompressible case.} \end{split}$$

The following approximation property holds:

$$\|(\lambda_0 I - A)^{-1} P - (\lambda_0 I - A_{\varepsilon})^{-1}\|_{\mathcal{L}((L^2(\Omega))^3)} \leq C\varepsilon, \quad \forall \varepsilon \in (0, \varepsilon_0).$$

ullet The control operators B and $B_{arepsilon}$ satisfy

$$\|(\lambda_0 I - A)^{-1} B - (\lambda_0 I - A_{\varepsilon})^{-1} B_{\varepsilon}\|_{\mathcal{L}((L^2(\Omega))^3)} \le C\varepsilon, \quad \forall \varepsilon \in (0, \varepsilon_0),$$
$$(\lambda_0 I - A)^{-1} B - (\lambda_0 I - A_{\varepsilon})^{-1} B_{\varepsilon} = [(\lambda_0 I - A)^{-1} - (\lambda_0 I - A_{\varepsilon})^{-1}] \chi_{\mathcal{O}}.$$

Convergence rate of A towards A_{ε}

 $\operatorname{div} v = 0 \text{ in } \Omega, \quad v = 0 \text{ on } \Gamma.$

• $y = (\lambda_0 I - A)^{-1} Pf$ is solution of $\lambda_0 y - \nu \Delta y + (y \cdot \nabla) w_s + (w_s \cdot \nabla) y + \nabla p = f \text{ in } \Omega,$

•
$$y^{\varepsilon} = (\lambda_0 I - A_{w_s^{\varepsilon}})^{-1} Pf$$
 is solution of
$$\lambda_0 y - \nu \Delta y + (y \cdot \nabla) w_s^{\varepsilon} + (w_s^{\varepsilon} \cdot \nabla) y + \nabla q = f \text{ in } \Omega,$$

$$\operatorname{div} y = 0 \text{ in } \Omega, \quad y = 0 \text{ on } \Gamma.$$

• $y_{\varepsilon} = (\lambda_0 I - A_{\varepsilon})^{-1} f$ is solution of

$$\begin{split} \lambda_0 y_\varepsilon - \nu \Delta y_\varepsilon + \big(y_\varepsilon \cdot \nabla\big) w_s^\varepsilon + \big(w_s^\varepsilon \cdot \nabla\big) y_\varepsilon + \nabla q_\varepsilon &= f \quad \text{in } \Omega, \\ \operatorname{div} y_\varepsilon + \varepsilon q_\varepsilon &= 0 \text{ in } \Omega, \quad y_\varepsilon &= 0 \quad \text{on } \Gamma. \end{split}$$

 $||y-y^{\varepsilon}||_{L^{2}(\Omega;\mathbb{R}^{3})}$ can be estimated with regularity results for the Oseen system and with the estimate on $||w_{s}-w_{s}^{\varepsilon}||_{H^{1}(\Omega;\mathbb{R}^{3})}$.

Estimate of $\|y_{\varepsilon}-y^{\varepsilon}\|_{L^{2}(\Omega;\mathbb{R}^{3})}$

The differences $z_{\varepsilon}=y_{\varepsilon}-y^{\varepsilon}$ and $p_{\varepsilon}=q_{\varepsilon}-q$ obey

$$\begin{split} &\lambda_0 z_\varepsilon - \nu \Delta z_\varepsilon + \big(z_\varepsilon \cdot \nabla\big) w_s^\varepsilon + \big(w_s^\varepsilon \cdot \nabla\big) z_\varepsilon + \nabla p_\varepsilon = 0 \ \text{ in } \Omega, \\ &\operatorname{div} z_\varepsilon + \varepsilon p_\varepsilon = -\varepsilon q \text{ in } \Omega, \quad z_\varepsilon = 0 \ \text{ on } \Gamma. \end{split}$$

With the adjoint system

$$\begin{split} \lambda_0 \Phi_{\varepsilon} - \nu \Delta \Phi_{\varepsilon} + (\nabla w_{s}^{\varepsilon})^T \Phi_{\varepsilon} - (w_{s}^{\varepsilon} \cdot \nabla) \Phi_{\varepsilon} + \nabla \psi_{\varepsilon} - \operatorname{div}(w_{s}^{\varepsilon}) \Phi_{\varepsilon} \\ &= y_{\varepsilon} - y^{\varepsilon} \quad \text{in } \Omega, \\ \operatorname{div} \Phi_{\varepsilon} + \varepsilon \psi_{\varepsilon} &= 0 \text{ in } \Omega, \quad \Phi_{\varepsilon} = 0 \text{ on } \Gamma, \end{split}$$

we obtain

$$\int_{\Omega} |y_{\varepsilon} - y^{\varepsilon}|^{2} dx = \varepsilon \int_{\Omega} q \psi_{\varepsilon} dx$$

$$\leq \varepsilon \|q\|_{L^{2}(\Omega)} \|\psi_{\varepsilon}\|_{L^{2}(\Omega)} \leq C \varepsilon \|y_{\varepsilon} - y^{\varepsilon}\|_{L^{2}(\Omega)}.$$

Convergence rate for Riccati based feedback gains

• $F_{\varepsilon}=-\Pi_{\varepsilon}.$ There exist $\omega^{*}>0$ and $\varepsilon_{0}\in(0,1)$ such that

$$\sup_{\varepsilon \in (0,\varepsilon_0)} \|e^{(A_\varepsilon - B_\varepsilon \Pi_\varepsilon)t}\|_{\mathcal{L}(Z_\varepsilon)} \leq C e^{-\omega^*t}, \quad \forall t \geq 0.$$

We have

$$\|\Pi P - \Pi_{\varepsilon}\|_{\mathcal{L}(H)} \le C\varepsilon |\ln(\varepsilon)|, \quad \forall \varepsilon \in (0, \varepsilon_0),$$

and

$$\|B^*\Pi P - B_{\varepsilon}^*\Pi_{\varepsilon}\|_{\mathcal{L}(H,U)} \le C\varepsilon |\ln \varepsilon|, \quad \forall \varepsilon \in (0,\varepsilon_0).$$

Convergence rates for the closed-loop systems

- $\widehat{z}(t) = e^{t(A+BF)}z_0$, $F = -\Pi$. $\|e^{t(A+BF)}\|_{\mathcal{L}(Z)} \le Ce^{-\omega_\Pi t}$, $\forall t \ge 0$.
- $\widetilde{z}(t) = e^{t(A+BF_{\varepsilon})}z_0$, $F_{\varepsilon} = -\Pi_{\varepsilon}$.
- $\widehat{z}_{\varepsilon}(t) = e^{t(A_{\varepsilon} + B_{\varepsilon}F_{\varepsilon})}z_0$, $F_{\varepsilon} = -\Pi_{\varepsilon}$.

For all $\varepsilon \in (0, \varepsilon_0)$, we have

$$\begin{split} \|\widehat{z}(t) - \widehat{z}_{\varepsilon}(t)\|_{H} &\leq C \frac{e^{(-\omega_{\Pi} + \varrho\varepsilon|\ln\varepsilon|)t}}{t} \varepsilon |\ln\varepsilon| \|y_{0}\|_{H}, \\ \|\widehat{z}_{\varepsilon} - \widehat{z}\|_{L^{p}(0,\infty;H)} &\leq C_{p} \varepsilon^{1/p} |\ln\varepsilon|^{1/p} \|y_{0}\|_{H}, \quad \forall p \in (1,\infty), \\ \|\widehat{z}_{\varepsilon} - \widetilde{z}\|_{L^{p}(0,\infty;H)} &\leq C_{p} \varepsilon^{1/p} \|y_{0}\|_{H}, \quad \forall p \in (1,\infty). \end{split}$$

References

- K. Le Balc'h, M. Tucsnak, A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system. ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 17, 30 pp.
- M. Badra, J.-P. Raymond, Approximation of feedback gains stabilizing viscous incompressible fluid flows using the pseudo-compressibility method, 2022.
- M. Badra, J.-P. Raymond, Approximation of feedback gains for abstract parabolic systems, 2023.

Thank you for your attention