1/45

ICTS - Bangalore
Recent advances on control theory of PDE systems

February 12-23, 2024

Approximation of feedback gains for abstract parabolic systems

Lecture 1

Jean-Pierre Raymond, Institut de Mathématiques — Toulouse

joint work with Mehdi Badra



Outline of the four lectures

Lecture |

e Approximation of feedback gains for abstract parabolic systems

Lecture Il

e Numerical approximation of the Oseen system in polyhedral
domains - Approximation of feedback gains for the Oseen system
Lecture I

e Stabilization of fluid flows using ROM based on spectral
projection - Numerical approximation of feedback gains based on
ROM

Lecture IV

e Feedback stabilization of FSI problems
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Outline of the talk

Part |

e Motivations — General framework — Assumptions
Part Il

e Convergence rates for given feedbacks — New type gap theorem

Part 11

e Convergence of Riccati based feedbacks

Part IV

e An application
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Motivations - |

e The linear controlled system
7 =Az+Bu, z(0)=2z, inZ.
e Assumptions.
* (A,D(A)) is the inf. generator of an analytic semigroup on Z.

* The control operator B € L(U, (D(A*))’). But
(Mol —A)""B € L(U, Z) for some vy € (0,1) and Ag > 0.

* The pair (A, B) is stabilizable in Z.
* The pair (A,C) is detectable in Z, where C € L(Z,Y).

e Goal. We look for F € £(Z, U) such that (e!(AtBF)),5 is exp.
stable on Z.

Such a F can be obtained by solving a LQR problem.
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* (A,D(A)) is the infinitesimal generator of an analytic semigroup
on Z iff

The resolvent set  p(A) D {wo} + Sz /245

(A= A) | z(z) < M_ijOl’ VA € {wo} + Sr/244

Srjors ={A €C | larg(N\)| <7/2+ 0}, 0 <6 <m/2.
Semigroup/Resolvent

e = ?/e“(A/ —~A)ld
2im r

Stability
€| z(z) < C ™.
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Motivations - |l

e Approximate controlled system
Zl=A.z.+ B.u, z(0)=2z, inZ.

e The approximate controlled system: Finite Element
approximation (¢ = h, h is the meshsize) or a perturbation of the
initial system (approximation by penalization, € is the perturbation
parameter).

o If Z. C Z, we have a conforming approximation. If Z. ¢ Z, we
have a nonconforming approximation.

We assume that Z C H, Z. C H, P € L(H), and P, € L(H) are
projectors such that

PH=2Z and P.H=Z.

e Goal. Find an approximate feedback F. € £(Z., U) such that
(et(A=+B:Fe)) oo is exp. stable on Z. and (ef(AtBFePe)) o is exp.

stable on Z.
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Known results for conforming approximations

It Z.cZ, P.:Z+w~ Z., we want to have F,P. - F as ¢ — 0,
and if possible ||F.P: — Fllz(z,u) < Ce®, a > 0.
e LQR problem for (A, B,C): min [;°(|[Cz(t)||? + [|u(t)]?)dt.

u(t)=—B*Mz(t), NN solves an A.R.E.

e K. Ito (1987). In order to prove that ||F — Fy|lz(z,u) — 0 as
h — 0, the uniform stabilizability of the pair (Ap, Bp)p>0, with
respect to h, is required. B € L(U, Z).

e H. T. Banks, K. Kunisch, 1984. The uniform stabilizability is
satisfied for parabolic equations. B € L(U, Z).

e Extension to the case of unbounded control operators.
(Mol —A)"Be L(U,Z), 0 <~y <1 I Lasiecka (1992). R.
Triggiani (1994). Series of works, monography (2000).

e In all these results, Z, C Z (conforming approximation).
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e For the approximation by a FEM of the Navier-Stokes equations
in Q c RY, we have

H = (L*(Q)),
Z=VYQ)={ze (L?(Q)?|divz=0, z-n=0o0n T},
Zy = {Zh e Xp ‘ deiVZh grdx =0, Vg, € Mh},

where X, C (H}(Q)) is a F.E. space for the velocity, and
My, C L3(2) is a F.E. space for the pressure.

e For the pseudo-compressibility (or penalty) method
divz. 4+ ep. = 0, we have

Z=V%Q) and Z =(L%(Q)¢=H.

We are in the case of nonconforming approximation:
Z.¢ Z, but ZC Hand Z. C H.
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Part Il - A general framework - Assumptions |

(A, B, P) and (A., B-, P-) given. We assume (to check for each
application)

e Projectors P : H— Zand P. : Hw— Z

e Uniform analytic estimates. D(A) dense in Z, D(A:) dense in Z.

The resolvent set  p(A:) D {wo} + Sy /244

IO = A) ez < S YA€ {wo} + Sapaps, Ve € (0,1),
Srjors ={N € C| larg(N)| <7/2+ 0}, 0 <6 < /2.
e Approximation assumption for A:
SUP.c(0,1) 1Pell c(Hy < 400,
(Mol — A)IP — (Mol — Ac) 1P| gy < Ce®, with s >0,

with \g > wp.
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A general framework - Assumptions Il

e Approximation assumption for B:

(Mol —A)""Be L(U,Z) forsomey € [0,1).

(Aol = A) 1B — (Mol — A) 1Bl zu,ny < Ce,
with 0 < r < s(y—1).
e A uniform boundedness condition - weaker than:
sup.c(0,1) (Aol — Ac) 77 Bel| £(u,Hy < o0

For all e € (0,1), (Ao — A:)"7B. € L(U, H) and, for all € € (0,1),
the following uniform bound holds

ewo t

le Bell cumy < € vt € (0,e/), 3 € [y,1).

7’
e Stabilizability
The pair (A, B) is stabilizable in Z.
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Main results — Feedback stabilization

In Theorem 1.1 we state that if (A, B) is exp. stabilizable in Z,
then (Ac, B:)o<c<1 is uniformly exp. stabilizable in Z.

The pair (Ae, B:) is exp. stabilizable in Z. uniformly w. r. to
e € (0,1) if there exist M > 1 and wg > 0 such that for all
e € (0,1), there exists F. € L(Z., U) such that

|elA=FBFIE £ 7y < MemFE, Wt > 0, Ve € (0, 1).

In Theorem 1.2 we state that if (Ac, B:)o<e<1 is uniformly exp.
stabilizable in Z. then (A, B) is exp. stabilizable in Z.
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Stab. of the e-system by a feedback of the initial system

Theorem 1.1. Let F € £(Z, U) and wr > 0 be such that
A+ wrgl + BF is exponentially stable on Z. (F.)o<e<1 C £(Z:, U)
satisfies

|FP — Fellz(z.,uy < o(e), Vee(0,1), o(e) —0ase—0.
Set A = A+ BF and A.r. = A. + B.F..
Then, for all § € (0,0), there exist o > 0 and ¢ € (0,1) such that
{—wre} 8, 5,5 C P(Ac ), with wr . = wr — o(e" + 0(¢)), and

I = Acr) ez < prgr YA€ {wred +8 005
[kt £(z.) < Ce™Fet, Vit >0, Ve € (0, ).

Moreover, for all € € (0,£0), we have

r

[P — et P | pyy < CemwFet <;/s + J(e)) , vt > 0.
These results are true for F, = FP, with o = 0.
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|deas of Proof - |

Remark. If
IO = Acr) Hlez) < pror YA E{-wrd +8, 005

and if A F. is the infinitesimal generator of an analytic semigroup
on Z., then

| Fet|| p(z) < Ce™Fet, Vit > 0, Ve € (0, ).
Beginning of the proof. We assume that

I = AR Moy < iy YA€ {—wr) +Sepaps
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Ideas of Proof - Il

e We first prove

IO = Acr) Moz < o YA€ B0} +8rp2es, Ve € (0,20),

where @ > max(\ — Ao, —wr), o € (0,1).

This provides the desired estimate for |A| large and 0 < 5 <6
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Ideas of Proof - Il

e To prove
M = Acr) Mgz < \)\TCWFP VA € {Wo} + Sr/244,

we use A. r. = Ac + B:F., and prove that

I = Ac k) Hlez) < collM = Ad) Mgz

< rcwop VA € {@o} + Sr /245
e Indeed, we have

(M — AE’FE)*1 =(I—T-(\) YA —A)E

where

TS()‘) = ()‘I - Ae)ilBstPe-

We conclude with an estimate of T.(\).
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Ideas of Proof - IV

To estimate [|(A — A r.) "l z(z.) for A € Ke, we first prove that,
for some \ € {@o} +Sz/245 and all p € K, we have

IO = Acr) 2P — (M = AR) 2P| cgmy < C(e" + a(e))

S 1/\ . = b\
S SR Gai—An ey A =ATH)

With a New Gap Theorem - Theorem 1.3. - we deduce that

C ~
M — A g ) LP. < = WeN+K.
I = A ) Pellecn < v o )+
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Gap type result
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Theorem 1.3. If A1 and As both admit a bounded inverse in Z;
and Z> respectively, if A € C belongs to the resolvent set of Ay,
and if

IATTPL = A Pl iy

1

< =
21+ AT max([[PLL P21 (1+[1(A2= A1) =1 P2l £(v,2,)) *

then A; — A\l admits a bounded inverse in 71, and
I = A1) Ml 2z)y < 1+ 2(M = A2) " Pal| o(,z,)-

In Kato, when Z; = Z» = H, the gap of A from A; is

(S(AQ,A]_) = sup inf {”22 — Zl”H + ||A2 7o — Aq ZIHH}
122l pag) =1 21 EP(A1)

The symmetric gap is

5(A2, A1) = max[6(A1, Az), (A2, Ar)].



Gap for noncomforming approximation

6((A2, P2), (A1, P1))

= sup
||22||H+||A222+(/ P2)¢|[n=1

inf {sz —z1|ln + [[Pr(A2 22 + (I = P2)¢) — A1 z1]| -
z1€D(A1)

If A1 and A, both admit a bounded inverse in Z; and 2,
respectively, we have

5((Az, P2), (A1, P1)) < |ATTPL — A5 Pol| o).
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Stab. of the initial system by feedbacks of the e-system

Theorem 1.2. Let (F:)o<e<1 C L£(Z:, U) and wg > 0 satisfy
HF&‘ 'D‘:‘HC(Z,U) <C, Vee (071)7

((et(AsJ“”'F’*BeFe))t20)0<5<1 is unif. exp. stable on Z..

Let (F))gec1 € £(Z, U) satisfying
IF-Pe — FOll gz, 0) < 0(e), Ve €(0,1).
Set Ape) = A+ BF(®) and A. p. = A. + B.F..

Then, for all § € (0,6), there exist o > 0 and £ € (0,1) such that
{—wre} +5, 5,5 C P(Ar©), With wr . = wr — o(e" +0(¢)), and

M = Ar@) Moz < ey VA € {—wr .} +S

‘A“FLUF [’ /245

|€*FO 8| 2y < Ce™Fet, V¥t >0, Ve € (0,),

”eAa,thP - eAF(E)tPf‘:H[:(H) S Ce_wFE (tr/s

to(e )), vt > 0.

These results are true for F(€) = F.P., with 0.= 0.
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Part |ll - Riccati based feedbacks

e LQR problem for (A, B,C|z): min [;°(||Cz(t)|13 + [Ju(t)]|*)dt.
(A, B) is stab. in Z and (A,C|z) is detectable in Z.
The solution is u(t) = —B*[Mz(t), where I solves the A.R.E.

Nec(z), N=N*>0, BT eL(ZU),
MA+ A*M — MBB*M + P*C*CP = 0.

e LQR for (A;, B.,C|z.): min fOOO(Hng(t)H%, + ||u(2)||?) dt.

If (A, B.) is stab. in Z. and (A.,C|z.) is detectable in Z,

the solution is u.(t) = —BZ M. z-(t), where I, solves the A.R.E.
N.e£(Z), N.=MN:>0, BN, e L(Z,U),
MN.A: + AN, —MN.B.BT. + PXC*CP. = 0.
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Stabilizability of (A, B.)

21/45

e We assume that A+ wp/ — BB*[1 is exponentially stable in Z,
for some wn > 0. (F = —B*T, wn = wf)

e With Theorem 1.1, we prove that A.n = A. — B:B*lNP is
exponentially stable in Z., uniformly with respect to € € (0, &9), for
some ¢g € (0, 1):

[ z(z) < CeT®met, Vt>0, Ve e (0,e),

where
_ r
Wne =wWn —0¢ .



Detectability of (A.,C|z.)
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e We assume that C € £(H, Y), Y is a Hilbert space, and that

(A,C|z) is detectable in Z,

(A*,(C|z*) is stabilizable in Z.

e With Theorem 1.1, we prove that
(Ac,Clz. =C. =C) s detectable in Z,

uniformly with respect to € € (0,¢q), for some ¢ € (0, 1).
More precisely, from Theorem 1.1 it follows that there exists
F € L(Y,Z) such that

(et(As+P5FCE)>
t>0

is exponentially stable on Z. uniformly in € € (0, &9).



Preliminaries to prove convergence rate for feedback gains

2(t) = etA-BE" M pz, - G(t) = —B*NZz(t), (P)
7.(t) = etA=BBN)p 70 G (t) = —B*N.Z.(t), (P.)
Z(t) = etA=BBNP) pzy - G(t) = —BrM.P.Z(t),
z.(t) = etA=BB PP 7, G (t) = —B*NPZ..
With Theorem 1.1, we have

1Z=(t)l|z. < Ce™m=Hlzoll,  wne=wne— o,

I12(t) = Z(t)lln < C Zre™n=*||z0] |-

t

With Theorem 1.2, we will obtain a similar result for ||z(t)||z and
for ||z-(t) — z(t)|| 4, but we first need to prove the uniform
exponential stability of e(A<—BeBzT)t,
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Uniform stability of the closed loop approximate semigroup

F. = —B!Tl.. There exist w* > 0 and g € (0, 1) such that

sup He(AE_BEB:nE)tHL‘,(ZE) S Ce—w*t, Vt Z 0.
€€(0,e0)

Idea of proof. Step 1.

~

Ze = e(AE_BEB:ne)tPEZOa Zl\a = _B:I_l&‘?&‘a
Ia(faa aa) = %(”aPaZO, PEZO)H
(nePsZm PEZO)H < 21—6(2&‘7 He) < CHZOH%-I‘
We deduce that

sup ||PZM:Pel|z(hy < oo
0<e<eg
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Uniform stability - [l
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Step 2. (As,Clz.) = (Ag, Cc) is detectable, uniformly in € € (0, &p).

Thus, there exists F € L(Y, Z) such that

(et(A5+PsFCs))

>0
is an analytic semig. on Z., exponen. stable unif. in ¢ € (0, g).
With
Acn. = A F — P-FC. — B-BXTl,
etene P.zg = ek P.zg — [y etV AKP.P.FZ.(7) dT
— Jo et"AeF P.B.TI(7) dT,

we prove
1WA Pzl 1200 00:1) < Cllzo]l -



Uniform stability - [

Step 3. ® We prove

sup (€020 || £y 12(0,00iH) < 00
e€(0,e0)

This is not sufficient to have the exponential uniform stability.

e To have the exponentially uniformly in € € (0,2¢), we have to
prove some additional bound

[e=n= ||y < C M, Vit > 0.
e There exist w* > 0 and g9 € (0, 1) such that

sup He(AE_BEB:nS)tHL‘,(ZS) g Ce_w*t, Vt 2 0
e€(0,e0)

With Theorem 1.2, we have

12(t)llz < Ce ™ Pllzo]lm, wne =wne —oe",

I12:(t) = Z(t)]|1 < C Fre™™" 220 |-
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Convergence rate for the feedback gains

We have
|P* NP — PXM-Pe|| oy < Ce”, Ve € (0,0), if r<s,
IP*AP — PIN.Pe|[(Hy < Ce[In(e)], Ve €(0,20), ifr=s,
and

IB* NP — BIN-P| ct.u) < Ce|Ine|, Ve € (0,20).
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Convergence rate for the feedback gains - ldea of proof

3[((P*NP — P2N.P:)z0, 20)m| = |Z(2,0) — T(2:, )|

< |Z(Z.0) - Z.(2:, 8)| + |Z(2,5) - To(2., )|
< €112 = Zusery (12 gy + 1710 1)
+CIZ = Zlaory (121 ) + 12y ) -
From which, with the estimates on Z. — Z and Z. — Z, we deduce

(P*MP — PM.P.)z, 20) < Cllzo||% " if r <s.
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Convergence rates for the closed-loop systems

o 2(t) = etfAtBFyy  F = —B*N.
|e®A+BR| 7y < Cemnt, Vit > 0.

o 3(t) = etA+BF) 0 F) = _pBrM_P..

o Z.(t) = efAHBF) g FL = —BIT..

For all € € (0,0), we have

e(—wn+toe"|Inel)t

I2(6) - 2(0)lw < € S

e'lInelllzoll,

12 = 2l 0ty < Goe"/PlInel /P zo]l i, Vp € (1,00),

H/Z\S - EHLP(O,oo;H) < CP gr/pHZOHH? Vp € (1700)'

29/45



Part IV - Applications
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e Numerical approximation of the Oseen system with a boundary
control (lectures 2 and 3)

e Approximation of the Oseen system by the
pseudo-compressibility method with internal control (see below)

e Approximation of the Oseen system by the
pseudo-compressibility method with a boundary control (lecture 3)

e Numerical approximation of the Boussinesq system (lecture 3)

e Stabilization of FSI systems (lecture 4) and their numerical
approximation (under investigation lecture 4)



The controlled Navier-Stokes system

e Q) is either a bounded domain in R3 either of class C2, or a
bounded polyhedral convex domain.

o (ws,ps) € (HY(Q))3 x L3(Q) is a stationary solution of the N.S.E:

(ws - V)ws —vAws + Vps =15, divws=0 in Q,
ws =gs on [ =09Q.

e The controlled Navier-Stokes system

%‘j:—i—(w-V)W—VAW—i-Vp:fs—i-xou, in Q= x(0,00),

divw=0 in Q w=gs on X=T x(0,00),
w(0) =wp =ws +yo in Q,

Yo is a perturbation in the |.C.
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The Oseen system

The nonlinear system satisfied by (y, p) = (w, p) — (ws, ps) is

9y
ot
divy=0 in Q,

+(ws  V)y+(y -VIws +r(y-V)y —vAy+Vp=xou in Q,

y=0 on X,
y(0)=yo in Q

with kK = 1. The associated linearized system is obtained by setting
rk = 0.
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The controlled Oseen system

The controlled Oseen system

Oy
ot
dvy=0 in Q@ y=0 on X, y(0)=y in Q.

+(ws - V)y+(y - VIws —vAy+Vp=xou in Q,

The Leray projector P € L(H, Z), H= (L3(Q))3, Z = V2(Q).
VO(Q)={y € L2(Q;R3) |divy =0, y-n=0o0onT}
The Oseen operator (A, D(A)), and the control op. B

Ay = P(v Ay — (ws - V)y — (v - V)ws),
D(A) = V)(Q) N (Hg(Q) N H*(Q))}, B = Pxo.

The control Oseen system
! J—
y'=Ay+Bu, y(0)=yo.
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Approximation by the pseudo-compressible model

e Pseudo-compressible approximation

a .
S VBt (e V)W + (WG V)y + Vo = xou in Q,

divy. +ep.=0in Q, y-.=0 onX, y(0)=y inQ.

ws is an approximation of ws.

e The equation for y. can be solved first
Oy: . . 1. :
— —VAY.+ (Yo - V)W + (we - V)y: — nglvys =xou in Q.

e Find v in feedback form u = Fy (u. = F.y.) able to stabilize the
incomp. model (resp. pseudo-compressible model).
e Study convergence results F. — F, y. — y.

e Prove that the feedback F.P also stabilizes the original system.
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Error estimates for the pseudo-compressible approximation
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—vAv+Vp=f inQ,
divv=0inQ, v=0onT.
e The pseudo-compressible Stokes system
—vAv. +Vp. =f in Q,
divv. +ep-=0inQ2, v.=0 onT.

e Temam (1977), Bercovier (1978) - Approximation error for the
stationary Stokes equation

v = Vell(r()ys + 1P = Pellz@) < Cellfll(r-1(a)3-

e Temam (1977), Hebecker (1982), Shen (1995) (instationary
Stokes equation)

v = vell 2 @))nees 2(@)) + I1div vell 1= (12(0))

< Ce2(Ifll 2@ + Iyoll(i2@)e):



Uniform coervivity condition
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The stationary solution (ws, ps) belongs to (H}(2))3 x L2(Q).
For all v, satisfying the H'-bound

sl ey < llwsllrnaye + 1
we set

avs(z,o:/Q(uw:vc+(vs-V)z-<+(z-V)vs-o dx,

for all z € (HY(Q))3, ¢ € (HY(Q))3.

We can choose wg > 0 such that
woll2lF 2@y + 2 (2:2) 2 212y

for all z € (H1(2))3 and all v; satisfying the H'-bound.



Analyticity - Resolvent estimate

The operator (A, D(A)) is the infinitesimal generator of an analytic
semigroup on Z = V(). There exists a sector {wo} + Sy /244,
with § €]0, 7/2], such that

{wo} + Sz /245 C p(A),
[ = A) ez < xSy for all A€ {uo} + Sz

[A—wol
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Analyticity of pseudo-compressible control Oseen operator

We assume that ||ws — ws||(p1q)3 < Gse, Ve € (0,1).
We set eg = 1/Cs. The pseudo-compressible Oseen operator A is

D(A:) = (H*(Q) N Hy(Q))°,
Acy = vy — (y - V)W — (w5 - V)y + 2V(div y).
The pseudo-compressible system can be rewritten in the form

vi=Aye + Bou, y(0)=yo, with B. = xo.

For all € € (0,20), the operator (A, D(A:)) is the infinitesimal
generator of an analytic semigroup on (L2(£2))3. We have

{wo} + Sz /215 C p(Ac),
IO = A) Hlg(zy < g forall A€ {wo} +Srja1s,

for all € € (0, ¢p).
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The pseudo-compressible control Oseen system

e The following bounds hold, uniformly in € € (0, p):

Iy ll(r2ey + LlIdiv yllm) < Cll(Ao! — Ac)yll2() Yz € D(A:),
191l (H2(0))s + %||d1V¢||H1(Q) < Cl[(Aol — AD)dll(12())3> Vo € D(AZ).

proved by rewriting the divergence eq. as for the imcompressible case.
e The following approximation property holds:

[(Aol = A)THP — (Mol — Ac) iz < Ce, Ve € (0, 20).
e The control operators B and B. satisfy

(Aol = A)"1B — (Mol — A) Bl ziz)) < Ce, Ve €(0,20),

(Mol = A)1B — (Mol — A) 1B = [(Mol — A)L — (Mol — A-)Hxo-
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Convergence rate of A towards A.

e y = (\o/ — A)"LPf is solution of

Xoy —vAy +(y - VIws + (ws - V)y + Vp=f in Q,
divy=0inQ, y=0onT.

o y¢ = (Aol — AWSE)_IPf is solution of

Aoy —vAy +(y - V)W + (Wi -V)y +Vg=1f inQ,
divy=0inQ, y=0onT.
e y. = (Aol — A.)"1f is solution of
Aoye — VAy: + ()/a : ‘7)‘445 + (va : ‘7))45 +Vg. =f inQ,
divy.+eg-.=0inQ, y.=0 onT.

ly = ¥*lli2(q:r3) can be estimated with regularity results for the
Oseen system and with the estimate on ||ws — wg || y1(q:R3)-
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Estimate of ||y. — y°||12:r3)

The differences z. = y. — y* and p. = g. — q obey

Moze —vAz. + (z - V)W + (W - V)z.+Vp. =0 in Q,
divze +ep.=—-eqinQ, z =0 onT.

With the adjoint system

AP — vAD, + (Vwe)Td, — (We - V), + Vip — div(we)d.
=ye—y° inQ,
divd, +ep.=0inQ, &.=0 onTl,

we obtain

/ lye — y*[Pdx = 6/ qip-dx
Q Q

<ellqllz@)ll¥:llz@) < Cellye — ¥ lliz)-
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Convergence rate for Riccati based feedback gains

e F. = —I.. There exist w* > 0 and g € (0, 1) such that

sup He(As*B@:ns)tH‘C(ZE) S Cefw*t, vt 2 0.
€€(0,&0)

e We have
INP = Mellequy < CelIn(e)], Ve € (0,20),

and
|B*NP — BXNe| z(m,uy < Cellne|, Ve € (0,e0).
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Convergence rates for the closed-loop systems

o 2(t) = etAMBFz,  F=-1.
|e®A+BR| £ z) < Cemnt, Vit > 0.
o Z(t) = efABR) 4 FL = —TI..

o 7.(t) = etAtBFe) 7y F = —TI..

For all € € (0,¢9), we have

(—wn+eellne|)t
~ ~ e
I12(t) = 2=(t)lln < € ——————¢ll<]llyolln,

1Z: = Zllir(0,00H) < CpeV/PlInelVPllyoll,  Vp € (1,00),

||E€ - ZHLP(O,OO;H) < CP El/pHyOHHa Vp e (]-a OO)
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